Integrability for the Jacobian of Orientation Preserving Mappings

HAÏM BREZIS
Université de Paris VI, Paris, France, and
Rutgers University, New Brunswick, New Jersey 08903

AND

NICOLA FUSCO AND CARLO SBORDONE
Università di Napoli, Naples, Italy

Communicated by the Editors

Received

Assume F is a map from Ω into \mathbb{R}^n where Ω is a bounded domain in \mathbb{R}^n such that $|Df| \in L^s(\log L)^{-\varepsilon}$ with $0 \leq s \leq 1$, i.e., $\int_{\Omega} |Df|^s \left(\log(1 + |Df|) \right)^{-\varepsilon} < \infty$, then $J \in L^{(\log L)^{-\varepsilon}}(K)$ for any compact subset $K \subset \Omega$, where $J = \det(Df)$. When $s = 0$ we recover a well-known result of Müller (J. Reine Angew. Math. 412 (1990), 20–34), while the case $s = 1$ was obtained by Iwaniec and Sbordone (Arch. Rational Mech. Anal., to appear). © 1993 Academic Press, Inc.

1. Introduction

Throughout this paper we assume that Ω is a bounded open set in \mathbb{R}^n and that $f : \Omega \to \mathbb{R}^n$, $n \geq 2$, is a mapping with nonnegative Jacobian $J = J(x, f) = \det Df$.

In [M] S. Müller proved that, if $|Df| \in L^n(\log L)^{-1}(\Omega)$, then $J \in L \log L(K)$ for any compact subset $K \subset \Omega$ (see also [CLMS]).

In [IS] T. Iwaniec and C. Sbordone proved that

(A) if $|Df| \in L^n (\log L)^{-1} (\Omega)$, then $J \in L^1_{\text{loc}}(\Omega)$

(B) if $|Df| \in L^{n,\infty}(\Omega)$, then $J \in L^1_{\text{loc}}(\Omega)$.

In this paper we interpolate between Müller's result and (A); namely, we prove:

THEOREM 1. If $|Df| \in L^n(\log L)^{-s}(\Omega)$, $0 \leq s \leq 1$, then $J \in L(\log L)^{1-s}(K)$ for any $K \subset \Omega$.

This theorem is proved in Section 3.
It would be also natural to interpolate between Müller's result and (B), and to try to prove that if \(|Df|\) belongs to the Lorentz space \(L^{n,q} (\Omega)\), \(n < q < \infty\), then \(J \in L (\log L)^{n/q} (K)\) for any \(K \subset \Omega\). Unfortunately this is not true. However, the maximal function \(MJ\) of \(J\) satisfies \(MJ \in L^{1,q/n}_{\text{loc}}\), which is a weaker statement than saying \(J \in L (\log L)^{n/q} (K)\).

This is discussed in Section 4.

2. SOME PRELIMINARY RESULTS

Denote by \(g^*\) the decreasing rearrangement on the interval \((0, + \infty)\) of a measurable function \(g\) defined on some open set \(\Omega \subset \mathbb{R}^n\).

The Lorentz space \(L^{p,q} (\Omega)\) \((1 < p < \infty, 1 \leq q \leq \infty)\) consists of all measurable functions \(g\) on \(\Omega\) for which

\[
\|g\|_{p,q} = \begin{cases}
\left\{ \int_0^\infty \left[t^{1/p} g^*(t) \right]^q \frac{dt}{t} \right\}^{1/q} & q < \infty \\
\sup_{t > 0} t^{1/p} g^*(t) & q = \infty
\end{cases}
\]

is finite. The spaces \(L^{p,q}\) increase with \(q\); in particular,

\(L^{p,1} \subset L^{p,p} = L^p \subset L^{p,\infty}\)

(see, e.g., [Z]).

The Zygmund space \(L^p (\log L)^z (\Omega)\) \((1 \leq p < \infty, -\infty < z < \infty)\) consists of all measurable functions \(g\) on \(\Omega\) for which

\[
\int_{\Omega} |g|^p \log^z \left(e + \frac{|g|}{|g|_{\Omega}} \right) dx < \infty,
\]

where \(|g|_{\Omega} = (1/|\Omega|) \int_{\Omega} |g| dx\).

It can be shown (see [BS, p. 252]) that \(g \in L^p (\log L)^z (\Omega)\) iff

\[
\int_0^\infty (1 + |\log t|)^z g^*(t)^p dt < \infty.
\]

We denote by \(M_{\Omega}\) the local Hardy–Littlewood maximal function, defined for \(g \in L^1_{\text{loc}} (\Omega)\) by

\[
M_{\Omega} g(x) = \sup_{x \in \Omega \subset \Omega} \int_{\Omega} |g| dy.
\]

The following result is well known (see e.g. [BR]).
LEMMA 1. For \(p > 1, \ 0 \leq s \leq 1, \) \(M_\Omega \) maps boundedly \(L^p(\log L)^{-s} \) into itself, namely

\[
\| M_\Omega \ g \|_{L^p(\log L)^{-s}(\Omega)} \leq c \| g \|_{L^p(\log L)^{-s}(\Omega)}
\]

with \(c = c(n, p, s) \).

When the exponent in the Zygmund space is \(p = 1 \) the behaviour of the maximal function is different; namely the following result holds (see [S] for \(x = 1 \)).

LEMMA 2. For \(0 < \alpha \leq 1 \), the following statements are equivalent,

(a) \(g \in L(\log L)^\alpha \)

(b) \(M_\Omega \ g \in L(\log L)^{\alpha - 1} \).

In particular, there exists \(c = c(n, \alpha) \) such that

\[
\int_\Omega |g| \log^2 \left(e + \frac{|g|}{|g|_\Omega} \right) dx \leq c \int_\Omega M_\Omega \ g \log^{\alpha - 1} \left(e + \frac{M_\Omega \ g}{|g|_\Omega} \right) dx. \tag{1}
\]

The equivalence between (a) and (b) is essentially due to Bennett [B, Theorem 4.1]. Here we prove inequality (1).

Proof. Suppose \(|g|_\Omega = 1 \). Then it is well known that \(\forall t > 1 \),

\[
\frac{1}{t} \int_{\{|g| > t\}} |g| \leq 2^n \{ |\{M_\Omega \ g > t\}| \}
\]

We have by integration by parts

\[
\int_{\{|g| > 1\}} |g| \log^2(e + |g|) \]

\[
= - \int_1^\infty \log^2(e + t) \left[\int_{\{|g| > t\}} |g| \ dx \right] dt
\]

\[
= - \left[\log^2(e + t) \int_{\{|g| > t\}} |g| \ dx \right]_{t = 1}^{t = \infty} \]

\[
+ \alpha \int_1^\infty \frac{\log^{\alpha - 1}(e + t)}{e + t} \int_{\{|g| > t\}} |g| \ dx \ dt
\]

\[
\leq \log^2(1 + e) \int_{\{|g| > 1\}} |g| \ dx + 2^n \alpha \int_1^\infty \log^{\alpha - 1}(e + t) \{ |\{M_\Omega \ g > t\}| \} \ dt.
\]
If we set $\phi(t) = t \log^{a-1}(e + t)$ we have $\phi'(t) \geq \alpha \log^{a-1}(e + t) \forall t > 0$. And so

$$\int_{|g| > 1} |g| \log^a(e + |g|)$$

$$\leq \log^a(1 + e) \int_{|g| > 1} |g| dx + 2^n \int_1^\infty \phi'(t) |\{M_{g \mathcal{R}} g > t\}| dt$$

$$= \log^a(1 + e) \int_{|g| > 1} |g| dx + 2^n \int_{M_{g \mathcal{R}} > 1} \phi(M_{g \mathcal{R}} g).$$

In fact

$$\int_{|h| > 1} \phi(|h|) dx = \int_1^\infty \phi'(t) |\{|h| > t\}| dt.$$

So we have

$$\int_\Omega |g| \log^a(e + |g|) \leq \log^a(1 + e) \int_\Omega |g| dx + 2^n \int_\Omega M_{g \mathcal{R}} g \log^{a-1}(e + M_{g \mathcal{R}} g).$$

From this inequality one gets the result when $|g|_{L^1} = 1$ since, $\forall \epsilon > 0$ and $\forall t > 0,$

$$t \leq \epsilon t \log^a(e + t) + C(\epsilon, a) t \log^{a-1}(e + t).$$

The general case then follows by homogeneity.

Lemma 3. If $g \in L^n(\log L)^{-s}(\Omega), 0 < s \leq 1, g \geq 0,$ then

$$\lim_{\epsilon \to 0} \epsilon^s \int_\Omega g^{n-\epsilon}(x) dx = 0.$$

Proof. We have

$$\epsilon^s \int_\Omega g^{n-\epsilon}(x) dx \leq \epsilon^s + \frac{1}{|\Omega|} \int_{g \geq 1} \frac{\epsilon^s g^n}{e^{\epsilon \log g}} dx.$$

The second integral converges to zero by dominated convergence. Clearly the integrand converges to zero pointwise and in addition

$$\frac{\epsilon^s g^n}{e^{\epsilon \log g}} \leq \frac{\epsilon^s g^n}{1 + \epsilon \log g} \leq \frac{g^n}{(\log g)^{a'}}.$$
3. Proof of Theorem 1

Let us recall the following inequality which holds for \(f \in W^{1,n-\varepsilon}(\Omega; \mathbb{R}^n), -\infty < \varepsilon < 1 \), and \(Q \subset Q_0/2 \), \(Q_0 \) a cube contained in \(\Omega \).

\[
\frac{1}{|Q|} \int_Q |Df|^{-\varepsilon} J(x,f) \leq c(n) |\varepsilon| \frac{1}{|2Q|} \int_{2Q} |Df|^{n-\varepsilon} + c(n) \left(\frac{1}{|2Q|} \int_{2Q} |Df|^{(n+2)/(n+1)} \right)^{n+1/n}.
\]

(see [IS]). Since \(|Df| \in L^n(\log L)^{-s} \), if \(0 < s \leq 1 \) we can pass to the limit as \(\varepsilon \to 0 \) and use Lemma 3 to obtain, for any cube \(Q \subset Q_0/2 \),

\[
\frac{1}{|Q|} \int_Q J \leq c(n) \left(\frac{1}{|2Q|} \int_{2Q} |Df|^{n/(n+1)} \right)^{n+1/n}.
\]

If we denote by \(M \) the local maximal function associated to the cube \(Q_0/2 \), i.e., \(M = M_{Q_0/2} \), and by \(\mathcal{M} \) the local maximal function associated to the cube \(Q_0 \), i.e., \(\mathcal{M} = M_{Q_0} \), by (1) we deduce for \(x \in Q_0/2 \),

\[
MJ(x) \leq c(n) \mathcal{M}(|Df|^{n/(n+1)}(x))^{n+1/n}.
\]

Since \(|Df| \in L^n(\log L)^{-s} \), it is easy to check that \(|Df|^{n/(n+1)} \) belongs to \(L^{(n+1)/n}(\log L)^{-s} \) and then, by Lemma 1, \(\mathcal{M}(|Df|^{n/(n+1)}) \) belongs also to the same space. From this it follows that \(\mathcal{M}(|Df|^{n/(n+1)})^{n+1/n} \) and also \(MJ \), by (3), belongs to \(L(\log L)^{-s} (Q_0/2) \). Finally, from Lemma 2 we deduce that \(J \in L(\log L)^{1-s}(K) \forall K \subset \Omega \).

Remark. Using inequalities (1) and (3) and the fact that

\[
\frac{|\mathcal{M}(|h|)|^{(n+1)/n}}{Q_{0/2}} \log^s(e + \mathcal{M}(|h|)) \leq c \frac{|h|^{(n+1)/n}}{Q_{0/2}} \log^s(e + |h|)
\]

for any \(h \in L^{(n+1)/n}(\log L)^{-s}(Q_0/2) \) (see [FS], Prop. 1.2), one can easily prove the inequality

\[
\int_{Q_{0/2}} J \log^{1-s}(e + \frac{J}{J_{Q_{0/2}}}) \leq c \int_{Q_0} |Df|^{n} \log^{-s} \left(e + \frac{|Df|}{|Df|_{Q_0}} \right)
\]

\(\forall Q_0 \subset \Omega \).

4. Inequalities in Lorentz Spaces

Here is one positive result.

Theorem 2. If \(n < q < \infty \), \(|Df| \in L^{n,q}(\Omega) \), and \(M \) denotes the local maximal function associated to a cube \(Q \subset \Omega \), then we have \(MJ \in L^{1,q/n}(Q) \).
Proof. First we recall (see, e.g., [BR]) that the maximal function maps $L^{p,r}$ into itself and the following inequality holds:

$$\|Mh\|_{L^{p,r}} \leq c \|h\|_{L^{p,r}}.$$

(4)

We will also use the relation

$$\|h^p\|_{L^{p,r}} = \|h\|^p_{L^{p^*,r^*}}.$$

(5)

As in the proof of Theorem 1 we have (2), since $|Df|$ belongs to $L^{n,q}$ and $L^{n,q} \subset L^n / \log L$ (see [BR, Theorem 9.3]). Hence we have also (3). Next we apply (4) to $h = |Df| n^{n/(n+1)}$, with $p = (n+1)/n, \quad r = (n+1)q/n^2$, and rewrite the right-hand side, using (5) with $x = n^2/(n+1)$. So this proves that

$$MJ \in L^{1,q/n}(Q).$$

(6)

In view of inequality (6) it would be natural to expect that $J \in L(\log L)^{n/q}(K)$ for $K \subset \Omega$. However this is not true as it can be seen by the following.

Example. Consider the function

$$f(x) = \frac{x}{|x|} |\log |x||^{-1/q} (\log |\log |x||)^{-1/n},$$

where $|x| < a < 1, q > n$. We claim that

$$|Df| \in L^{n,q}$$

(7)

$$J \notin L(\log L)^{n/q}.$$

(8)

Verification of (7). It is easy to check that $|Df|$ is equivalent to $(1/|x|) |\log |x||^{-1/q} (\log |\log |x||)^{1/n}$. Then the claim follows since

$$\int_0^a \left[\frac{1}{\log r^{-1/q} (\log |\log r|)^{1/n}} \right]^q \frac{dr}{r} < \infty.$$

Verification of (8). J is now equivalent to $(1/|x|^n) |\log |x||^{-1-n/q} (\log |\log |x||)^{-1}$ and this function does not belong to $L(\log L)^{n/q}$.

References

