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Introduction 
In this paper we deal with the equation 

where Cl is a bounded domain (except in Section 11.3) and V(x) is a given 

function in LP(n) for some 1 < p 5 m. We assume that u E L1(n) and 

eU E ~ ~ ' ( n )  (where ps  is the conjugate exponent of p) so that (*) has a 

meaning in the sense of distributions. 

A first question is whether one can conclude that u E Lm(n). As we will see 

in Section 11 the answer is positive. Next we turn, in Section 111, to a more 

delicate issue, namely the question of gniform e s t i m a t ~ .  Suppose we have a 

sequence (u,) of aolutiona of 

with 
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B R t L T S  A N D  MERLE 

Can one conclude that 

llql <- Cs 
Lrn 

where Cg depends only on C1, C2 and Tr? We prove that the answer rs 

positive under a smallness condition, namely ClC2 < 4 ~ / p '  (see Corollary 3) 

The answer is also positive under a domina- condition, namely I VnI 5 W for 

a fixed W E LP(n),  1 < p < m (and then C3 depends also on W, s e e  

Corollary 5). 

A deeper result (nee Corollary 6) aseerte thst if V, .? 0 then (u,) 1s 

bounded in LYoc(fl), i.e. for every compact subset K sf tl we have 

where C3 depends only on C1, C2 and K. Surprisingly such an estimate does 

not hold up to the boundary. Given any 1 < p m we construct in Example 6 

(Section 111.3) sequences (u,) and (Vn) gatisfying (**) with Vn >_ 0 

and llunlly - + a  

A wrollsry of our method6 also yields the following. Suppose un satisfies 

with 

and 

O < a < V n < b < m  

Inf un 2 - M  > - m  
n 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 1225 

(here no boundary condition is imposed). Then for every compact subset K of R ,  

Sup un can be estimated just in terms of a,b,M,K and n (see Corollary 8). 
K 

Finally we turn to the general case where no boundary condition is imposed 

and (u,) is not bounded below. More precisely let (un) be a sequence of solutions 

of 

-Aun = vneUn in n 

with 

for some 1 < p 5 m. 

Then we have the following alternative (see Theorem 3): 

either 

(i) (u,) ie bounded in LyW(n) 

or 

(ii) u, -4 3 uniformly on compact aubsetr of n 
or 

(iii) t b a e  is a finite nonempty set S such that un --, -m uniformly on 

compact subsets of n\S and un --, +m on S (in a sense to be precised later). 

In this case vneUn converges to a finite rum of Dirac manses 
"i6ai with 

coefficients ai 2 4r/p1. 

Such behavior is well illustrated by the sequence 

un(x) = log 8n2 
(l+n21x12)2 

which satisfies -Aun = eun, I I ~ ~ ~ ( I ~ ~  5 C, un(x) - -D for all x # 0 and 

un(0) -+ +m. Here eun converges to 8rb0 

We thank Congming Li for raising questions which led us to Theorem 2 and 

Corollary 3 (Theorem 2 is used in (31). Some of our results (in particular Corollary 

4 and Theorem 4) are connected to earlier works of Nagasaki and Suzuki (see [6] 

and [7]) who consider mostly the case where the V,'s are constants. A. Chang 
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1 2 2 6  B R E Z I S  AND MERLE 

and P. Yang [2] have also studied blow-up sequences for related equations on s2 
1 (see e.g. their Concentration Lemma). However their approach involves H norms 

and is quite different from ours. 

In a forthcoming work we shall consider similar issues for the equation 

-Au = v(x)uP in n C 5tN, N > 3. The plan of the paper is the following: 

Introduction 

I. A basic inequality 

11. L~-boundedness for a single aolution of -Au = veU 

II.1. The caee of a bounded domain 

n.2. Some variant6 and counterexamplee 

II.3. The case L-4 = I f2  

m. Uniform Lm boa& and blow--up behavior for solution8 of -Au = veU 

m.1. Some eaay case# 

III.2. The main results 

m.3. Variants and counterexamplea. 

I. A basic ineouality 

Assume 0 c iR2 is a bounded domain and let u be a solution of 

I -Au = f(x) in  fl, 

U = O  on a n ,  

Theorem 1. For every 6 E (0,4r) we have 

1 w. Let R = d i m  fl so that Cl c BR for some ball of radius R. Extend 
2 

f to be zero outside fl and set, for x E R , 
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E S T I M A T E S  AND BLOW-UP B E H A V I O R  F O R  S O L U T I O N S  

so that 

2 -Aii = If1 on R . 

Note that a(x) 2 0 for x E BR since 2R 2 1 Vx, y E BR. It  follows E T  
from the maximum principle that 1 u J  < ii on fl and thus 

We now estimate the right-hand aide of (3) using Jensen's inequality 

F(J W(YMY)~Y)  5 1 W ( Y ) F ( ~ ~ Y N ~ Y  

with F(t) = up t ,  w(y) = and y )  = l o ( ) .  We obtain 
1 x-Y 

6 

= IBRw uB R (h) -R dx] dy. 

But, for y E BR, we have 

and the estimate (2) follows. 

A simple consequence of Theorem 1 is 

Corollarv 1. Let u be a solution of (1) with f E ~ ' ( f l ) .  Then for every 

constant k > 0 
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1228 B R E Z I S  A N D  MERLE 

m f .  Let 0 < E < 1/k. We may split f as f = fl +$  with ((fll(l < t 

and $ E Lm(n). Write n = nl + nZ where ui are the solutions of 

I ul(x) I 
Choosing, for example, 6 = (4r-I) in Theorem 1 r e  find inexp[T] < m 

and thus Inexp&lul l] < m. The mndudon follow8 aina lul 5 lul 1 + lu2l 

and u2 E Lm(n). 

Remark 1. The conclusion of Theorem 1 could also be deduced from BMO 

estimates and the John-Nirenberg inequality [4]. 

1 Remark 2. There is a local form of Corollary 1, namely if u E Lloc(n) and 

Au E L ~ ~ ( D ) ,  then for every k L., eklul c L~,(o). (Here we use the 
1 1 1 well-known fact that u E Lloc(n) and Au E ~ , ~ ~ ( n )  imply Vu E Lloc(R).] 

Remark 3 In Corollary 1, eklul E L' but lleklullll can a be estimated in 

terms of k and JlflJ1. For example, we may have a sequence (f,) such that 
1 1 

f 1, f 6 m d  then un -+ u with u(x) r 2-, log - 
Xo x-XO 

x -- xo ao that I ekluI = m for k 2 4, 

11. L*-boundedneas for a s i d e  solution of -Au = veU. 
11.1. The c u e  of a bounded domain. 

Let u satisfy the nonlinear equation 

where n ie a bounded domain in R~ and V(x) ie a given function on 0. 
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E S T I M A T E S  AND BLOW-UP B E H A V I O R  F O R  S O L U T I O N S  1 2 2 9  

Corollarv 2. Snppoee u is a solution of (4) with V E LP(fl) and eu E L P ' ( ~ )  

for some 1 < p < ID. Then u E Lm(fl). 

u f .  By Corollary 1 we know that eku E L1(tI) Vk > 0, i.e., eU E Lr(n) 

Vr < m. It follows that veU E Lp6 V6 > 0 if p < m, and veU E LT(n) 

Vr < m if p = m. Standard elliptic estimate8 imply that u E Lm(n). 

&mark 4. The conclusion of Corollary 2 still holds for a solution u of 

with g E Lm(a)  and f E Lq(n) for some q > 1. Indeed let w be the 

solution of 

I -Aw = f i n  f l ,  

w = g  on N l ,  

so that w E Lm(R). The function 6 = u-w satisfies 

I -A5 = (vew)e' i n  f l ,  

5 = 0  on Bfl , 

and we are reduced to the assumptions of Corollary 2. 

Remark 5. There is a local verdon of Corollary 2, namely if u E L:,,(n) 

satisfies 

11.2. a l l d c o ~ .  

1. The concluion of Corollary 2 faib when p = 1 (we may only say that 

u+ E ~ ' (n) ) .    ere is an exmple: 
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BREZIS AND MERLE 

-1. Let 0 < a < 1. The function 

u = -a log(1og :) with r = I xl satisfies 

a with V =-2 e2-&. Note that V E ~ ' ( n ) ,  eU E Lm(n) and nevertheless 
' (log r) 

u f ~ ' ( f l )  since u(x) -+ -m aa x -I 0. The same function u with a < 0 

provides an example where u satisfies (5) with V E ~ ' ( n ) ,  veU E L1(fl) and 

nevertheless u+ f Lm(n) since u(x) -+ +m as x --, 0. 

2. The function eU is in Borne sem the "critical nonlinearity" for which a 

statement such as Corollary 2 holds. Suppose, for example, that u satisfies 

with u 2 0, a > 1, V E LP(o) and eUa E LP'(Q), 1 < p 5 m. In general, we 

may infer that u E Lm(n). 

-. Coneider first the case p = m. Fix 1 < 7 < 2 - (l/a).  In 

n = B 1  Bet 

e 7 l/a+ u(x) = lloe(r2(log $ ) I  

For r small we have 

and therefore eUa E L1(fl). On the other hand u satisfies -Au = veUQ where 

V is ddned by V = (-~u)e-'~. An easy computation shows that 

v ~ l l o g  r / y 2 + ( l l a )  as r -+ o 

and hence V E Lm(Q). Nevertheless u t Lm(Q). 
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E S T I M A T E S  AND BLOW-UP B E H A V I O R  F O R  S O L U T I O N S  

When 1 < p < m we may use the function u above and write 

1 -ua 
The function ii = (p*)-l/uu satisfies -A6 = qe'La with 9 = (p')-llQ~$ 

so that E LP(12) and eiia E LP'(n). 

3. There is a version of Corollary 2 for subsolutions. Assume u satisfies 

with V E LP(n) and eU 6 ~ ~ ' ( l 2 )  for some 1 < p m. Then u+ E Lm(n). 

II.3. The case l2 = l?. 
The main result is the following. 

T h e o r e u .  Sup- n E L;~(I?)  satima 

-AU = v(x)eU in l? 

with v E L P ( R ~ )  and en E LP'$) for some 1 < p 5 o.  hen u E L ~ ( L R ~ ) .  

&f. Fix 0 < E < l /p l  and split veU ae veU = f, + f with 

llflll , < c and f E L ~ ( I I ~ ) .  Let 8, be the ball of radius r centered s t  
L (R 

xO. We denote by C various constants inde~endent of xo (but possibly 

depending on e). Let ui be the solution of 

By Theorem 1 (applied with 6 = 4-1) we have 
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BREZlS AND HERLE 

and in particular llulll -< C. 
L (B1) 

u3 = U-ul-u2 SO that Au3 = 0 

functions implies that 

We also have llu211 I C. Let 
Lrn(B1) 

on B1. The mean value theorem for harmonic 

On the other hand we have 

u; 5 u+ + lull + 1u2/ 

and since 

we see that l~ln+ll <_ C. Combining this with (6) we find that 
L~PJ 

I@I 5 C. Finally we write 
Lrn(BlI2) 

*th I I ~ I I ~ ~ + ~ ( ~  ) j c for some 6 > o (since eUl+ '3 E L ~ ( B  112 1 ' 
112 

V t L ~ ( B , )  and ' eul t L ~ / ' ( B ~ )  with l / r  > p )  ). Uaing once more the mean 

value theorem and standard elliptic estimates we deduce from (7)  that 

Since C is independent of xo we conclude that ut E L'(p2). 

111. Uniform Lm bounds and blow-ur, behavior for solutions of -Au = v(x1eU. 

In this section we consider a sequence (u,) of solutions of 

2 where il is a bounded domain in R . We seek a uniform bound for Ilunll 
L~ 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

(resp. llunll ) under various assumptions. We start with: 
LYOC 

III.1. Some easv c a s e  

There are two different kinds of assumptions which lead easily to uniform 

bounds: 

a) Smallnw assumption. 

b) Uniform domination. 

a) Smallness assum~tion 

Corollarv 3. Assume (u,) is a sequence of aolutions of (8) with un = 0 on 

Xl ,  such that 

Proof. Fix 6 > 0 such that 47-6 > eO(p'+6). By Theorem 1 we have - 

I e ( ~ ' + 6 ) I ~ n I  5 C. 
n 

Therefore eun is bounded in LP'+ ' (~)  and so vneUn is bounded in ~ ~ ( f 2 )  

for some q > 1. Hence un is bounded in Lm(R). 

Remark 8. The smallness condition (10) is sharp. Given any 1 < p m one can 

construct a sequence (u,) of solutions of (8) satisfying (9) and 

such that lln 11 -+ m: 
Lm 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
I
U
S
 
J
u
s
s
i
e
u
/
P
a
r
i
s
 
6
]
 
A
t
:
 
2
1
:
2
8
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



1234 

Examole 3. Set 

Let un be the solution of 

-Au = f n  in  B1,  

un = 0 on aB1 i 
Note that un satisfies (8) with Vn being defined 

computation shows that (9) and (11) hold. Moreover 

1 (2 log n +I). 
P' 

B R E Z I S  AND NERLE 

I 4 n2 if 1x1 < l /n ,  
fn(x) = P' 

0 otherwise 

by Vn = fne-% An easy 

llu,ll = ~ ~ ( 0 )  = 
Lrn 

Here is a variant of Corollary 3 where no boundary condition is imposed. 

Corollarv 4. Assume (u,) is a sequence of solutions of (8) such that, for some 

1 < P 5 * ,  

(12) 

and 

(14) 

Then (u:) ia bounded in ~y,(n). 

w. Without loss of generality we may assume that n = BR Split u, as 

un = nln + % where uln is the solution of 

[-Auln = V" i n  n ,  

uln = o on an;  

so that AuZn = 0 in Q. By the mean value theorem for harmonic functions we 

have 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

Using (15), the smallness condition (14) and Theorem 1 we see that (euln) is 

bounded in L P ' + ~ B ~ )  for some 6 > 0. Therefore (vZun) is bounded in 

L ~ ( B ~ / ~ )  for some q > 1. Using (15) once more we see that (uln) is bounded in 

Lm(BRIQ). Therefore (u,) is bounded in Lm(BR,4). 

b) Uniform domination 

Corollarv 5. Assume (u,) is a sequence of solutions of (8) with un = 0 on 

aR, satisfying, for some 1 < p < m, 

and one of the following conditions: 

I Vn(x)l i W(x) Vn, with W E L P ( ~ )  

Vn -4 V in ~ ~ ( f l ) .  

Proof. Assume first that (17) holds. For every e > 0 we have 

1vnleun 5 we'. 5 n?"n + $l(p-l)~P. 

By (16) we may e > 0 

(19) t 

We have JunJ  s uln + u2 

small enough so that 

where ul, is the solution of D
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and u2 is the solution of 

BREZIS AND MERLE 

By Theorem 1 and (19) we see that eUln is bounded in L P ' + ~ ( ~ )  for some 
k d > 0 and, by Corollary 1, eUa E L (n) for every k 2 1. Thus 

IVnleun < euln (eu%w) remains bounded in some L ~ ,  q > 1, and the conclusion 

follows. 

Assume now that (18) holds. Suppoee, by contradiction, that (Iun(( is not 
Lm 

bunded. We may then extract a subsequence such that llu 11 --, m. By 
nk Lrn 

passing to a fnrther subsequence (still denoted nk) we may assume that 

J V  1 _< W for m e  W E L~ (see e.g. [I]), ThbrBme IV.9). We are therefore 
nk 

reduced to the previous case. 

111.2. The main result8 

We now turn to the study of a sequence (u,) of solutions of (8) under the 

assumptions 

(20) vn ? 0 in 0, llvnll < Cl and lleUnllLp. 6 C2 
LP - 

for some 1 < p 5 m. A typical example is the sequence 

un(x) = log 8n' 

(1+n21x12)2 

2 which satisfies -Aun = eun in IR and lleUnll = 8 ~ .  Note that 
L (R 

un(x) -4 -W for all x # 0 and un(0) + +m. This example provides a very 

good description of the blow-up mechanism in the general case under the 

assumption (20). In fact, if a sequence (un) becomes unbounded then there is a 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 1237 

finite set S (possibly empty) where un ten& to +m and elsewhere un tends 

to -m. 

More precisely, define the "blow-up" set as follows: 

S = { x m ;  there exists a sequence x in il such that xn -+ XI. 
and un(xn) 4 +m 

Then we have 

Theorem 3. Assume (n,) ia a sequence of solutions of (8) satisfying, for some 

l < P < %  

(21) V ~ ~ O  in n, 

Then, there exists a subsequence (u ) satisfying the following alternative: 
nk 

either 

(u ) is bounded in LToc(n) 
nk 

(ii) un (x) + a, uniformly on compact subsets of il 
k 

or 

(iii) the blow-up set S (relative to (u )) is finite, nonempty and 
nk 

u n 
un (x) + -m uniformly on compact subsets of n\S. In addition V e k 

k nk 
converges in the sense of measures on ' fai6ai with ai 2 4 ~ / p '  Vi and 

S = u{ai). 
i 

Before giving the proof of Theorem 3 we mention some Corollaries. 

Corollarv 4. Assume (u,) is a sequence of eolutions of (8) with u, = 0 on Xl, 
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s a t i d p g  (21), (22), and (23). 

Then (un) is bounded in Ly,(n). 

BREZIS AND MERLE 

P.JQ& By the rn-um principle un 2 0 on 0 and therefore cases (ii) and 

(iii) in Theorem 3 an excluded for all eubaequencea. Therefore the (full) sequence 

(u,) is b d e d  in L Y = ( ~ ) .  

Remark 7. One may wonder whether the conclusion of Corollary 6 holds uniformly 

up to the boundary (since we impose here the boundary condition un = 0 on 

X I ) .  This ia not true as ia shown in Section 111.3 (Example 6). However it is 

plausible that a stronger assumption about the Vks yields an estimate up to the 

boundary. For example, here is an 

Open ~roblem 1: Suppose (u,) is a sequence of solutions of (8) with un = 0 on 

satisfying (21), 

(24) V, -+ v in c0(TT) 

and 

Can one conclude that /(u 11 <_ C? 
Lrn 

Remark 8. The conclusion of Corollary 6 also fails if we remove assumption (21) 

(i.e. Vn > 0 on n); see 181. 

Another obvious consequence of Theorem 3 is: 

Corollan 7. Assume (un) is a aequence of solutions of (8) satisfying (21), (22) and 

(23). Assume in addition 

(20) 

for some pwitive coastant M, 

(27) 

or more generally 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

Then (u,) is bounded in L Y ~ ~ ( ~ ) .  

Corollarv 8. Assume (u,) is a sequence of solutions of (8) satisfying (26) and 

(28) O < a < V n < b < m  in n 

for some constants a, b. 

Then (u,) is bounded in LTOc(n). 

m f .  In view of Corollary 7 we have only to show that (eun) is bounded in 
1 Lloc(n). We may always assume that M = 0, i.e. un 2 0 (this amounts to 

replace un by un + M). Let cpl be the first eigenfunction of -A on fl 

with zero Dirichlet conditions and let A1 be the corresponding eigenvalue. 

Multiplying (8) by rpl and integrating we obtain 

avl where Y is the outward normal. Using (28), u, 2 0 and < 0 

we obtain 

a vl 6 lInnq 
This provida an upper bound for jne% q. Therefore (eun) is bounded in 

1 Lloc(n) and the conclusion follow#. 

RematLg. There are two natural questions snggated by Corollary 8: 

Suppore (a,) ir a sequence of solutions of (8) with u = 0 on 

8ll satisrping (28). Can one conclude that (an) is bounded in Lm(n)? Is this 

true if we aeeume in addition that 1leQll 6 C? 
~l 

ODen ~roblem f: Assume (u,) is a sequence of solutions of (8) satisfying (26) and 

(28). Let K be a compact subset of n. What is the optimal bound for 

Sup  un ae a function of M? Doe one have 
K 
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(29) Sup un I CIM + C2 
K 

B R E Z I S  AND MERLE 

for some positive constants C1, C2 depending only on a, b, K and 07 Can 

one take C1 = 1 if Vn(x) i I? 

[ ~ o t e  that (29) holds with C1 = 1 for the special sequence 
L 

2 
un(x) = log " 21 

(l+n21x12) 

Prmf of Theorem 3. Since (vneUn) is bounded in L1(n) r e  may extract a 

subsequence (still denoted vneun) such that vneUn converges in the sense of 

measures on Cl to some nonnegative bounded measure p, i.e. 

for every $ E Cc(n). 

M n i t i o a :  We say that a point xo E il ie a m a r  mint if there is a function 

$ E C,(n), 0 < 4 < 1, with $J = 1 in some neighborhood of %, such that 

(31) J* < 4 . l ~ ~ .  

It follows from Comllsrp 4 (applied in a small ball arbund x,,) that if xo is a 

regular point then then  is some Ro > 0 such that 

(32) (u:) i~ bounded in Lm(B%(rO)). 

[ ~ o t e  that (13) hold8 liner (aY.) i8 bounded in L p ' ( ~ ) ] .  

We denote by C the set of nonregular points in n. Clearly xo E T: iff 

d{xo)) 2 4r/p1. Since p is a bounded measure (with jdp < C1C2) it follows 

that I: is finite and 

We now split the proof of Theorem 3 into 3 steps. 

Steo 1: S = Z. 

Clearly S c C by (32). Conversely, suppose xg 6 X. Then we have 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

Otherwise there would be some Ro > 0 and a subsequence such that 

+ un bn 11 5 C. In particular Ile kII < C and therefore 
k Lrn(BR,,(x,,)) Lm(BRo(x0)) 

Un v e k 6 C C ~ R ~ I P '  for a~ R < %. 
I B R ( 5 )  nk 

This implies (31) for some suitable glr. Therefore xo is regular - a contradiction 

Hence we have established (33). C h o w  R > 0 small enough so that ER(xO) 

does not contain any other point of L. Let xn E BR(xO) be such that 

ni(xn)  = m a x  u i  -+ +m. 

g ~ ( x o )  

We claim that xn -4 %. Otherwise there would be a subsequence 

xnk 
-+ x # xO and i $ El i.e. 5 is a regular point. This is impossible in view 

of (32). Hence we have established that x,, E S. This completes the proof of 

Step 1. 

m: S = 4 implies (i) or (ii) holds. 

By (32) (u:) is bounded in Lyoc(n) and therefore fn = vneUn is bounded in 

~ y ~ ~ ( i I ) .  This impliea that p r ~ ' ( 0 )  fl LT,,(~). Let v be the solution of 

[- Av: = fn i n  n ,  
v = o on a n .  

Clearly, vn + v uniformly on every compact subset of iI, where v is the 

solution of 
- A v  = p in  n ,  

= o on an. 

Let w = un n - vn so that Awn = 0 on f l  and w i  is bounded in 

Ly,(n). By HarnackJs principle we find that: 

either 

(34) a subeequence (w ) ie bounded in L Y ~ ( ~ ) ~  
nk 
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BREZIS AND MERLE 

or 

(35) (w,) converges uniformly to - c on compact subsets of i l .  

Case (i) cormponds to (34) and cese (ii) to (35). 

m. S # 4 implies (iii) holds. 

By (32) (a:) ia bounded in LY,(n\S) and therefore fn = vne% is bounded in 

~y,(n\S). Thin implies that p is a bounded measure on f l  with p E 

L~,(Q\s). (A basic diEefence with Step 2 is that here p is a measurp. not an 

LI function, and, as will be shown later, p is a sum of Dirac masees). Let vn, 

v and wn be d e h e d  aa in Step 2. Then vn 4 v uniformly on compact 

subeets of n\S. Ae above, by Hanrack's principle, we find that 

either 

(36) a subsequence (w ) is bounded in ~y,(n\S) 
nk 

or 

(37) (w,) converges to -m uniformly on compact subsets of n\S. 

We claim that (36) does not happen. Fix some point xo E S and R > 0 small 

so that xg is the only point of S in BR(xO). Assume (36) holds, so that 

(w ) is bounded in Lm(aBR(xo)) and similarly for (v,) Therefore (u ) is 
nk nk 

bounded in Lm(aBR(xo)), say by C. Let sn be the solution of 
k 

By the maximum principle uq znk in BR(xO). 

In particular 

On the other hand r -- a a.e. (even uniformly on compact subsets of 
nk 

BR(xO)\{~))  where s ia the solution of 
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E S T I M A T E S  AND BLOW-UP B E H A V I O R  F O R  S O L U T I O N S  

Finally note that dnce xg E S is not a regular point we have p({x0)) > 4r/p' 

This implies that p ) % 6 and therefore 
p *o 

2 + O(1) an x -+ xo. z(x) 2 j;-r log - 
I x-Xo I 

Thus ' 2 C X - X ~ ~  with C > 0. Hence IBR(xolP'z = m. On the other 

hand, by (38) and Fatouls Lemma we find that 

< cq'. 

A contradiction. Hence we have shown that (37) holds. Consequently (u,) 

converges to - m uniformly on compact subsets of n\S. Therefore vneUn -+ 0 

in L P ~ ~ ( ~ \ S )  and hence p is supported on S. This means that p = Cai6,, 
i I 

with S = u{ai) The argument above giva that ai 2 4ir/p1 for each i. 
i 

Remark 10. The conclusion (iii) in Theorem 3 involves a finite sum of Dirac 

masses Xai6,. with c d d e n t s  ai: > 4ir/p1. The ails as well as the ai's can 
i 1 

k 
be chosen arbitrarily. More preasely given any finite set S = U {ai) and any 

i = l  

ai > 44*/p1 there exist sequences (u,) and (V,) as in Theorem 3 such that 
k 

vneUn converges to C (46 
i=1 ai' 

To construct such sequences we proceed an follows. Set, for 1 < i < k, 

A .  2 where Ai = ?/r > 4/p' and Bi is debned by the relation pi(-# - 7) = 1 

k 
Let un = E v. + u, r h a e  un = ((M) + 5 i 4)Iog n. A direct 

+I 1 9  i= l  
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1244 B R E Z I S  AND MERLE 

computation shows that Vn = 6 ~ u ~ ) e - ' n  satisfies (21) and (22); moreover (eUn) 
k 

i l  bounded in LP' and vneUn converge8 to l 36 , .  i= l  i 

We believe that under additional conditions on the Vn's the ails in 

Theorem 3 cannot take arbitrary value  (> 4x/p1): 

n ~ e n  ~ rob lem 4: Assume (u,) is a sequence of solutions of (8) satisfying 

Vn 2 0 on n, Vn - V uniformly in i7 with Vn, V c c O ( n )  and 

lleunllll C. Assume S # q5 so that case (iii) holds. Can one conclude that 

u n 
V e k converges to 8x X mibai with mi E DI? 
n k 

Evidence in favor of a positive answer comes from the fact that after a 

blow-up near ai we are led to a riolution of - A s  = ccv on UZ2 with 

e = V(ai) and I ev < m. It follows from the result of [3] that j cev = 87. 
El2 I R ~  

On the other hand, the blow-up analysis giver ( formdy)  ai = J cev 
lR2 

In Theorem 3 the assumption ~ l e ~ n ~ ~  5 C provides some kind of 
LP' 

from above for (u,) and plays an important role in proving that the blow-up 

set S is finite. If we drop that assumption littIe can be said in the general case. 

For instance, we may have a sequence (u,) of solutions of 

- A U ~  = eun on fI 

E x a m ~ l e  4. The sequence 

u (x,y) = 2nx - 2 log ( ~ + e ~ " ~ )  + log ~n 2 

satisfiee -Aun = eun, un(O,y) ++ m and un(x,y) + - m  for x # 0. 

However, if we assume some bound from below for the un's then there are 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 1245 

only two possibilities: either S = fl (total blow-up) or S is (locally) finite. 

Theorem 4. Assume (u,) is a sequence of solutions of (8) satisfying, for some 

1 < p < m, (21), (22) and 

Then, there e i s t s  a subsequence (u ) satisfying the following alternative: 
nk 

either 

(i) unk -) + m uniformly on compact subsets of fl 

or 

(ii) the blow-up set S (relative to (u )) is locally finite (i.e. for each x E R 
nk 

there is some neighborhood N(x) of x such that N(x) n S is finite). Moreover 

(u ) is bounded in LToc(n\S). 
nn 

Remark 11. Both M in the alternative may occur: 

Ex- 2 
' . Let v be any aolntion of -Av = eV in R . Then u, = v+n 

satisfies -Ann = vneUa with Vn = e* and un 4 + everywhere. 

Examde of lii). Recall that vn(x) = log 8n2 satisfies -Av = evn. 
(l+n2 1 x 1 2)2 

n 

2 Thus un = vn + log n2 satisSes -Aun = vneUn with Vn = l /n  . Note that 

un(0) -. + m while un(x) remains bounded for x # 0. 

Proof of Theorem 4. Without loss of generality we may assume that 

(40) U , > O  in n. 

Indeed, by Kato's inequality [5] we have 

(41) Au, I -(Aun)x([un 5 01) = vneunx(bn 5 01) 2 -lVnl. 

It follows from (39), (41) and standard elliptic estimates that (u,) is bounded in 
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1246 BREZIS AND MERLE 

L?,(n). Passing to a smaller domain and adding a constant to (u,) we may 

always assume that (40) holds. 

We now split the proof into 3 cases. 

w: There exists a compact subset K c n and a subsequence (u ) such 
nk 

that 

Then (i) hold& 

Indeed, let K' be any compact subset of n. Using (40) we obtain 

where G ir the G m ' r  function of -A with Dirichlet condition on an. Since 

G(x,y) > a > 0 Vx E K', Vy E K we eee that, for x E K t ,  

1 Case 2. (vneUn) is bounded in Ll,(n) and there d s t s  a compact subset 

K c n such that, for a subsequence, 

Then (i) holds. 

Indeed, let K '  be any compact subset of n .  Let w be an open set such 

that K u K1 c w cc n. In w, split un aa un = uln + uZn where uln is 

the solution of 

Note that (uh) is bounded in L1(u) and 9, satisfies 
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E S T I M A T E S  AND BLOW-UP B E H A V I O R  FOR S O L U T I O N S  

Thus u2, ) 0 in w and by Hamack's prinaple 

(43) S u p  % 3 C I n f  % < C I n f  u,. 
KUK1 KUK1 K' 

On the other hand 

and 

It follow that I n f  o + + m  
Kl % 

We are left with: 

and thua (i) hol&. 

Case 3: (vneU") and ( u  are bounded in ~i,(fl). Then (ii) holds. 

We proceed here as in the proof of Theorem 3. We extract a subsequence 

(still denoted vneun) such that vneUn converges in the sense of measures to 

some nonnegative (possibly unbounded) measure p, i.e. 

for every d, E Cc(fl). We say that a point xo E fl is a re~ular ~ o i n t  if there is 

a function d, E Cc(CI), 0 < 91, < 1, with 91, = 1 in some neighborhood of x,,, 

such that 

It follows from Corollary 4 (applied in a small ball around xo) that if xo is a 

regular point then there is some Ro > 0 such that 

(44) (u,) is bounded in Lm(BR (xo)). 
0 

We denote by C the set of nonregular points in fl. Clearly xo E C if 

p({x0)) ) 47/p1. It follow8 that E is locally finite and for every compact subset 
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1248 B R E Z I S  AND MERLE 

We have S = I: as in the proof of Theorem 3 (Step 1). Thus S is locally 

finite and by (44) (u,) is bounded in L Y ~ ~ ( ~ \ S ) ,  i.e. (ii) holds. 

111.3. Variants and counterexam~les 

1. Suppose that instead of a sequence of solutions of (8) we have a sequence of 

-a, i.e. 

It is easy to adapt the arguments of Section 111.1 to obtain estimates for I I U ~ I I  
Lrn 

under smallness or uniform domination assumption. However the analogue of 

Corollary 6 for subsolutions does not hold as may be seen from the following: 

Exam~le 5. There is a sequence (u,) satisfying 

with 

and such that u,(O) -+ +CO. First, note that the function 

satiafiea 

e V C > O  

and 

Hence the function un = ipTh has all the required properties. The same 

example can be used to produce sequences (v,) and (Vn) such that 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

2. The same kind of example shows that the conclusion of Theorem 2 does 

hold uniformly. More preasely there are sequences (u,) and (V,) such that 

5 C, 1 < p 3 m , such that un(0) -' + m. 
LP' ( R ~ )  

1 1 1 One may take for instance un = p,q,n and Vn = ,, q(- p ). P l / n  

3. The conclusion of Corollary 6 cannot be strengthened to ((un(( < C. There 
L 

are sequences (u,) and (Vn) eatistying 

with 1 < p I. and such that ((un(l - m. It suffices to construct such an 
Lm 

example when p = m. For a general 1 < p < m we may use the p = m 

satisfies -Afin = ynekn with example and note that fin = - u 
P' n 

1 1 v, = -,V exp(-,u ) so that llOnll < C and lleknll < C. P n  P "  LP - LP' 

Example 6. Let fl be the unit disc centered at (1,O). Set a €  = ( d c ,  0) with 
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6 < d, < 1. Let A > 1 be a constant and let 

4A 

0 otherwise.  

Let u, be the solution of 

-Au, = f ,  in n, 
U, = o on an 

B R E Z I S  AND MERLE 

Let V, be defined by 

u 
so that -An,= Vte '. We claim that, for an appropriate choice of d,, we have 

while u,(aJ d + m .  

Yerification of (45). Let v, be the solution of 

By the mudmum principle we have v, 5 u, in Bd!a,) so that 

But v, is given explicitly by 
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ESTIMATES AND BLOW-UP BEHAVIOR FOR SOLUTIONS 

d 
where r = I x-a,l and a, = A + 2A log(-$. Thus 

Verification of f46). Let G be the half-plane 

Let w, be the solution of 

By the m&mum principle we have u, < w, in Sl and thus 

But we is given explicitly by 

otherwise 

where a; = -a, and p, = A - 2A log 6. We have 

d 
w,(x) < C + 2A log($) if Ix-a,l < 6 

(since Ix-a;l < Ix-a,l + 2d, < c + 2d, < 3de), 

(since Ix-a;l < 3d,) and 
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B R E Z I S  AND MERLE 

Hence (47) and (46) can be achieved by chmsing d t  = clil/A)' Finally we have 
d c  2A 

u,(ac) _> v,(aJ = ue -> 2A log(7) + + m as E -+ 0. Note that in this 

Example j n V i '  = 4Ar can be made arbitrarily close to 47, showing once 

more that assumption (10) in Corollary 3 is sharp. 

4. One may combine the techniques of Sectiona 111.1 and Section 111.2. Assume for 

example that all the assumptions of Corollary 6 hold with 1 < p < m and in 

addition 

I Vn(x) 1 5 W(x) in some iixed neighbourhood of 8I-l 

with W E L ~ .  Then &,/ILm I C. 
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