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Introduction
In this paper we deal with the equation

V(x)e! in 9 ¢ &7
0 on 890 ,

-Au

il

(%)

u

where 2 is a bounded domain (except in Section I1.3) and V{x) is & given
function in LP(Q) for some 1 < p ¢ . We assume that u € LI(Q) and
e e Lp’(ﬂ) (where p’ is the conjugate exponent of p) 8o that (*) has a

meaning in the sense of distributions.

A first question is whether one can conclude that u € L™(Q2). As we will see

in Section II the answer is positive. Next we turn, in Section III, to a more

delicate issue, namely the question of yniform estimgtes. Suppose we have a

sequence (u;) of solutions of

-Au_ = V (x)e’= in Q,
(es) p = V()
1, =0 on 4Q,
with
I!V,,IILp <C
1223
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1224 BREZIS AND MERLE

and

u
Il 5 ¢ Cy

Can one conclude that

”“n”Lm < C3

where C3 depends only on C,, C, and §1? We prove that the answer is
positive under a gmallnesg condition, namely C,C, < 4x/p’ (see Corollary 3).
The answer is also positive under a domination condition, namely }an ¢ W for
afixed WeLP(Q), 1 <p <o (and then C; depends also on W, see
Corollary 5).

A deeper result (see Corollary 6) asserts that if V a2 0 then (un) is

bounded in LTGC(YZ), i.e. for every compact subset K of 0 we have

ool € Co

where C, depends only on C,, C, and K. Surprisingly suck an estimate does

not hold up to the boundary. Given any 1 < p < o we construct in Example 6
(Section II1.3) sequences (un) and (V) satisfying (+*) with vV, 20
lanlle ¢
fle®f . <C
P " 2

and “un"L' — 4w

A corollary of onr methods also yields the following. Suppose u — satisfies
—Aun = Vneun in Q
with
0<ag¢V <b<a

and

Iaf u ?2-M > -0o
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(here no boundary condition is imposed). Then for every compact subset K of @,

Sup u, can be estimated just in terms of a,b,M,K and Q1 (see Corollary 8).
K

Finally we turn to the general case where no boundary condition is imposed
and (uj) is not bounded below. More precisely let (un) be a sequence of solutions
of

-— U 1
~Aun = Vne 2 in

with

: u
Vp 20 in 0Vl <Gy and s o, < Cy,

for some 1 < p ¢ m.
Then we have the following alternative (see Theorem 3):
either
(i)  (uy) is bounded in Ly (0)
or
(i3) u, — —= uniformly on compact subsets of Q
or
(iii) there is a finite nonempty set S such that u, — —o uniformly on

compact subsets of Q\S and u_— +s» on S (in a sense to be precised later).

n

In this case Vneun converges to a finite sum of Dirac masses 2°i6a. with
i

coefficients @ 2 4r/p’.

Such behavior is well illustrated by the sequence

2
8n
u (x) = log
n (1402) x| 9)2

which satisfies -Au = eln, [en|| 1 ¢6C u(x) = = forall x#0 and
L

u (0) — +e. Here eln converges to 8x6,-

We thank Congming Li for raising questions which led us to Theorem 2 and
Corollary 3 (Theorem 2 is used in {3]). Some of our results (in particular Corollary
4 and Theorem 4) are connected to earlier works of Nagasaki and Suzuki {see [6]

and [7]) who consider mostly the case where the V ’s are comstants. A. Chang
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1226 BREZIS AND MERLE

and P. Yang [2] have also studied blow-up sequences for related equations on 5
(see e.g. their Concentration Lemma). However their approach involves B! norms
and is quite different from ours.

In a forthcoming work we shall consider similar issues for the equation

-Au = VP in Q¢ [RN, N 2 3. The plan of the paper is the following:

Introduction
i. A basic inequality
II. L®-boundedness for a single solution of —-Au = Ve®
11.1. The case of a bounded domain
11.2. Some variants and counterexamples
IL3. The case 0 = B
OI. Uniform L® bounds and blow—up behavior for solutions of -Au = Ve®
II.1. Some easy cases
I1.2. The main results

11.3. Variants and counterexamples.

I. A basic inequality

Assume ¢ lR2 is & bounded domain and let u be a solution of

~An
(1 {

f(x) in Q,

u=_0 on 40,

It

with fe LY(n). Set |ff, = Jnlf(x)]dx.

Theorem 1. For every § € (0,47) we have
4r-6)u(x 4 2
(2) JQEXP[(—WM_(_‘)—L]M < (diam Q)°.
1

Prgof. Let R = % diam 0 so that 2 C BR for some ball of radius R. Extend

f to be zero outside 1 and set, for x € R2,
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) = jBRIos(Ti—Eﬂ)lf(y)ldy

s0 that

-Ad = |f] on 'y

Note that @(x) > 0 for x ¢ BR gince T%- >1 Vx,ye¢ BR' It follows

from the maximum principle that |u] <@ on 0 and thus

(3) j m[jh—ﬁ”n]x)]}dx SJ exp[‘"‘ﬁkﬁ!x!]dx.
Q 1 Bp 1
We now estimate the right-hand side of (3) using Jensen’s inequality

B[ w(r)etr)er) ¢ [ win)F(ely))dy

with F(t) = exp t, w(y) = H%ﬁ-f-l— and ¢y) = L%r;_b’l log(T%%ﬂ-). We obtain

_ P
o e[t tax < [ ax [ oFp T Ll o

(
R R "°R

5
- R, o e
R R

But, for y ¢ BR' we have

§ ¢
2- 2- 2
2R T 2R r _ 4r : 2
JBR(]—”_,,) T ax ¢ JBR(TTX ) 7T dx = 4 (diam 0)

and the estimate (2) follows.

A simple consequence of Theorem 1 is

Corollary 1. Let u be a solution of (1) with f ¢ Ll(n). Then for every
constant k > 0

kIl ¢ i),
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Proof Let 0 < e < 1/k. We may split f as f=f +f, with |If}l, <

and f, € L°(Q1). Write u = u;+u, where u; are the solutions of

1

=0 on 89 .

{—Aui =1 in Q,
1

)ul(x)l
Choosing, for example, § = (4r-1) in Theorem 1 we find J exp[ ] < @
Q ll"l

and thus fﬂexp[klull] < o. The conclusion follows since |u] < uy] + Juyl

and uy € L(Q).

Remark 1. The conclusion of Theorem 1 could also be deduced from BMO
estimates and the John-Nirenberg inequality [4].

Remark 2. There is a local form of Corollary 1, namely if u € L%OC(Q) and
Au € L%OC(Q), then for every k > 0, eklul € L%Oc(ﬂ). [Here we use the
well-known fact that u € L] () and Au € Ly (Q) imply ¥u € Lj ()]

Remark 3. In Corollary 1, eklul € Ll but “ekrlu|”1 can not be estimated in

terms of k and Hi”l. For example, we may have a sequence (f ) such that

. 1 1
Elly ¢ 1 1, — 5x0 snd then u — u with u(x) ¥ 5= log = as

X —x; 8o that Ieklul =g for k> 4m

I. L°-boundedness for a single solution of —Ay = Ve".
1.1. Th { mai

Let u satisfy the nonlinear equation

(4 -Au
) u=20 on 41 ,

v(x)e® in I,

where 1 is a bounded domain in ® and V(x) is a given function on Q.
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Corollary 2. Suppose u is a solution of (4) with V ¢ LP(Q) and " ¢ LP I(Q)
for some 1 < p ¢ ® Then u € L%N).

Proof. By Corollary 1 we know that e € L(Q) vk > 0, ie, ¢® € L()

Vi < o It follows that Ve € PPV > 0 if p < m and Vel e L)

Vt <o if p=o Standard elliptic estimates imply that u e L®(Q).

Remark 4. The conclusion of Corollary 2 still holds for a solution u of

-Au
u

with g € L°(30) and f e LYN) for some q > 1. Indeed let w be the

V(x)e! + f(x) in Q,

g on 40,

solution of
~Aw =f{ in Q,
w=g¢g on 001,

so that w € L®(Q). The function 4@ = u~w satisfies

-Afi = (ve¥)e"! in @,
i=0 on 40 ,

and we are reduced to the assumptions of Corollary 2.

Remark 5. There is a local version of Corollary 2, namely if u € L%oc(ﬂ)

satigfies
-Au = Ve*

with V¢ Lll’oc(ﬂ) and e ¢ LllJc;c(n) for some 1 < p ¢ w, then u € LTOC(Q).

This follows easily from Remark 2.

I.2. Some variants and counterexamples.

1. The conclugion of Corollary 2 fails when p = 1 (we may only say that

ut € L%(Q)). Here is an example:
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Example 1. Let 0 < a < 1. The function

u = -a log(log :;) with r = |x| satisfies

(5) 1

{—Au:Veu in 0 =B

u 0 on af

with V =——263—€)2_a. Note that V ¢ Ll(ﬂ), e ¢ L%() and nevertheless
1 (l0g I

u ¢ L°(Q) since u(x) — -o a8 x — 0. The same function u with a < 0

provides an example where u satisfies (5) with V ¢ L1(Q), Ve € L(Q) and

nevertheless u% ¢ L®(f1) since u(x) — +o a8 x — 0.

2. The function e is in some sense the "critical nonlinearity" for which a

statement such as Corollary 2 holds. Suppose, for example, that u satisfies

{ -Au
u

with 020, a>1 VelLP@) and " ¢ LP'(R), 1 < p ¢ o In general, we

V(x)e™ in 0
0 on 40

]

may pot infer that u e L®(Q).
Example 2. Consider first the case p = . Fix 1 < y< 2~ (1/a). In
Q=B set
a(x) = og(s%(log 71"/
For r small we have

o
ol 1

B rz(log %)7

and therefore e ¢ Ll(Q). On the other hand u satisfies —-Au = Ve'" where
V is defined by V = (—Au)e"“u. An easy computation shows that

V ~|log r|7'2+(1/a) a8 1—0

and hence V € L%(fl). Nevertheless u £ L7(Q).
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When 1 < p < » we may use the function u above and write

1
-1 _/ua

1
-Au = (Vepu )eP
1

—ya

The function & = (p')—l/ 8y satisfies -AG = Vel with V = (p’)_l/ GyeP
so that V e LP(R) and e8° ¢ LP'(Q).
3. There is a version of Corollary 2 for subsolutions. Assume u satisfies

-Au ¢ V(x)e' in 0,
ugo on 4N,

with V ¢ LP(Q) and e” € LP'(Q) for some 1 < p < o Then u™ e L%(0).

11.3. The case 0 = Rz
The main result is the following.

Theorern 2. Suppose u € L%OC(RZ) satisfies
-Au = V(x)e* in B

with Ve LP(R?) and " € LP'(8%) for some 1 < p ¢ ». Then u € L°(R?).

Proof. Fix 0 < e < 1/p’ and split Ve’ as Ve' =1 + 1, with
i, | < ¢ and € L‘”(Rz). Let B_ be the ball of radius r centered at

Xo- We denote by C yarious constants independent of x, (but possibly

depending on ¢). Let u; be the solution of

[-Aui=fi in B,

u. 0 on aBl.

1

By Theorem 1 (applied with § = 4x~1) we have

JBlexP[% |“1}] <C
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and in particular {ju,]| < C. We also have |[u, < C. Let

(By) 1
Uy = u-y-uy 80 that Au3 =0 on Bl' The mean value theorem for harmonic

functions implies that

+ +
(6) lugll < Cllagll 4,

3 L°(B, ) t'(®,)
On the other hand we have

u;' ¢ut + fugl + Jugl

and since

p’ JR2u+ < jnzep/u <C

we see that Hu?;IIL1 ¢ C. Combining this with (6) we find that

(By)
”u;“L"’(Blﬂ) < C. Finally we write
(1) ~Au = Ve' = (Velne"rtl = ¢
with HSHLHJ < C for some §> 0 (since e"2TVi¢ Lm(B1/2)’
(31/2)

Ve Lp(Bl) and el € LI/E(BI) with 1/¢ > p’). Using once more the mean

value theorem and standard elliptic estimates we deduce from (7) that

nuﬂst . clut) + Ol 1.4 C.

¢
1/4) L'(Bya) By /9)

Since C is independent of x, we conclude that ut € L"’(IRZ).

II. Uniform L® bounds and blow-up behavior for solutions of -Au = V(x)e".
In this section we consider a sequence (un) of solutions of

(8) Ay, = Vn(x)eun in Q

wherte 0 is a bounded domain in RZ. We seek a uniform bound for lull o
L
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(resp. ||un||Lm ) under various assumptions. We start with:
loc

II.1. Some easy cases

There are two different kinds of assumptions which lead easily to uniform
bounds:

a) Smallness assumption.

b) Uniform domination.

a) Smallness assymption
Corollary 3. Assume (u,) is a sequence of solutions of (8) with u, =0 on
&1, such that

(9) IVyll , ¢ C for some 1 <p<a
LP

and

(10) J- IVn]euﬂ ¢ € < 4r/p’ Vo
0

Then "un“Lm < C.

Proof. Fix & > 0 such that 47-§ > eo(p'+6). By Theorem 1 we have

J P+l ¢ ¢
Q
Therefore e%s is bounded in LP'190) and so Vv, e'n is bounded in LY(Q)

for some q > 1. Hence u, is bounded in L*(1).

Remark 6. The smallness condition (10) is sharp. Given any 1 < p < « one can
construct a sequence (un) of solutions of (8) satisfying (9) and

(11) J|vn|e“n = 4xfp’

such that ||un"Lm — o
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Example 3. Set

4 2 .
=, n° if
= P
fn(x)—[

[x] < 1/m,

0 otherwise

Let u be the solution of

—Aun=fn in Bl’
0 on ¢9B1.

=
1l

Note that u_ satisfies (8) with V= being defined by Vv = fne_uﬂ. An easy

computation shows that (9) and (11) hold. Moreover [fu [[ = u (0) =
L

%,(2 log n +1).

Here is a variant of Corollary 3 where no boundary condition is imposed.

Lor_dlgg__ti. Assume (un) is a sequence of solutions of (8) such that, for some
l<p<ow,

(12) Val p ¢ Cp

(13) "“:"Ll < C,

and

(14) jﬂ|vn|e“n < gy < dnp’.

Then (u:) is bounded in Ly _.(0).

Proof. Without loss of generality we may assume that ) = BR' Split u, as
W=+ Uy where L is the solution of

{—Auln

4y = 0 on &0;

vne“n in @,

(15)

$o that Au2n =0 in . By the mean value theorem for harmonic functions we

have
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+ + +
“uh“L”(BR/Z) ¢ Clefl - c{uunuLl (BRf““ln"Ll (BR)]

<C.

Using (15), the smallness condition (14) and Theorem 1 we see that (e"wn) is
bounded in LP /+6(BR) for some § > 0. Therefore (Vneuﬂ) is bounded in
Lq(BR/2) for some q > 1. Using (15) once more we see that (uy,) is bounded in
Lm(BR/4)' Therefore (u;) is bounded in L“’(BR/4).

b) Uniform domination
Corollary 5. Assume (u;) is a sequence of solutions of (8) with u = 0 on

0, satisfying, for some 1 < p < o,
u, <
(16) le®l . < C

and one of the following conditions:

either

(17 [Vy(®)] ¢ W(x) Vo, with W € LP(Q)
or

(18) v, —V in LP(Q)

Then "un"L. < C.

Proof. Assume first that (17) holds. For every ¢ > 0 we have
’ 1 p
[V _le% ¢ Weln ¢ eeP %o 4 wP.
. T/(p-1)
By (16) we may fix ¢ > 0 small enough so that

(19) eJ e % ¢ a < 4x/p’ Vo
]

We have ju | < u;  + uy where u, is the solution of
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{—Auln = P’ U g n,

Un = 0 on 9fl

and u, is the solution of

-Au, = f[/(p_l)wp in Q,
{ u, =0 on 00 .
By Theorem 1 and (19) we see that e js bounded in Lp'+6(ﬂ) for some
5> 0 and, by Corollary 1, "7 ¢ Lk(Q) for every k > 1. Thus
|Vn|eun < elm (e“mw) remains bounded in some LY, g > 1, and the conclusion
follows.

Assume now that (18) holds. Suppose, by contradiction, that ||un||Lm is not
bounded. We may then extract a subsequence such that |lu nk”L“’ — o. By

passing to a further subsequence (still denoted nk) we may assume that
|Vy | ¢ W for some W € LP (see e.g. [1]), Théoréme IV.9). We are therefore
k

reduced to the previous case.

II1.2. The main results

We now turn to the study of a sequence (un) of solutions of (8) under the

assumptions

(20) V,20 in 0 uvnan < C, and ||e“nHLp, < Cy

for some 1 < p ¢ . A typical example is the sequence

2
= 8n
o) = 18 LT

2

which satisfies -Au = e%s in R“ and [eYnf 1,.9, = 87 Note that
L

(R%)

u(x) = — forall x40 and u(0) — +o. This example provides a very
good description of the blow—up mechanism in the general case under the

assumption (20). In fact, if a sequence (“n) becomes unbounded then there is a
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finite set S (possibly empty) where u, tends to +s and elsewhere u, tends

t0 ~w.

More precisely, define the "blow-up" set as follows:

S = {xsﬂ; there exists a sequence X, in 1 such that x, — x}.
and u (x;) — +o

Then we have

Theorem 3. Assume (un) is a sequence of solutions of (8) satisfying, for some
1< P {s,

(21) V 20 in @

(22) IVl p € ©

and

(23) 'l 5 < Cy .

Then, there exists a subsequence (u11 ) satisfying the following alternative:
k

either
. : : 1]
(i) (unk) is bounded in LIOC(O)
or
(ii) u, (x) — - uniformly on compact subsets of 0
k
or

(iii)  the blow-up set S (relative to (unk)) is finite, nonempty and

1
u, (x) — ~» uniformly on compact subsets of \S. In addition Vnke %
k

converges in the sense of measures on 1 to .ZaiJa. with a > 4x/p’ Vi and
i %
S = liJ{ai}.

Before giving the proof of Theorem 3 we mention some Corollaries.

Corollary 6. Assume (u) is a sequence of solutions of (8) with u, =0 on 40,
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satisfying (21), (22), and (23).
Then (u) is bounded in Ly (9).

Proof. By the maximum principle u, 20 on 1 and therefore cases (ii) and

(iii) in Theorem 3 are excluded for all subsequences. Therefore the (full) sequence
N z [ ]

(u,) is bounded in Lloc(m'

Remark 7. One may wonder whether the conclusion of Corollary 6 holds uniformly
up to the boundary (since we impose here the boundary condition u, =0 on
80). This is not true as is shown in Section II1.3 (Example 6). However it is
plausible that a stronger assumption about the Vﬁs yields an estimate up to the
boundary. For example, here is an

Open problem 1. Suppose (u;) is a sequence of solutions of (8) with u, =0 on
& satisfying (21),

(24) v, —V ia CM)
and
(25) !le““llL1 ¢<C

Can one conclude that flu || < C?
Lcn

Remark 8. The conclusion of Corollary 6 also fails if we remove assumption (21)
(ie. V2 0 on fl); see {8).

Another obvious consequence of Theorem 3 is:

Corollary 7. Assume (u ) is & sequence of solutions of (8) satisfying (21), (22) and
(28). Assume in addition

(26) w2-M in 1, Vo

for some positive copstant M, or more generally

(27) "un"Ll <M Vn,
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. . o
Then (u ) is bounded in Ly oc(n)'
Corollary 8. Assume (u ) is a sequence of solutions of (8) satisfying (26) and
(28) 0<a¢V ¢b<s in Q

for some constants a, b.

. . ®
Then (u)) is bounded in Ly .(9).

Proof In view of Corollary 7 we have only to show that (e"s) is bounded in
L}oc(ﬂ). We may always assume that M = 0, ie. u 2> 0 (this amounts to
replace u by u, + M). Let 21 be the first eigenfunction of -A on Q
with zero Dirichlet conditions and let Ay be the corresponding eigenvalue.

Multiplying (8) by v, and integrating we obtain
dp
_ 1
Invne“n Y = Lﬂun v+t M Inunwl

9
where v is the ontward normal. Using (28), u 2> 0 and -571 <0

we obtain

aje“ﬂquz\ Jucp

This provides an upper bound for Jﬂe“ﬂ ¢;- Therefore (¢"s) is bounded in

Llloc(n) and the conclusion follows.

Remark 9. There are two natural questions suggested by Corollary 8:

QOvpen problem 2: Suppose (nn) is a sequence of solutions of (8) with u a=0 on

00 satisfying (28). Can onme conclude that (u ) is bounded in L%(Q)? Is this
true if we assume in addition that ueun"Ll < C?

Open problem 3: Assume (un) is a sequence of solutions of (8) satisfying (26) and
(28). Let K be a compact subset of f). What is the optimal bound for

Sup u, asa function of M? Does one have
K
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(29) Sl%p u, < ;M + C,

for some positive constants Cl’ 02 depending only on a, b, K and Q7 Can
one take C, =1 if Vo(x) = 17
[Note that (29) holds with C, = 1 for the special sequence
2
8n ]

=1
) =8 ey

Proof of Theorem 3. Since (Vneun) is bounded in Ll(n) we may extract a
subsequence (still denoted Vneun) such that V ne“n converges in the sense of

measures on ) to some nonnegative bounded measure y, i.e.

(30) [Vyete v — [

for every 9 € CC(Q).

Definition: We say that a point x, € 00 is a regular point if there is a function
P € cc(n), 0<¢<1, with ¢ =1 in some neighborhood of Xy such that
(31) Jq(.d# < 4x[p’.

It follows from Corollary 4 (applied in a small ball around x;) that if x, is a
regular point then there is some Ry > 0 such that

(32) (u}) is bounded in L"(BRO(xo)).

[Note that (13) holds since (e"s) is bounded in LP'(Q)].

We denote by I the set of nomregular points in Q. Clearly Xg € ¥ iff
;A({xo}) > 4x/p’. Since 4 is a bounded measure (with [du < C,C,) it follows

that ¥ is finite and
card (%) ¢ Clczp’/4r.
We now split the proof of Theorem 3 into 3 steps.

Step 1. S =21
Clearly S ¢ T by (32). Conversely, suppose x, € I. Then we have
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(33) YR > 0, lim|u?] =+
PILP(BR(xo)

Otherwise there would be some Ro > 0 and a subsequence such that

u
”u: I < C. In particular |le nk" < C and therefore
k LE(BRO(XO» LW(BRO(xo))

j Ve ¢ CCRYP forall R <R,
R0
This implies (31) for some suitable 4. Therefore X, is regular — a contradiction.
Hence we have established (33). Choose R > 0 small enough so that B'R(xo)
does not contain any other point of . Let x; € Bp(x,) be such that
u:(xn) = gg_a? )u: — +uo.
R'%0
We claim that X = X, Otherwise there would be a subsequence
xnk — X # x, and X £ % ie X is a regular point. This is impossible in view
of (32). Hence we have established that x, € S. This completes the proof of
Step 1.

Step 2: S = ¢ implies (i) or (ii) holds.

By (32) (u:) is bounded in LTOC(Q) and therefore f = Vneuﬂ is bounded in

o 1 4
LP (@) This implies that 4 € L'(R) n LB (0). Let v, be the solution of

—Avn=fn in 01,
0 on a9

v
n

Cleatly, v, — v uniformly on every compact subset of (1, where v is the

- Av

v

_ _ + . .

Let W, =Uu, -V, 50 that Awn =0 on I and wo s bounded in

L{..(f). By Hamnack’s principle we find that:

solution of
s in ,
0 on 09Q.

either

(34) a subsequence (wnk) is bounded in L‘foc(ﬂ),
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or

(35) (wn) converges uniformly to - o on compact subsets of (.

Case (i) corresponds to (34) and case (i) to (35).

Step 3. S # ¢ implies (iii) holds.

By (32) (u}) is bounded in L] (Q\S) and therefore £ = Vv, e's is bounded in
L],(P\S). This implies that 4 is a bounded measure on 1 with ue

LD o(M\S). (A basic difference with Step 2 is that here 4 is a measure. not an
1! function, and, ag will be shown later, 4 is a sum of Dirac masses). Let v,
v and w, be defined as in Step 2. Then v — v uniformly on compact
subsets of (\S. As above, by Harnack’s principle, we find that

either

(36) a subsequence (wnk) is bounded in L7, (\$)

or

(37) (w,) converges to -w uniformly on compact subsets of (\S.

We claim that (36) does not happen. Fix some point x; € § and R > 0 small
so that x, is the only point of § in B'R(xo). Asgume (36) holds, so that
(w nk) is bounded in L%(8Bp(x,)) and similarly for (v, ). Therefore (unk) is

bounded in L®(8Bp(xy)), say by C. Let z; be the solution of

T
-Az, =1f_in Bg(x,),
0 oy R( 0
znk = -C on dBg(xp)

By the maximum principle unk 2 znk in BR(xO).
In particular
D'z p'u /
(38) Je " ¢ Ie " ¢ CB
On the other hand znk - 3 a.e (even uniformly on compact subsets of

Bgp(xy)\{x,}) where s is the solution of
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-Az=p4 in BR(xo),

z=-C on §Bg(xy).

Finally note that since x; € S is not a regular point we have w{xy}) 2 4x/p’.

This implies that 4 > %ﬁ 5‘0 and therefore

1
XX

#(x) 2 2, log +0(1) a8 x — x,
P |

Thus eP'? 2 C/]x—x0|2 with C > 0. Hence J e®'% = 5. On the other
’ BR(XO)

hand, by (38) and Fatou’s Lemma we find that
/z pl
Jep ¢ B

A contradiction. Hence we have shown that (37) holds. Consequently (u )

converges to - o uniformly on compact subsets of \S. Therefore Vneun — 0

loc

in LP_ (Q\S) and hence 4 is supported on S. This means that u = Za.§
ity

with 8 = U{a;}. The argument above gives that a; > 4x/p’ for each i
1

Remark 10. The conclusion (iii) in Theorem 3 involves a finite sum of Dirac

masses I.:aida. with coefficients a: 2 4x/p’. The ai’s as well as the a;’s can
i 9

k
be chosen arbitrarily. More precisely given any finite set S =U {ai} and any
i=1
a; > 4x/p’ there exist sequences (u,) and (V) as in Theorem 3 such that
v et § é
e 8 converges to .0, .
n =1 1%

To construct such sequences we proceed as follows. Set, for 1 < i < k,

A, A,
——i— nzﬂilx-ai|2+—41- i |x-a] < 1/nﬂi,

S = S T PV
og i x-a.| 2 1/n%i
T n ‘lx—ﬁil 1
Ai 9
where A, = ai/r > 4/p’ and f, is defined by the relation (- - 17) =1
k k
- = (k1) + i
Let uw, = i£1'i1“+an where o, = ((k-1) + > iﬁlﬂi)log n. A direct
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computation shows that V = (—Aun)e_‘ln satisfies (21) and (22); moreover (e%n)
y k
is bounded in LP  and V_e"s comverges to ¥ af, .
n =1 1 B

We believe that under additional conditions on the Vn’s the ai's in

Theorem 3 cannot take arbitrary values (> 4x/p’):
Qpen problem 4: Assume (un) is a sequence of solutions of (8) satisfying

V 20 on @V, —V udformly in @ with V, Ve c°(T) and
ezl 1 $ C. Assume S ¢ ¢ so that case (iii) holds. Can one conclude that
L

un
V_ e & converges to 8xIm.§  with m, € N?
0y i‘ay i

Evidence in favor of a positive answer comes from the fact that after a

v 2

blow-up near a, we are led to a solution of —Av = ce’ on R® with

¢ = V(a) and j ¢’ < o It follows from the result of (3] that J ce¥ = 8m.
R &
On the other hand, the blow-up analysis gives (formally) & = J ce’.
2
R

In Theorem 3 the assumption ||eun||Lp, ¢ C provides some kind of bound

from above for (un) and plays an important role in proving that the blow—up
set S is finite. If we drop that assumption little can be said in the gemeral case.

For instance, we may have a sequence (un) of solutions of

-Auy = eln on 0

(with  ||e"a]) | — ©) such that
L

un—-+m on a line S,
lln—-' - in Q\S.

Example 4. The sequence

un(x,y) = 2nx - 2 log (1+e2n'x) + log 8n?

satisfies —-Au = e'n, un(O,y) —+ao and u(xy) —-o for x {0

However, if we assume some boynd from below for the un’s then there are
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only two possibilities: either S = 2 (total blow-up) or S is (locally) finite.

Theorem 4. Assume (“n) is a sequence of solutions of (8) satisfying, for some

1 <p<a (21), (22) and

(39) Il 1 € ©

Then, there exists a subsequence (unk) satisfying the following alternative:

either

(1) U — + o uniformly on compact subsets of 0

or

(i) the blow-up set S (relative to (unk)) is locally finite (i.e. for each x €

there is some neighborhood N(x) of x such that N(x) n § is finite). Moreover
(unn) is bounded in L7, (Q\S).

Remark 11. Both cases in the alternative may occur:

Example of (i). Let v be any solution of - Av = e in R%. Then u, = v+in

satisfies —Aun = Vneun with Vrl =e? and U, —+o everywhere.
2
Example of (ii). Recall that vn(x) = log _‘gn—'!'z satisfies -Av = e'n,
(1+0%]x|%)
Thus u = v, + log n? satisfies -Au = Vneun with V= 1/n2. Note that

u,(0) = +o while u (x) remains bounded for x # 0.

Proof of Theorem 4. Without loss of generality we may assume that
(40) u >0 in Q.

Indeed, by Kato's inequality [5] we have

(41) Aug > (Aup)x(uy <0) = V elax(fu, <)) 2 -|V,|.

It follows from (39), (41) and standard elliptic estimates that (u ) is bounded in
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LTOC(Q). Passing to a smaller domain and adding a constant to (u;) we may

always assume that (40) holds.
We now split the proof into 3 cases.

Case 1: There exists a compact subset K ¢ @ and a subsequence (unk) such
that

un
(42) jv ek —+a.
K

Then (i) holds.
Indeed, let K’ be any compact subset of €. Using (40) we obtain

u, (¥ )
0, (8) 2 [ Gaa)Vy (r)e ¢ du
where G is the Green's function of -A with Dirichlet condition on &f. Since
G(x,y) 2 a > 0 ¥x € K’, ¥y € K we see that, for x ¢ K’,

Uy
unk(x) 2 a JKVnke kot o,

Case 2. (Vne“n) is bounded in L%oc(ﬂ) and there exists a compact subset
K ¢ Q such that, for a subsequence,
J Kunk—. te
Then (i) holds.
Indeed, let K’ be any compact subset of (1. Let w be an open set such
that KUK cwcc @ In w, split u a8 uw = um+u'2n where u;  is

n n
the solution of

{—Auln Vneuﬂ in w,

U, = 0 on dw.

Note that (u;;) is bounded in Ll(u) and u, satisfies
{ -Ouy, =0 in w,
Yon

0 on dw

v
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Thus Uy, 2 0 in w and by Harnack's principle

43) Sup < C Inf < ClInfu_.
( KUk 287 gy 2 K B

On the other hand

< C Sup < CSupu
JK“zn g’ "2n KUk "2

and
=] u -J u zj u. - C.
unzn IK n K 1n K?®
It follows that Inf u, —+o and thus (i) holds.
K/ ™k

We are left with:
Case 3 (V,e's) and (u,) are bounded in Lj (Q). Then (ii) holds.

We proceed here as in the proof of Theorem 3. We extract a subsequence
(still denoted Vneuﬂ) such that Vne“n converges in the sense of measures to
some nonnegative (possibly unbounded) measure y, i.e.

J Ve — J Wp

for every ¢ € Cc(ﬂ). We say that a point x, € Q is a regular point if there is
a function ¢ € CC(Q), 0<¥Y<1, with y =1 in some neighborhood of Xy,
such that

[ v < 4.
It follows from Corollary 4 (applied in a small ball around xo) that if x; is a
regular point then there is some Ry > 0 such that
(44) (“n) is bounded in L“(BRO(xO)).
We denote by I the set of nonregular points in Q. Clearly x5 € T if

w{xg}) 2 4x/p’. It follows that I is locally finite and for every compact subset
K of O

card(E 0 K) ¢ (p’/47) deu

Q

°
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We have S = £ as in the proof of Theorem 3 (Step 1). Thus S is locally
finite and by (44) (uy) is bounded in LTOC(Q\S), i.e. (ii) holds.

II1.3. Variants and counterexamples

1. Suppose that instead of a sequence of solutions of (8) we have a sequence of

subsolytions, i.e.
~Au ¢V (x)e's in Q.

It is easy to adapt the arguments of Section IIL.1 to obtain estimates for [[u:[] o
L
under smallness or uniform domination assumption. However the analogue of

Corollary 6 for subsolutions does not hold as may be seen from the following:

Example 5. There is a sequence (u ) satisfying

u, _
{—AunSe“ in Q_Bl,
u = 0 on 4afl

with

Je“ngc
Q

and such that u (0) — +». First, note that the function

2
8¢
#(x) = log ———7y
¢ (“+1x]%)
satisfies
Ye
—-Acpe =e Ye> 0
and
”06
e =8r Ve>0

Hence the function u = <p'i' /n has all the required properties. The same

example can be used to produce sequences (vn) and (Vn) such that
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{—Avn < Vnevn in Q =B,

v 0 on 40

n

V.
such that Vn 2 0, ”Vn”LP <C, e n”Lp, <C,1<p<uo and Vn(O) — 4+
Ly
It suffices to take vy = % L and Vn = %,ep o

2. The same kind of example shows that the conclusion of Theorem 2 does not

hold uniformly. More precisely there are sequences (u n) and (Vn) such that
. u 2
-Aun = Vne n on R

. V.
with IIV,,IILp <G, Jle’a|| $C,1<p<a, such that u (0) —+a.

2 ‘ o2y <
(®) P ®) L
One may take for instance u, = 5'("1/1\ and Vn =5 exp(i “’l/n)'
3. The conclusion of Corollary 6 cannot be strengthened to fluy o $ G There
L

are sequences (u;) and (V,) satisfying

~Aw =V in Q= B,

0 on N

=
I

V. >0 in

<
IVyll p ¢ ©

Up <
Il . <,

with 1 < p ¢ o and such that |ju || ~— o It suffices to construct such an
L

example when p = o For a general 1 < p < o we may use the p = o

example and note that & = %,un satisfies -AG, = \"neun with

c 1 1 Y !
== = < n < C.
Va p’vn exp(p,un) so that ”Vn"Lp <C and |e ”Lp’ <

Example 6. Let Q1 be the unit disc centered at (1,0). Set a = (d_,0) with
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€ < dE <1, Let A > 1 be a constant and let

2 in B (a)

0 otherwise .

Let u ¢ be the solution of
-Au, =, in Q,
0 on 4f1.

]
]

Let V‘s be defined by
vV =fe
Ue
so that -Au€= Vee . We claim that, for an appropriate choice of d o ve have

(45) IVl ¢ O

(46) Ineu‘ ¢ C.

while ue(ae) -+

Verification of (45). Let v ‘ be the solution of

{-AvE £, in Bde(ae),
on 6Bde(ac) .

I
=)

v
€

By the maximum principle we have v Su in By (ae) 8o that
€

€

-u -V

4A €
VI =1lfe I _<35le “l :
dpo ~ Ve Hp 2T L°(B (s,))

But v, is given explicitly by

4A 2
—:2-1' + o 0¢r<e
vV =

d
2A log(Tf—) e<r<d
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d
= A +2A log(T. Thus

where 1 = |x-a,| and a,
v A-a
fle | =e = (. Hence (45) holds provided
L%(B(a,) €
A
(47) P <
€ €

Verification of (46). Let G be the half-plane
G = {(x;x) € % x, > 0},

Let v, be the solution of

€ €

[—Aw ={ in G,
0 on 4G .

k|
0

By the maximum principle we have u < w_ in 1 and thus

u w
Je‘g‘[e‘.
11 0

But W, is given explicitly by

4A 2 ;
- ) [x-a %+ 8, +2A log|x-a;| if |xa]<e
Ve = jx-a|
2A log[
|x-a,|

] otherwise
where a; = -a_ and B = A - 2A log e. We have

d
w(x)<C+2A log(-i—e) if |x-a] <e

(since |x-a;] < |x-8.| +2d ¢ €+ 2d, < 3d),

d
w (x) ¢ C + 2A log(—=—) if €¢ Ixa| < d
€ Ix_a'cl €

(since |x-a7| < 3d) and

w ¢<C if Ix—aelzd

€ €
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(since |x-a;| < |x-a,| + 2d, ¢ 3|x-a ).

It follows that

Hence (47) and (46) can be achieved by choosing d = J{1/A). Finally we have
d 2A
ufa,) 2 v(a,) =a 224 log(T‘) —+wo a8 e — 0. Note that in this

u
Example f \' & € = 4Ar can be made arbitrarily close to 4, showing once
Y

more that assumption (10) in Corollary 3 is sharp.

4. Onpe may combine the techniques of Sections III.1 and Section III.2. Assume for
example that all the assumptions of Corollary 6 hold with 1 < p < @ and in
addition

|Vn(x)| < W(x) in some fixed neighbourhood of 460

with W € LP. Then ““n”Lm <C.
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