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In the course of writing a chapter of a book we observed some simple facts 
dealing with the Palais SmaIe property and critical points of functions. Some of 
these facts turned out to be known, though not well-known, and we think it worth- 
while to make them more available. In addition, we present some other recent 
results which we believe will prove to be useful-in particular, a result of Ghoussoub 
and Preiss; see [ 91, [ 81. There are two useful techniques used in obtaining critical 
points. One is Ekeland’s Principle (see below), the other is based on deformation 
arguments. We will use versions of both of them. In particular we present a rather 
general deformation result. 

Throughout this paper we consider real C’ functions F defined on a Banach 
space X. When looking for critical points of F it has become standard to assume 
the following “compactness condition”: 

any sequence (u,) in X such that F( u,) --* a 

and (1 F’( u,) I( + 0 has a convergent subsequence . 

If this holds for every a E Iw one says that F satisfies (PS)-a condition originally 
introduced by Palais and Smale; see [ 131. 

1. Some Applications of Ekeland’s Principle 

We start with an elementary statement in which (PS) is not assumed. 

PROPOSITION 1. If 

a = lim inf F( u )  
I I U I I + ~  

isjinite 

then there exists a sequence (u,)  in X such that llu,,~l + 03, F( u,,) + a, and 
II F’( u,) II + 0. 
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The proof relies on Ekeland’s Principle (see [ 7 ] and [ 3 ] Chapter 5.3 ) which we 
shall use in the following form: 

EKELAND’S PRINCIPLE, Let M be a complete metric space with metric 
d ( x ,  y ) .  Let $ : M +  (-00, +a], # 9 +a, be a lower semi-continuous function 
bounded from below. Then, given E > 0 and zo E M there exists a point z E M 
such that 

Proof of Proposition I: Set, for r 1 0, 

m ( r )  := inf F ( u )  . 
llull r 

Clearly m is a nondecreasing function and limwm m( r )  = a. Then for any positive 
E < 5 we have 

a - t 2 $ m ( r )  for r z f .  

We may take J 2 e - ’ .  Choose zo with llzoll h 2fsuch that 

F(z0)  < m(2F) + E 2  5 a + & *  . 

Applying Ekeland’s Principle in the region { IIxII L T }  we find some z, llzll Z f 
satisfying 

F ( x )  - F ( z )  + e(lx - zll Z 0 provided I(xI( I f , 

Ly - E 2  5 m(J)  5 F ( 2 )  5 F(z0)  - e( (z  - 2011 . 
It follows that ( ( z  - zo(( 5 2c. Hence I(z(I > F and we may conclude that 
( 1  F’( 2 )  11 5 &. 

COROLLARY I.  I f F  is bounded below and satisfies (PS) then F ( u )  + 00 as 
IIuII + a. 

This result was proved by S. J. Li in [lo] using a gradient flow and by Costa 
and de Silva in [ 61 using Ekeland’s Principle in a similar way. 

Remark 1. The conclusion of Proposition I can be strengthened in the finite 
dimensional case. There exists a sequence ( u,), as in the proposition, satisfying in 
addition: F ‘( u,) is a multiple of u,. This is done by moving a suitable radially 
symmetric function until it touches the graph of F. 



FINDING CRITICAL POINTS 94 1 

PROPOSITION 2. Assume F is bounded below and satisfies (PS). Then every 
minimizing sequence has a convergent subsequence. 

Proof: Let (x,) be a minimizing sequence. For a subsequence, still denoted 
(x,), we may assume that F(x,) I inf F + 1 / n 2 .  By Ekeland’s Principle there 
exists y, in X such that 

F ( Y )  - F(Y,) + ( l / n ) l l y -  ynIl 2 0 V y E X ,  

F(y,)~F(x,)-(lln)IIxn-Y,II - 
Thus IIF’(y,) )I 5 1 / n ,  F(y,)  I inf F f  ( l / n 2 )  and Ilx, - y,ll 5 l / n .  By (PS) the 
sequence ( y,) has a convergent subsequence ( ynk), and (x,J also converges. 

Here are some other results proved using the same kind of argument: 

PROPOSITION 3. Assume F is bounded below and satisjies (PS) . Suppose that 
all the critical points of F lie in { (I u (I I R 1 . Set 

M ( r ) : =  inf F ( u ) .  
llull = r 

Then, for r > R ,  M (  r )  is strictly increasing and continuous from the right. 

There is a localized version of this for functions F E C‘ ( { 11 u 11 I R } ) assumed 
to satisfy (PS) in the following sense: any sequence (u,) such that (Iu,l( 5 R’ < R, 
for all n ,  with F( u,) bounded and 11 F’( u,) I( --f 0, has a convergent subsequence. 

PROPOSITION 4. Let F be a C’ function on 11 u 11 5 R satisfying (PS) as above. 
Assume F(0) = 0, F( u) > 0 for 0 < IIu 11 < R and F has no critical point in IIu )I < 
R except u = 0. Then there exists 0 < ro S R such that M is strictly increasing in 
[ 0, ro) and strictly decreasing on [ ro, R )  . 

Proof of Proposition 4: Fix R’ < R. It is easy to see that M is upper semicon- 
tinuous on [0, R’] and so achieves its maximum at some point ro E [0, R’]. The 
conclusion of the proposition follows easily with the aid of the following lemma- 
on letting R‘ + R. 

LEMMA 1. Let F be a non-negative C’ function in the ring 

R = (0  5 a d  IIuII 5 b }  . 
Assume (PS) in the following sense: any sequence (u,) such that 

a + 6 5 l)u,)l S b - 6 

for some 6 > 0 with F( u,) bounded and I( F ’( u,) (1 + 0 has a compact subsequence. 
Assume F has no critical points in a < 1) u (1 < b. Then the function 

M ( r )  := inf F ( x )  
llxll = r 
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Proof of Lemma 1: Suppose for some rl < r < r2, (4 )  does not hold. There 
is a sequence (x,), satisfying 

Applying Ekeland in R = { rl 5 ( 1  xII 5 r2 } , 3 y,  in that region such that 

Thus y,  is not on d R ,  for if it were, say 11 y,ll = r l ,  we would have 

1 1 1  
n n n  M ( r , )  I F(x,)  - - ))x, - y,)l 5 M ( r )  + 7 - - ( r  - r , )  

I 1  
n n  

5 M ( r , )  + 7 - - ( r  - r l )  . 

This is impossible for n large. Therefore 11 F’(yn)  11 + 0. By (PS), (y,) has a sub- 
sequence which converges to a critical point of F in R .  Impossible. 

Proof of Proposition 3: That M is strictly increasing follows easily from Lemma 
1 and the fact that M( r )  --* + co as r --* 00 (by Corollary 1 ) . Since M is also upper 
semicontinuous it must be continuous from the right. 

Another immediate consequence of Lemma 1 is the following 

COROLLARY 2. Let F be as in Lemma I ,  with a = 0, and assume that the 
origin is a critical point of F which is not a local minimum. Then M( r )  is strictly 
decreasing on [ 0, b )  . 

Remark 2. In Proposition 4 the number ro might be R but in general it is less 
than R . Here is an example in R2 : 
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Choose R in such a way that 
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F ( x ,  y )  > 0 for 0 < x2 + y 2  < R2 

and 

F(x0, yo) = 0 for some xo, yo with xg + yg = R2 . 

This function in OX2 serves also as an example for which the Mountain Pass 
Lemma (MPL) (see [ 21) fails because (PS) is not satisfied. For the convenience of 
the reader we recall the setting of MPL. Let F : X + [w be a C’ function satisfying 
the condition: 

there is an open neighbourhood U of 0 and some point uo f$ u 
such that F ( o ) ,  F ( % )  < c0 5 ~ ( u )  v u  E au. 

(7)  

Consider the family A of all continuous paths A joining 0 to uo and set 

c :=  inf maxF(u)  
A E A  u E A  

Clearly c 2 co and we would expect that c is a critical value. This seems intuitively 
obvious, but it is not true in general. The function F ( x ,  y )  above satisfies (7)  with 
U = small disc about the origin, co > 0 and uo = any point outside the disc with 
F( uo) 5 0. It is easy to check that (0, 0) is the only critical point of F and that c 
of (8), which is positive, cannot be a critical value. The correct statement is the 
following (see [ 21): 

STANDARD MPL. Under condition (7)  and c given by ( 8 )  there exists a se- 
quence (u,) in X such that 

If in addition we assume (PS), with c given by ( 8 ) ,  then c is a critical value. 
In connection with this well-known MPL we would like to call attention to the 

following two forms: As before F is a real C ’  function on a Banach space X .  Let 
K be a compact metric space and let K* be a nonempty closed subset # K. Let 

A = { p E C ( K ; X ) ;  p = p * o n K * }  

where p* is a fixed continuous map on K. Define 

(9) c = inf max F(p([)) , 
p E J 4  E E K  
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so that 
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c h max F(p*( .$ ) )  . 
(€  K* 

THEOREM 1. Assume that for every p E A, maxEEK F ( p ( [ ) )  is attained at 

11 F‘( u,) 11 3 0 . 

some point in K\K*.‘ Then there exists a sequence (u,) in X, such that 

F( u,) + c and 

If in addition F satisfies (PS),, then c is a critical value. Moreover, i f ( p , )  is any 
sequence in A such that 

then there exists a sequence (En) in K such that F(p, , (&))  --+ c and 
l l ~ ’ ( P n ( & t ) ) l l  + 0. 

The standard MPL is clearly a special case of this with K = [ 0, 13, K* = { 0, 1 } 
and with p*( t )  = tuo. We shall present two proofs of the theorem. The first is based 
on Ekeland’s Principle; the second, in the Appendix, uses the Deformation Theorem 
of Section 2. 

Proof of Theorem 1: For [ E K ,  set 

d ( [ )  = min(dist([, K * ) ,  I } ,  

and consider for any fixed e > 0, and p E A, 

(The idea of perturbing the function is taken from N. Ghoussoub and D. Preiss 
(see [ 91);  they perturb F;  our perturbation is different.) Set 

+ J P )  = max G(P(E) ,  E )  9 

SE K 

c, = inf $ c ( p ) .  
P E A  

Clearly c 5 c, 5 c + c. 

tinuous on M .  By Ekelands Principle, 3 p  € A such that 

( 1 1 )  

For M = A (equipped with the usual metric) we see easily that $ c ( p )  is con- 

$e(q) - + , ( P )  + 4 P ,  4) 2 0 v q  E A > 

c 5 c, 5 + c ( p )  5 c, + e 5 c + 2e.  

’ It is equivalent to assume that for every p E 34 there is some point 6 E K\K* such that F ( p ( [ ) )  Z c .  
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By our main hypothesis, 

# c ( P )  > max H P ( t ) ) .  
( E  K* 

(12)  
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Set 

We shall prove that there is some to E B,(p) such that 

The conclusion of the first part of the theorem then follows by choosing E = 1 / n  

We shall use the following result which is proved with the aid of a partition of 
unity as in the construction of a pseudo-gradient (see, e.g., Theorem A.2 in [ 151). 

and u, = P ( t 0 ) .  

LEMMA 2. Let N be a metric space and let f : N -+ X *  be a continuous map. 
Then, given E > 0, there exists a locally Lipschitz map u : N --+ X such that for all 
t E N ,  

Applying Lemma 2 with N = K and f ( [ )  = F ’ ( p ( [ ) )  we obtain a continuous 
map u : K + X such that for all 4 E K, 

By ( 12), B,(p) C K\K*. Thus there is a continuous non-negative function 
a ( [ )  I 1 on Kwhich equals 1 on B,(p),  and vanishes on K*. We shall take for q ,  
in ( 1 I ), small variations of the path p :  

= P ( t )  - h w ( t )  

for 0 < h small, and w ( [ )  = a ( [ ) u ( [ ) .  
In what follows, c > 0 is fixed while we let h --+ 0. Observe that 

# z ( q h )  = ma%€ K G(qh( t ) ,  t )  
is attained at some point &, E K. For a suitable sequence h, + 0, thn converges to 
some to which belongs to B,(p).  By ( 1 I ) ,  with q = qh, and by (14), we obtain 

( 1 5 )  F(P(th)  - hW(th)) + 4 t h )  - # J P )  + &h 2 0. 
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On the other hand, it is easy to check that as h + 0, 

Combining ( 15) and ( 16) we see that 

(note that F ( p (  &,)) + Ed( &) 5 + J p ) ) .  Hence 

As h + 0 we find 

which, by (14), yields (13). 

Principle, a sequence ( q,) in A such that 
The last assertion of Theorem 1 is established by constructing first, via Ekeland’s 

Here ( E , )  is a sequence of positive numbers, e, -P 0, such that m a t E  F(p,( 4 ) )  5 
c + efi. It follows that d(p,, q,) I 2 ~ , .  The preceding argument (applied with q,, 
in place of p) leads to the existence of some tn E K such that 

This is the desired sequence ( tU). Indeed, by (PS),, a subsequence of qn( En) converges 
to a critical point and the corresponding subsequence of p,( En) converges to the 
same limit. A standard argument shows that for the full sequence, F(pn( 4,)) + c 
and 11 F‘(p,( &)) 11 -P 0. Theorem 1 is proved. 

Next we present a theorem of Ghoussoub (see [ 81) which contains earlier results 
of Pucci and Semn (see [ 141) as special cases. We believe this theorem will prove 
very useful; in particular we use it in the proof of Theorems 4 and 5 below. 

THEOREM 2. Assume the conditions of Theorem 1 and that there is a closed 
set 2 in X ,  disjointfrom a*( K* ), on which 

(18) F 2 c (dejined in (8 ) )  
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and such that 

V p  E A , p ( K )  intersects 2 . 

Then there is a sequence (u,) in X satisfying 

F(u,) + c ,  ( 1  F‘(u,) 11 + 0 and dist(u,, 2 )  --f 0 . 

In general, c is unknown, so the condition ( 18) may be difficult to verify. This 
theorem will be used when c = maxK* F(p*( [)). 

COROLLARY 3. Under the condition of Theorem 2, i f F  satisfies in addition 
(PS),, then there is a critical point u in 2, with F( u )  = c. 

Unlike the previous proof, and the proof of Ghoussoub, our proof of Theorem 
2-in Section 2-makes use of a general deformation theorem. Paul Rabinowitz 
has still another proof of Theorem 2 using the dual max-min principles of [ 21 (see 
also Theorem 3.2 in [15]). 

2. A General Deformation Theorem 

We consider a function F E C1 in X and set 

F a =  { u E X ; F ( u ) S a } ,  

K, = set of critical points of F where F = a . 

THEOREM 3 (Deformation Theorem). Let c E R. For any given 6 < Q there 
exists a continuous deformation v : [ 0, I ]  X X + X such that 

(20) q( t ,  . ) is a homeomorphism o fX onto X ,  Vt  E [ 0, 13 

(24) If  u E Fete then either 

( i f  v( 1, u )  E Fc-6 or 
(ii) for some t l  E [0 ,  11, we have 
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(25) More generally, let 7 E [0, 11 and assume that 

for all t E [ 0, 71, q( t , u )  belongs to the set 

fi= { V E X ;  I F ( v ) - c l  56aandIIF’(u)ll 2 2 6 } ,  

then F(q(7 ,  u ) )  5 F( u )  - 7/4. 

Before the proof, some corollaries. 

COROLLARY 4. In Theorem 3, if F also satisfies (PS),, then given e > 0, 
3 6 < e and deformation q as above, so that in addition: 

I f  u E F,+& and F(q(  1, u ) )  > c - 6 ,  
(26) 

then llF’(q(t, u))II < e Vt E [0, I ] .  

Proof of Corollary 4: Observe first that for all e > 0, 36 > 0 such that 

Otherwise there would exist eo > 0, and sequences (x,), (y,), with F(x,) -P c, 
11 F’(x,) 11 --+ 0, 11 x, - y,ll + 0 and 11 F’(y,) 11 2 eo. Impossible. Choose such 6 < 

and 6 < e for the given e. Then alternative (24)(ii) must hold, and (26) follows 
from (23) and (27). 

COROLLARY 5 .  Assume F satisfies (PS),. Given e > 0 and a neighbourhood 
0 ofK,, there exist 6 < e and deformation q as in Theorem 3 satisfying, in addition: 

(28) I f u  E F,, &\0 , then alternative (24)( i) holds 

Proof: By (PS),, there exists a > 0 such that 

We may suppose e < a and apply Corollary 4. With 6 , q  as in that corollary we see 
that if u E F,+a\O and (24)(i) does not hold, then c - 6 < F(q( 1, u ) )  5 F ( u )  S 
c + 6, and (1 F’( u )  (1 d e .  This means that u E U C 0-contradiction. 

COROLLARY 6. Assume F satisfies the conditions of Theorem 2 and (PS), and 
suppose 

c > max F(p*( 5 ) )  . 
[ €  K* 
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Then V E  > 0,36 > 0 and 3 p  E dl such that 

max F ( p ( 5 ) )  < c + 6 
t e  K 

and 

Proof: Given E > 0, choose 6 > 0 as in Corollary 4 with 

26 < c - maxEEK* F(p*( 5 ) ) .  

Let po E A such that maxgEK F ( p o ( 5 ) )  < c + 6. Then the path 
p (  5 )  = v( 1, po( 5 ) )  has the desired properties. 

Corollary 5 is an extension of a well-known deformation theorem; see Theorem 
A.4 in [ 151. Paul Rabinowitz pointed out to us that Corollary 6 also follows easily 
from a variant of Theorem A.4 in [ 151. The form of Theorem 3 presented here 
was suggested by an unpublished result due to H. Berestycki and C .  Taubes. Indeed, 
the existence of a special path, as in Corollary 6 ,  was proved by Taubes in Lemma 
5.2 of [ 171 for the Yang-Mills functional. 

Like all deformation theorems, to obtain the deformation the idea is to follow 
negative gradient flow. But since F is only in C’, one replaces F‘ by a pseudo- 
gradient on the set { F’( u )  # 0 }. This is a locally Lipschitz vector field v( u )  satisfying 

See Lemma A.2 in [ 15 ] 

Proof of Theorem 3: In addition to the set s i n  (25) we shall make use of the 
set 

N = ( u E X ; ) F ( u ) - c l  < 2 6  and l l F ’ ( u ) l l > f i } .  

Since I? and N‘ are disjoint closed sets there is a locally Lipschitz non-negative 
function g 5 1 satisfying 

g =  1 
0 outside N .  

For example, 

dist ( u,  N C )  
g ( u )  = dist(u, N C )  + dist(u, I?) ’ 
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Consider the vector field 

outside N 

where v is a pseudogradient defined on { F’( u )  # 0 } . Clearly Vis locally Lipschitz 
on X and 11 V (  u )  I( S 1 / fi, for all u E X .  Consider the flow q( t )  = q( t ,  u )  defined 
by 

Clearly, q is defined for t E [0, I] and satisfies ( 19)-(21) and 

In particular, we have 

Proofof(22): If J F ( u )  - C I  2 26, then q ( t ,  u )  = u,  forallt E [0, I] and the 
conclusion is obvious. Hence we may assume that I F( u )  - CI  < 26. If F( q( 1 )) L 
c - 26, the proof is finished. Suppose that F(q( 1 ) )  < c - 26. Then 3 t l  E [0, I ]  
such that F ( q ( t l ) )  = c - 26 and since q ( t )  = q ( t l )  for t 2 t l  it follows that 
F ( u )  - F(q( I ) )  = F ( u )  - F ( q ( t , ) )  5 c + 26 - (c  - 26) = 46. 

Proof of (23): 

4 
S - ( F (  u )  - F( q( t ))) 5 1 6 6  by (29) and ( 22) . h 

Proof of (25): If q ( t )  E 15 for 0 I t 5 T ,  then g(q( t ) )  = 1 and the assertion 
of (25) follows from (29). 
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Theorem 2 follows easily from Theorem 3 by suitable deformation of “paths” 
p E A on which max F is close to c. There is a new ingredient however: the time 
t for which we consider the deformed path v( t ,  p (  E ) )  will vary with 5.  

For any given 6 > 0 we shall show that there is a point 
Zi such that c 5 F( Z i )  < c + 6, I (  F‘( 6 )  11 < 2 f i  and dist( 6 ,  Z)  5 3 2 f i .  Letting 
6 + 0 through a sequence 6,, the corresponding Z i ,  have the desired properties. 

We take 6 < Q and so that 32fi  < dist( Z, p*( K* )). Let be a deformation in 
Theorem 3. Let p E A be such that maxgE F(p(  E)) < c + 6. Let 0 5 { ( v )  5 1 be 
a continuous function on X which equals 1 if dist( ?I, I;) S 16fi, and vanishes if 
dist(v, I;) L 3 2 f i .  

Proof of Theorem 2: 

Consider the “path” 

Clearly q E A. Let ii E q ( K )  n Z. SO ii = ~ ( j - ( p ( g ) ) ,  p ( g ) )  for some F. E K.  Set 
u = p ( $ ) .  By property (23) 

IMt,  P(B) - P(E>lI 5 1 6 6  Vt E LO, 11 , 

and so { ( p ( g ) )  = 1. Hence ii = ~ ( 1 ,  u ) ,  and c d F ( v ( t ,  p ( g ) ) )  < c + 6, for all 
t E [0, 1 1 .  So alternative (24)(ii) in Theorem 3 must hold, and hence, for some 
t l  E [o ,  1 3 ,  D = v ( t l ,  p ( g ) )  satisfies 

Furthermore 116 - 611 5 3 2 6 ,  by (23). 

3. Critical Points in the Presence of Splitting 

We are going to apply Theorem 2 to functions which are bounded below and 
satisfy (PS). Let X be a Banach space with a direct sum decomposition 

X = XI 0 X ,  

with k = dim X ,  < co. We write any u E Xas u = uI  + u2 = (I - P ) u  + Pu where 
P is the projection onto X ,  along XI. 

THEOREM 4. Let F be a C1 function on X with F( 0 )  = 0, satisfying (PS) and 
assume that, for some R > 0 
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Assume also that F is bounded below and infx F < 0. Then F has at least two 
nonzero critical points. 

This theorem is related to results of K. C. Chang in [ 51  and later results of 
J. Q. Liu and S. J. Li in [12] and J. Q. Liu in [ l l ]  (which also contains other 
references). Their arguments rely on Morse theory while ours uses Theorem 2 
together with an idea of K. C. Chang (personal communication) involving a negative 
gradient flow, and linking. In [ 16 ] E. Silva has extended results of [ 121. He assumes 
(30) and replaces the assumption that F is bounded from below by conditions like 
those of [ 121. One of the ingredients of our proof is the following extension of a 
result of Rabinowitz (see, e.g., [15]). 

LEMMA 3. Assume that in the decomposition, 0 < dim XI 5 co, and let v be 
a fixed unit vector in XI. Set 

K = { u = su + u2 ; u2 E X ,  , IIu 11 5 1 and s L 0} . 

Consider any continuous map p : K --* X satisfying 

Then, for any r > 0, the image p(dK) “links” the set of points in XI with norm 
p < r.  That is, for any 0 < p < r ,  there exists U E K such that 

Pp(U) = 0 

Proof of Lemma 3: In X ,  = X2 0 span { u } consider the map T : K -P Xj, 

To prove the lemma it suffices to show that for some point U E K ,  T( U )  = pv. We 
use finite dimensional degree to do this. Since p < r it follows from conditions ( 3 1 ) 
that for all u E dK, T( u )  f pv. Consequently deg( T, K ,  pu)  is defined. We shall 
prove that it equals 1, and this yields the desired result. As we know, the degree 
depends only on the boundary values of T .  So we may consider only TI d K .  Set 

A = { ( u 2 ,  0 ) ;  u 2 E X 2  and IIu211 5 l} 

and 

B =  { u E K ; I l u ( (  = I ]  
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We have d K =  A U B.  Clearly Tu = ufor u € A  and / (Tu ( (  L r‘> 0 for u E B. On 
dK define 

Using (3 1 ) we see that T and f are homotopic in X3\p~ through 

T,u = tTu + ( 1  - t ) f u ,  t E  [0, I ] ,  

Note that F(B)  C B and that f = id on dB. Since B is homeomorphic to a ball 
there is a continuous deformation f, connecting to the identity in B with fl = 
id on dB for all t E [0, I]. It follows that T l a K  is homotopic to the identity in 
X3\pu and thus deg( T, K, pu)  = deg(id, K ,  p u )  = 1. 

Our proof of Theorem 4 also makes use of the following 

LEMMA 4. Let F be a C’function defined on a Banach space Xsatisfying (PS) 
and: .for some uo E X 

F ( u )  > F(ug) V u  # u g .  

Let u be a pseudo-gradient for F on the set { u E X ;  F‘( u )  # 0 }  (see, e.g., 
Lemma A.2 [ 15 ] ) . Let y # ug be such that F‘( y )  Z 0, and F has no critical value 
in ( F (  ug), F( y ) ) .  Then the “negative gradient flow” starting at y ,  defined by 

exists for a maximalfinite time 0 S t i T (  y )  and x( T( y ) )  = ug. 

Proof: We may suppose uo = 0, F( uo) = 0. On the integral curve of (32), 

dF 1 - < - -  - 
dt - 4  

by the standard properties of the pseudo-gradient. Thus the solution x( t )  of (32) 
exists on a maximal open interval (0, T )  with T 5 4F( y ) ,  and 0 < F( x( t ) )  < F( y )  
on (0, T ) .  We will show that x( t)  --* 0 as t --f T. 

There exists 6 > 0 such that 11 F’(x(t))ll I 6 on (0, T). Then Case 1 .  
IIu(X(t))ll >= IIF’(x(t))II 2 6, and 

1‘2 dt exists . 

Consequently limt+ T x (  t )  = x( T )  exists. Moreover x( T )  is necessarily 0 for oth- 
erwise the solution x( t )  could be continued beyond t = T. 
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Case 2 .  If we are not in Case 1, there exists a sequence tj --* T such that 
IIF’(x(t,))II + 0. By (PS), a subsequence, x ( t j )  converges to a critical point 
of F ,  which can only be 0. Therefore limt+ F ( x ( t ) )  = 0 and by Proposition 2, 
x ( t )  --* 0 as t -+ T .  

Proof of Theorem 4: We know that F achieves its minimum at some point 
ug . Supposing 0 and ug to be the only critical points we will be led to a contradiction. 
We consider first the case that k and dim X ,  are positive. We may suppose R = 

Since at every point y E X ,  with 11 y ( 1  = 1, F’( y )  # 0, we may apply the preceding 
Lemma 4 to conclude that the flow starting at y ,  described by (32), exists on a 
maximal open interval 0 < t < T ( y )  < -4F(ug), and x ( t )  --* uo as 
t +  T ( y ) .  

Applying Proposition 2, we see that 36 > 0 such that the set { F( u )  < F( ug) + 6} 
lies in ( (u  - uoll < IIuoll/2. By choosing 6 sufficiently small there is a unique value 
t = t ( y )  < T ( y )  such that F ( x ( t ( y ) ) )  = F( ug) + 6. It is a simple exercise to verify 
that t ( y )  is continuous in y .  

1 < IIuoII. 

For u a unit vector in XI,  let K denote the set 

(33) K =  { u  = su + u 2 ;  u 2 € X 2 ,  s 2 0 and IIuII 5 1 ) .  

We now define a continuous map p* of dK = K* into X .  Any u f v on dK, 
with 11 u 11 = 1, has the unique representation 

(34) u = sv + uy 

w i t h O 5 s S  l , y E X 2 ,  llyll = l , O < u $  l,i.e.,s,a,yareunique.Define 

(35) p * ( u ) = u  f o r u E X 2 , ( ( u ( ( - - 1 1 ,  and p * ( u ) = u o .  

For u given by (34), define 

(36) p*( SD + u y )  = x(2s t (y ) )  for 0 5 s 5 4 

where x ( t )  is our solution of (32). So p*( $ u  + o y )  = x ( t ( y ) )  and it lies in 
IIx - ugll < 4 Ilugll. Finally define 

(37) p*(sv + u y )  = (2s  - l ) uo  + ( 2  - 2 s ) x ( t ( y ) )  for 4 5 s < 1 . 

As s goes from 4 to 1, the right-hand side traverses the straight segment from 
x ( t ( y ) )  to ug, and so for s I 4 ,  
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The mapping p* is clearly continuous and on its image we have F 5 0. In 
addition we see that 

We have r 5 1. Fix 0 < p < r .  We are now going to use Lemma 3, according to 
which the image ofp* links the set Z = { u E X ,  ; 1) u 1) = p } , i.e., for any continuous 
extension p of p* to all of K ,  the image of p intersects 2. 

Denoting by A the set of all such maps p ,  we are now in a position to apply a 
min max argument, namely Theorem 2. According to that theorem the non-negative 
number 

c = inf max F ( p ( u ) )  
p E . A  u E K  

is a critical value of F.  If c > 0 we have obtained a second nonzero critical point. 
If c = 0, according to Theorem 2, there is a critical point on 2, and so different 
from the origin, where F = 0. 

Before considering the other cases in the theorem, a remark: 

Remark 3 .  The last part of the argument proves the following: 
Let F be a C' function on X satisfying (PS). Assume there is a continuous map 

p* of the boundary of the half ball: 

where v is a fixed unit vector in X I ,  into X ,  with the following properties: 
p * ( u )  = u for u E X,, IIuI) S R ,  IIp*(u)ll L ro > 0 for IIuII = R ,  
and F(p*( u ) )  5 0 V u  E dK. Assume furthermore that for some positive p < ro, 

F ( u ) L O  f o r u E X I , I l u l l = p .  

Then F has a nonzero critical point where F 2 0. 

Returning to the theorem, suppose k = 0. In that case, assuming uo, the min- 
imum point of F ,  is the only nonzero stationary point, we see that in a neighborhood 
of the origin, F( u )  > 0 for u # 0. By Proposition 4 we have 

F ( u )  2 co > 0 on llull = rsmall. 

Applying MPL we find F has a critical value 1 co. 
The last case to consider is when dim XI = 0. In this case we may even permit 

k = 00. Applying Proposition 4 again (to - F )  we see that F( u )  =< - co < 0 for 
11 u 11 = r small, and we recall that F( u )  --+ 00 as 11 u )I --* co , and so we may again 
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apply MPL to - F, considering paths joining 0 to a point w where F( w )  > 0 and 
such that ~0 is not on the segment joining 0 to w.  

Remark 4. In Theorem 4, in case F is a C2 function in a finite dimensional 
space and 0 is a nondegenerate critical point, i.e., the Hessian F ” ( 0 )  is nonsingular, 
then conditions (30) automatically hold. If 0 is a degenerate critical point the 
conclusion of Theorem 4 need not hold. Here is an example in the plane. Consider 
the function F defined in polar coordinates r ,  I9 

F(r ,  0)  = ( 1 + cos 0 ) f ( r )  + ( 1 - cos 0 ) r 2  

where f ( r )  is a smooth strictly increasing function on [ 0, 00 ) satisfymg (i) f (  r )  = r2 
for r < 1, (ii) f (  r )  > r2  for r > 1, (iii) f has only one positive critical point, say 
r = 2, and f ”( 2)  = 0. The function F tends to + co at infinity, achieves its minimum 
at (0 ,  0) and has only one other critical point namely (2, 0). At that point one 
eigenvalue of F”( 0) is negative and the other is zero. If (ii) is replaced by 

(ii)’ f ( r ) < r 2  f o r r > l  and f ( r ) + o o  a s r - c o ,  

the function F has again critical points only at (0,O) and ( 2 , O ) .  At the latter, F ” ( 0 )  
has one positive eigenvalue and the other is zero. The index of F’ at (2,O) is zero. 

The proof of Theorem 4 yields in fact a somewhat stronger result: 

THEOREM 5 .  Let F be as in Theorem 4-with k > 1. Assume that F has only 
ajinite number of critical points where F < 0 and that each one is a local minimum 
point of F.  Then there is another critical point f 0. 

In particular, if F is an even function satisfying all the conditions of Theorem 
4, and if k > 1, then F has at least two pairs of nonzero critical points. 

Proof: Supposing the conclusion of the theorem is false we will obtain a con- 
tradiction. Let %, u l ,  * . . , u,,, be the critical points of F where F < 0, and fix 
r > 0 so that the balls B, = { I(u - u,I( 5 r ) , j  = 0, * .  , m ,  are disjoint anddo not 
contain the origin. We may suppose R ,  in (30), so small that BR = { IIuII S R }  
does not touch any B,. Using Proposition 4 we see that there is a number 6 > 0 
such that the component e,, containing u,, of the set { F (  u )  < F( uJ) + 6 )  lies 
in BJ. 

Let y be a point in X2 with llyll = R .  Then F ‘ ( y )  f 0 and, as in the proof of 
Lemma 4, we find that the “negative gradient flow” starting at y ,  defined by (32) 
exists for a finite time T ( y )  5 -4 min F ,  and that there is a unique value t = t ( y )  
such that x ( t ( y ) )  first encounters U, (deJ). Suppose x ( t ( y ) )  E a@,. Then for 
t ( y )  < t < T( y )  , x(  t ) lies in e0. Thus the flow curve starting at y ends up in e0. 
It follows that for z E X,, lying close to y on dBR, the “negative gradient flow” 
curve from z also ends up in @,. Since k > 1, the set X2 fl aBR is connected and 
it follows that the flow curve starting at every point in that set ends up in e0. 
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If dim X ,  > 0 we may follow the remainder of the proof of Theorem 4 and 
obtain a nonzero critical point of F where, of course, F 1 0. 

Suppose dim X I  = 0. Here we may assume 1 < k S cx) . We apply the standard 
MPL to -F,  to obtain a critical value c > 0 of -F and a sequence of curves 
(p,) such that maxpn(-F) -+ c .  By our assumption, -F equals c at some of 
the ( uj ) .  Consider such uj and a ball B( u j )  of small radius such that on dBj, 
- F 5 c - E ,  with e > 0. We construct a new sequence of paths ( q,,) as follows. 
Replace each arc of (p,) lying in Bj by one on dBj with the same end points. 
Clearly max,( - F) -+ c, and by Theorem 1 there exists a sequence of points x,, 
on q, such that - F(x,,) -+ c and (1 F'(x,) 11 -+ 0. By (PS) a subsequence of x, 
converges to one of our u, -impossible. 

Theorem 5 is a generalization of Lemma 2.2 of Ambrosetti and Lupo (see [ I ] )  

Here is a simple application of Theorem 4. Consider the problem 
which is proved using the Morse inequalities. 

-Au  + a(x)u = Xg(u) in L? , 
L = o  on aa . 

We assume that a E L" , g is smooth with 

and 

In addition we assume that 

G( u )  = s" g(t) dt > 0 for some u . 
0 

In case 0 is an eigenvalue of - A + a we also assume that 

(41) G ( u )  B 0 for ( u (  4 6 small 

THEOREM 6. 
solutions of (38 ) .  

Example. 

Proof: 

For every X sufficiently large there are at least two nontrivial 

g(u) = u 3  + u4 - u s .  

Since, for X > some X, there is an a priori estimate for the solution (by 
the maximum principle), we may also assume that g( u )  = bu + c with b < 0, for 
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I uI large. Solutions of the modified problem will still be solutions of the original 
problem. The functional 

(VuI2 + uu2 - X J G ( u )  

is well defined on X = HA and we claim that it satisfies the conditions of Theo- 
rem 4. 

First, it is clear that inf F < 0 for X large enough. Indeed, since G ( s )  > 0 for 
some s there exists a function ~0 E HA such that C( uo) > 0. Using (40) we readily 
see that inf F > -co for X large. 

Next we turn to the splitting X = XI 0 X,. For X 2  we choose the (finite di- 
mensional) space spanned by the eigenfunctions corresponding to nonpositive ei- 
genvalues of - A + a ,  and XI is its orthogonal complement in X .  Using (39 )  and 
the fact that G( t )  < 0 for I t I large we have, for any c > 0, 

(42) G ( t )  S ct2 + Celt12"'("-2) Vt . 

We deduce that on X I ,  for some (Y > 0, 

for IIu [ I H ,  = 1Iu (1 5 R small. On X 2 ,  which is finite dimensional, we have 

F( u )  5 0 for Ilu 11 small 

by (42)-and (4  I ) in case 0 is an eigenvalue of - A + a .  The (PS) condition is 
easily verified for X large. Theorem 4 yields the conclusion. 

As another application of Theorem 4 we prove the existence of nontrivial time- 
periodic solutions of a system of ordinary differential equations for a vector-valued 
function of time x( t ) ,  taking its values in RN: 

(43) x = V,V(t, x) . 

Here V is a smooth function defined on R I X RN which is periodic in t of period, 
say, 2a. Assume 

(i) V ( t ,  0) = 0, V,V(t, 0 )  = 0, 
(ii) V ( t ,  x) + +co as 1x1 + co uniformly in t .  

(iii) For some constant vector xo, 
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(iv) For I X I  S r small, and some integer k h 0, 

- 4 ( k +  1 ) 2 1 X I * 5  V ( t , X ) 5  -4k2lxj2.  

THEOREM 7 .  
lutions of period 27r. 

Under the conditions above, (43) has at least two nonzero so- 

Proof 
the functional 

x( t )  = 0 is a solution, and we seek two others as stationary points of 

F(x) = lr [i 1x1' + V ( t ,  x ( t ) )  dt 1 
We work in the Hilbert space X of vector functions x ( t )  having period 27r and 
belonging to HI on [ 0, 2 ~ 1 ,  with the standard norm 

((x/( = [ lr 1 x 1 2  + I x12]1'2 . 

It is easy to verify that F satisfies (PS) and is bounded below; by (iii), inf F < 0. 
Writing any x E X in Fourier series 

m 

x(t) = 2 ajeiJ', a-, = iiJ , 
-m 

we set 

Theorem 4 will give the desired result once condition (30) is verified. Choose 
R > 0 so small that 
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Then for x E X 2 ,  (Ix(( 5 R ,  

F ( x )  = 1x1’ + V ( t ,  x) 

= K C la j12( l j [2  - k 2 )  5 0 
I j l C k  

Similarly one verifies the first inequality of (30), and the conclusion follows 
from Theorem 4. 

The same proof yields a slightly more general result: 

THEOREM 7’. Theorem 7 holds ifcondition ( i v )  is replaced by the condition: 

(iv)‘ For some r > 0, some integer I, 0 6 1 5 N ,  and for some non-negative 
integers k , ,  . . , k,, 

I 

if C x i  5 r 2 ,  andalso 
I 

Proof: We write any Fourier coefficient a, of x as 

N 

a, = 2 ayem 
m =  I 

where em is the unit vector pointing in the positive xm direction. Then take 

and XI = Xi; the proof proceeds as before. 
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Appendix 

A Proof of Theorem 1 Based on (Deformation) Theorem 3 

(i) To prove the first statement we wish to show that 

Taking a sequence of such 6, + 0, the corresponding u, have the desired properties. 
Set d( u)  = dist( u, p*( K* )). There exist a, C > 0, such that 

(‘4.2) F ( u )  5 c + Cd(u)  if d ( u )  S a .  

Suppose (A.1) is false. Then for some 6 < i ,  I F ( u )  - c (  < 6 3 IIF’(u)lJ 2 
2 6 .  Let 7 be the deformation in Theorem 3 corresponding to this 6. Let p E A 
be such that maxz:, F ( p (  E)) < c + 6. By (24) we see that 

Let r(6) = min{max(ad(p(E)), dist([, K * ) ) ,  l}  where a is any constant > 
max(4C, K ’ ) .  

Consider the “path” q E A: 

By the main condition in Theorem 1, there exists E K\K*-hence 5( $) > 0- 
such that 

c r F ( q ( $ ) )  I F ( p ( Z ) )  < c + 6 . 

By (A.3) we see that S($) < 1, so that d ( p ( i ) )  < a-’ < a. If we apply (25) of 
Theorem 3, with 7 = Z($) we find 

But this implies {(i) 5 4Cd(p(g)) and thus d ( p ( 8 ) )  = 0; SO {(g) = 0. Contra- 
diction. 

(ii) We turn to the last statement in Theorem 1. Assuming (PS),, clearly c 
is a critical value. Consider a sequence pn E A such that maxtEK F(p,([))  + c. 
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We have to show that there is a sequence ( E n )  E K such that F’(pn(cn)) + c and 
( 1  F’(pn(  E n ) )  1) + 0. The desired conclusion follows easily from the following 

Claim. Given any open neighbourhood 0 of K,, there exists 6 such that if 
p E A with maxtEK F ( p ( [ ) )  < c + 6, then p ( K )  n0 # 0. 

The proof makes use of Corollary 5. 

Proof of Claim: We will make use again of (A.2). Choose 6 > 0 and a defor- 
mation 9 to satisfy the conditions of Corollary 5, (with E = A), so that (28) holds. 
Suppose there is a “path” p E A with maxEE F(p(  E)) < c + 6 and p ( K )  n 0 = @. 
Let 0 5 I( t )  S I be the same function on K as above. By (28), 

Consider once more the “path” in A: 

As before, there exists g E K\K* (so {( $) > 0) such that 

c s F(q(E) )  5 F(P(i)). 

By (A.!), we have r( g) < 1, and so d ( p (  $)) < a. Applying once more (25) with 
7 = <( [) we find 

This leads to a contradiction as above. 

Some time after completion of this paper we learned that Corollary I of Prop 
osition 1, and a more general form, were proved using Ekeland’s principle by L. 
Caklovic, S. J. Li, and M. Willem; see [ 181. In addition we learned that in [ 191, 
M. Willem had presented a variant of our Theorem 3. 
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