Équations aux dérivées partielles/Partial Differential Equations

Limite singulièrē pour la minimisation de fonctionnelles du type Ginzburg-Landau

Fabrice Bethuel, Haïm Brezis et Frédéric Helein

Résumé – On analyse le comportement, quand ε→0, des solutions (uε) du problème de minimisation

$$\min_{u \in H^1_0} \left\{ \frac{1}{2} \int_\Omega |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_\Omega (|u|^2-1)^2 \right\}$$

où Ω est un domaine de $\mathbb{R}^2$, $g: \partial\Omega \to \mathbb{C}$ est une donnée au bord telle que $|g|=1$ sur $\partial\Omega$ et $H^1_0 = \{ u \in H^1(\Omega; \mathbb{C}) ; u=g \text{ sur } \partial\Omega \}$.

Abstract – We describe the behavior, as $\varepsilon \to 0$, of minimizers for the problem

$$\min_{u \in H^1_0} \left\{ \frac{1}{2} \int_\Omega |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_\Omega (|u|^2-1)^2 \right\}$$

where $\Omega$ is a domain in $\mathbb{R}^2$, $g: \partial\Omega \to \mathbb{C}$ is a given boundary data such that $|g|=1$ on $\partial\Omega$ and $H^1_0 = \{ u \in H^1(\Omega; \mathbb{C}) ; u=g \text{ on } \partial\Omega \}$.

Abridged English Version – Let $\Omega \subset \mathbb{R}^2$ be a smooth bounded domain in $\mathbb{R}^2$. We fix a boundary conditioin $g: \partial\Omega \to \mathbb{C}$ such that $|g|=1$ on $\partial\Omega$, i.e. $g$ takes its values in $S^1$. We consider the Ginzburg-Landau functional (which arises in many problems, see e.g. [11], [12], [13]):

$$E_\varepsilon(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_\Omega (|u|^2-1)^2$$

defined for maps $u: \Omega \to \mathbb{C}$. We are concerned with the minimization problem

(1) $$\min_{u \in H^1_0} E_\varepsilon(u)$$

where $H^1_0 = \{ u \in H^1(\Omega; \mathbb{C}) ; u=g \text{ on } \partial\Omega \}$. We study the behavior of minimizers $u_\varepsilon$ of (1) as $\varepsilon \to 0$. The answer depends crucially on the degree of $g$. Set

$$d = \deg(g, \partial\Omega).$$

The case $d=0$ is rather straightforward, while the case $d \neq 0$ leads to serious difficulties connected to the development of singularities (vortices) of infinite energy. We discuss these cases separately:

**Case I**: $d=0$. – Recall that there exists a unique smooth harmonic map $u_0$ from $\Omega$ into $S^1$ such that $u_0=g$ on $\partial\Omega$. More precisely $u_0 = e^{i\varphi_0}$ where

$$\begin{cases} \Delta \varphi_0 = 0 & \text{in } \Omega \\ e^{i\varphi_0} = g & \text{on } \partial\Omega. \end{cases}$$

Our main result in this case is

**Theorem 1**. – As $\varepsilon \to 0$, $u_\varepsilon \to u_0$ in $C^{1,\alpha}(\Omega)$ for every $\alpha < 1$.

Note présentée par Haïm Brezis.

0764-4442/92/03140891 $ 2.00 © Académie des Sciences
Case II: $d \neq 0$. Without loss of generality we may assume that $d > 0$. There is a basic difference with the previous case since here $\int |\nabla u_\varepsilon|^2 \to \infty$ as $\varepsilon \to 0$. Our main result for this case is:

**Theorem 2.** There is a sequence $\varepsilon_n \to 0$ and there exist $d$ points $a_1, a_2, \ldots, a_d$ in $\Omega$ and a smooth harmonic map $u_0$ from $\Omega \setminus \{a_1, a_2, \ldots, a_d\}$ into $S^1$ with $u_0 = g$ on $\partial \Omega$ such that $u_n \to u_0$ uniformly on compact subsets of $\Omega \setminus \{a_1, a_2, \ldots, a_d\}$.

The energy of $u_0$, $\int |\nabla u_0|^2$, is infinite and each singularity $a_i$ has degree $+1$.

**Remark.** The situation in higher dimension is quite different. Let $\Omega \subset \mathbb{R}^3$ be a smooth bounded domain and let $g: \partial \Omega \to S^2$ be a smooth boundary data. Consider the same energy $E_\varepsilon$ as above, but defined on the space $H^4 = \{u \in H^1(\Omega; \mathbb{R}^3); u = g$ on $\partial \Omega\}$.

Then $u_n \to u_0$ in $H^1$ where $u_0$ is a minimizing harmonic map from $\Omega$ into $S^2$ such that $u_0 = g$ on $\partial \Omega$. The limit $u_0$ has a finite number of singularities (of finite energy). Singularities may arise even if $d = \deg(g, \partial \Omega) = 0$. Each singularity has degree $\pm 1$; but in contrast with the two-dimensional case, singularities of degree $+1$ and $-1$ may coexist (on this subject, related to liquid crystals, e.g. [2], [3], [7], [8] and [15]).

Soit $\Omega \subset \mathbb{R}^2$ un domaine (complexe connexe) borné régulier. On fixe une donnée au bord (régulière) $g: \partial \Omega \to \mathbb{C}$ telle que $|g| = 1$, c'est-à-dire, $g$ prend ses valeurs dans $S^1$. On considère la fonctionnelle de Ginzburg-Landau (qui intervient dans de nombreux problèmes ; voir, par exemple [11], [12], [13]):

$$
E_\varepsilon(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_\Omega (|u|^2 - 1)^2
$$

définie pour des applications $u: \Omega \to \mathbb{C}$ et on s'intéresse au problème de minimisation

$$
\min_{u \in H^4} E_\varepsilon(u).
$$

On étudie le comportement quand $\varepsilon \to 0$ des minimums, notés $(u_\varepsilon)$, de (1). Ce comportement dépend de manière cruciale du degré de $g$. Plus précisément on pose

$$
d = \deg(g, \partial \Omega).
$$

Le cas $d = 0$ est relativement simple tandis que le cas $d \neq 0$ présente de sérieuses difficultés dues à l'apparition de singularités d'énergie infinie. Nous examinerons séparément ces deux cas.

Cas I : $d = 0$. Rappelons qu'il existe une unique application harmonique (régulière) $u_0$ de $\Omega$ dans $S^1$ qui coïncide avec $g$ sur $\partial \Omega$, i.e. $u_0$ est solution du système

$$
\begin{align*}
-\Delta u_0 &= u_0 |\nabla u_0|^2 & &\text{sur } \Omega \\
|u_0| &= 1 & &\text{sur } \Omega \\
u_0 &= g & &\text{sur } \partial \Omega.
\end{align*}
$$
Plus précisément, \( u_0 = e^{i\varphi_0} \) avec
\[
\begin{align*}
\Delta \varphi_0 &= 0 \quad \text{sur } \Omega \\
\varphi_0 &= \psi_0 \quad \text{sur } \partial \Omega.
\end{align*}
\]

On notera que, comme \( d=0 \), il existe un relèvement \( \psi_0 : \partial \Omega \to \mathbb{R} \) régulier (défini à \( 2\pi \) près) tel que \( e^{i\psi_0} = g \). (Le lien entre les applications harmoniques à valeurs dans \( S^1 \) et les fonctions harmoniques est explicité dans [4].)

Notre résultat principal, dans ce cas, est le suivant :

**Théorème 1.** — *Quand \( \varepsilon \to 0 \), \( u_\varepsilon \to u_0 \) dans \( C^{1,+}(\Omega) \) pour tout \( \alpha < 1 \).

On notera que
\[
E_\varepsilon(u_\varepsilon) \leq E_\varepsilon(u_0) \leq \frac{1}{2} \int_\Omega |\nabla u_0|^2.
\]

De cette estimation on déduit aisément que \( u_\varepsilon \to u_0 \) dans \( H^1 \). D'autre part, il est clair que \( u_\varepsilon \) vérifie l'équation
\[
-\Delta u_\varepsilon = \frac{1}{\varepsilon^2} u_\varepsilon (1 - |u_\varepsilon|^2).
\]

Il résulte du principe du maximum que \( |u_\varepsilon| \leq 1 \). L'estimation plus délicate qui permet de conclure est :
\[
\| \Delta u_\varepsilon \|_\infty \leq C;
\]
pour la démonstration, voir [1]. On montre aussi que
\[
\frac{1}{\varepsilon^2} (1 - |u_\varepsilon|^2) \to |\nabla u_0|^2 \quad \text{uniformément sur tout compact de } \Omega.
\]

On remarquera qu'il se produit un phénomène de couche limite puisque \( |u_\varepsilon| = 1 \) sur \( \partial \Omega \) (et en général \( |\nabla u_0| \neq 0 \) sur \( \partial \Omega \)).

**Cas II :** \( d \neq 0 \). — Pour fixer les idées on suppose que \( d>0 \). Ce cas diffère fondamentalement du précédent car \( E_\varepsilon(u_\varepsilon) \) ne reste pas borné. On établit néanmoins les estimations suivantes :

**Lemme 1.** — *On a
\[
\frac{1}{\varepsilon^2} \int_\Omega (|u_\varepsilon|^2 - 1)^2 \leq C
\]
et
\[
\int_\Omega |\nabla u_\varepsilon|^2 \leq \frac{d}{2 \pi \log(1/\varepsilon)} + C.
\]

Notre résultat principal (démontré dans [1]) est le suivant :

**Théorème 2.** — *Quitte à extraire une suite \( \varepsilon_n \to 0 \), il existe \( d \) points de \( \Omega \), \( a_1, a_2, \ldots, a_d \), et une application \( u_\varphi \) harmonique régulière de \( \Omega \setminus \{a_1, a_2, \ldots, a_d\} \) vers \( S^1 \), avec \( u_\varphi = g \) sur \( \partial \Omega \) telle que
\( u_\varepsilon \to u_\varphi \) uniformément sur tout compact de \( \Omega \setminus \{a_1, a_2, \ldots, a_d\} \).

Chaque singularité a un degré égal à \( +1 \) et elle est d'énergie infinie ; plus précisément \( u_\varphi(z) \sim \alpha_i ((z-a_i)/|z-a_i|) \) au voisinage de \( a_i \), avec \( |\alpha_i| = 1 \).

Comme précédemment, \( u_0 \) est lié à la solution d'un problème linéaire. Supposons \( a_1, a_2, \ldots, a_d \) connus. Alors il existe une solution \( \varphi_0 \) unique (à une constante près) du
problème

\[ - \Delta \psi_0 = 2 \pi \sum_{i=1}^{d} \delta_{a_i} \text{ sur } \Omega, \]
\[ \frac{\partial \psi_0}{\partial n} = - g \wedge \frac{\partial g}{\partial \tau} \text{ sur } \partial \Omega. \]

où \( n \) désigne la direction normale extérieure à \( \partial \Omega \) et \( \tau \) la direction tangente à \( \partial \Omega \) avec \((n, \tau)\) direct. On a \( \psi_0 = e^{-i \phi_0} \) où \( \phi_0 \) est une fonction harmonique conjuguée de \( \phi_0 \). Dans notre situation, l’emplacement des points singuliers \( a_1, a_2, \ldots, a_d \) n’est pas donné \textit{a priori}. Nous reviendrons ultérieurement sur leur localisation qui fait intervenir la minimisation d’une énergie « renormalisée ».

\textbf{Remarque 1.} – C’est le caractère \textit{minimisant} de \( u_0 \) qui permet de conclure que \( u_0 \) a uniquement des singularités de degré +1. Il est facile de construire des solutions \( u_0 \) de l’équation (3) qui convergent vers une limite ayant une singularité de degré arbitraire.

\textbf{Remarque 2.} – On notera le contraste de ces résultats avec la situation qui apparaît dans \textit{d’autres dimensions}. Décrivons deux exemples :

(a) Soit \( \Omega \subset \mathbb{R}^2 \) un domaine régulier et soit \( g : \partial \Omega \to S^1 \) une donnée au bord régulière. On considère la même énergie \( E_{\epsilon}(u) \) définie maintenant sur l’espace

\[ H^1_{\epsilon} = \{ u \in H^1(\Omega ; \mathbb{R}^2) ; u = g \text{ sur } \partial \Omega \}. \]

Alors, \( u_{\epsilon} \to u_0 \) dans \( H^1 \) où \( u_0 \) est harmonique minimisante de \( \Omega \) dans \( S^1 \) avec \( u_0 = g \) sur \( \partial \Omega \). La limite \( u_0 \) a un nombre fini de singularités (d’énergie finie). Ces singularités peuvent apparaître même si \( \text{deg}(g, \partial \Omega) = 0 \). Chaque singularité a un degré égal à \( \pm 1 \); contrairement au cas de la dimension deux des singularités de degré +1 et −1 peuvent coexister. Sur ce vaste sujet lié à la théorie des cristaux liquides \textit{voir}, par exemple, [2], [3], [7], [8], [15].

(b) Soit \( \Omega \subset \mathbb{R}^n \) un domaine régulier. La minimisation de \( E_{\epsilon}(u) \) pour des fonctions \( u : \Omega \to \mathbb{R} \) a été étudiée en liaison avec la théorie des transitions de phases de Van der Waals et Cahn-Hilliard \textit{(voir, par exemple, [5], [6], [9], [10] et [14])}. Dans ce cas \( u_\epsilon \to u_0 \) qui prend seulement les valeurs +1 et −1, les ensembles \( \{ u_0 = +1 \} \) et \( \{ u_0 = -1 \} \) étant séparés par une interface « minimale ». Malgré les apparences les difficultés et les phénomènes qui apparaissent dans notre problème sont de nature très différente.

Nous remercions H. Matano qui a attiré notre attention sur ces problèmes.


\textbf{Références bibliographiques}


H. B. : Analyse numérique, Université P.-et-M.-Curie,
4, place Jussieu, 75252 Paris Cedex 05;
F. H. : École normale supérieure,
61, avenue du Président-Wilson, 94235 Cachan.