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Introduction 

In recent years there has been much interest in nonlinear elliptic equations of 
the form 

-Au = u p +  a ( x ) u  on 52,  

(1) u > o  on 52,  

u = o  on 852, 

where D is a smooth bounded domain in RN, N 2 3,  a ( x )  is a given (smooth) 
function and p = ( N  + 2 ) / ( N  - 2) is the critical exponent for the Sobolev 
imbedding. Alternatively, one may also consider the same question on a Rieman- 
nian manifold M of dimension N ,  without boundary, that is, 

- A u =  u P + a ( x ) u  on M ,  

u > o  on M ,  

( 2 )  

where a ( x )  is a given function on M .  
The original interest in such questions grew out of Yamabe's problem 

(see [40], [39], [2], [27], [15]) which corresponds to the special case where a ( x )  = 

- ( ( N  - 2)/4(N - l ) ) R ( x )  and R ( x )  is the scalar curvature of M .  It turns out 
that, despite its simple form, equation (1) (or ( 2 ) )  has a very rich structure and 
provides an amazing source of open problems and new ideas. The main reason is 
that (1) (or (2)) can be expressed as a variational problem in the Sobolev space 
Hi(SZ) (or H ' ( M ) ) ;  however it lucks compactness-in other words, the Palais- 
Smale condition (PS) fails-because the exponent p = ( N  + 2)/(N - 2) is 
critical and the Sobolev imbedding H' C L2N/(N-2)  is not compact. 

The first contribution to problem (1) is a negative result due to Pohozaev. 
Consider the special case of (1) where a ( x )  = 0, i.e., 

- A u =  up on 52,  

(3) u > 0 on 52, 

u = O  on 80. 
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THEOREM 1 (Pohozaev [24]). Assume 52 is star-shaped, then ( 3 )  has - no 
solution. 

In view of Pohozaev’s theorem we are left with two choices in order to regain 
the existence of a solution: 

(i) exploit the lower-order term a ( x ) u ,  
(ii) exploit the topology of the domain W (or the manifold M ) .  

This program is supported by the following simple observations: 

1. Assume 52 is any domain and let A ,  denote the first eigenvalue of - A with 
zero Dirichlet condition. If a ( x )  = X is a constant with X < A, and IX - All 
small enough, then (1) has a solution; this follows from general bifurcation 
theory (see e.g. [25]). 

2. Assume W is an annulus, i.e., 

If a(x) = 0, it is easy to see-as pointed out by Kazdan-Warner [16]-that (3) 
has a (radial) solution. This leads to a natural question, which I heard originally 
from Louis Nirenberg: what happens to (3) if W is a “perturbed” annulus-is 
there still a solution? 

Accordingly, I shall divide my lecture into two parts: 

1. The effect of a ( x ) u .  
2. The impact of topology. 

In Section 1, no special assumption is made about 52, but restrictive assump- 
tions are imposed on a ( x ) .  The existence of a solution is established by showing 
that some functional achieves its minimum. The most recent development in that 
direction is the complete solution of Yanabe’s problem by R. Schoen [27] 
(following earlier contributions of N. Trudinger (391 and Th. Aubin [Z]). I shall 
discuss a related phenomenon for domains 52. 

In Section 2, I shall present a remarkable recent result of A. Bahri and J. M. 
Coron. 

THEOREM 2 (Bahri-Coron [4]). Assume W has nontrivial topology. Then, a 
solution of ( 3 )  exists. 

The meaning of the assumption “W has nontrivial topology” will be explained 
in Section 2. For example, if N = 3 it corresponds precisely to the assumption 
that W is not contractible to a point. Here, one cannot obtain a solution by 
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minimization. Instead, Bahri and Coron use a kind of Morse analysis to prove the 
existence of critical points at “high” levels. Standard Morse theory does not 
apply because the (PS) condition fails and some very interesting new ideas have 
been introduced by Bahri and Coron to overcome such a difficulty. It is likely 
that this breakthrough will lead to similar results for other variational problems 
with lack of compactness; see e.g. [7] for a detailed list of such problems-some 
of them motivated by geometry or physics. The works of J. Sacks-K. Uhlenbeck 
[26], C. Taubes [35], [36], [37], [38] and S. Donaldson [12] provide other examples 
of beautiful interplays between analysis and topology in a related spirit. 

In conclusion, let me mention two natural questions which are still widely 
open. 

QUESTION 1. Can one replace in Pohozaev’s Theorem the assumption “52 is 
star-shaped’’ by ‘‘a has nontrivial topology”? In other words, are there domains 
52 with trivial topology on which (3) has a solution? 

QUESTION 2 (P. Rabinowitz). What happens when p > ( N  + 2)/(N - 2)?’ 
Pohozaev’s Theorem still holds. On the other hand, if 52 is an annulus, it is easy 
to see that (3) has a (radial) solution for all 1 < p < co. Assuming 52 is a domain 
with nontrivial topology, is there still a solution of (3) for all p? 

1. The Effect of a ( x ) u  

First we observe that it is essential, in order to obtain a solution of (l), to 
assume that the linear operator L = - A  - a is positive, i.e., 

denote the first eigenvalue of L and let G 1  > 0 be the corresponding eigenfunc- 
tion, so that 

-4 - a01 = P l 0 1 .  

Multiplying (1) through by G1 and integrating by parts we find 

Pl lU0,  = p 0 1  

‘When p < ( N  + 2)/( N - 2) it is very easy to prove that (3) has a solution on any domain fl 
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so that p1 is necessarily positive. In order to solve (1) it is tempting to consider 

( 5 )  

where 2* = 2 N / (  N - 2) .  
Note that J > 0 if (4) holds. Assuming that J is achieved by some function 

+, we may always take + 2 0-otherwise we replace + by l+l. It is easy to see 
that + satisfies the Euler equation 

- A + - a + = J + P  on Q ,  

and that + > 0 in Q (by the strong maximum principle). Therefore, we obtain a 
solution of (1) after scaling out the positive constant J .  

At this point, let me emphasize two important facts: 
(a) Clearly the infimum in (5) need not be achieved. This is so in particular if 

(1) has no solution whatsoever-for example, if Q is star-shaped and a ( x )  = 0 
(by Pohozaev’s Theorem). 

(b) It may happen that J is nor achieved, but nevertheless there exist 
solutions of (1). Suppose, for example, that is an annulus and a ( x )  is a radial 
function with a 5 0. Then J is nor achieved (see subsection 1.1). However, there 
exist radial solutions of (1). In fact such solutions can be obtained by minimizing 
the functional 

among radial functions in H i .  However these solutions are not absolute minima 
of Q on all of H:. They correspond to critical points of Q at “high energy’’ 
levels. 

In the present section, I shall investigate the existence of solutions of ( 1 )  
which arise as (absolute) minima in (5). In the next section, I shall examine 
situations where the infimum in (5) need not be achieved, but solutions of (1) still 
exist. 

As pointed out by Th. Aubin [ 1 ] , [ 2 ] ,  the best Sobolev constant S plays an 
important role; it is defined by 

Here are some facts about S :  

( 7 )  S is independent of Q ;  it depends only on N 
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This is an easy consequence of the fact that the ratio ~ / V C # J ~ ~ ~ / ~ ~ C # J ~ ~ ~ *  is invariant 
under dilations. 

(8) S is not achieved in any bounded domain a. 
If Q is a ball this follows from Pohozaev’s Theorem. If Q is any domain, let h be 
a ball containing a. Suppose J is achieved in Q by some function @. Extend $I by 
0 outside Q and call it 6. Then 6 would be a minimizer for J in b-a 
contradiction. 

When Q = R N ,  then S is achieved by the function 

Moreover, all minimizers for S are of the form CU(k(x  - x o ) )  for some 
constants C # 0, k > 0 and xo E R N ;  for all these properties, see [l], [34], [17]. 

Note that U satisfies the equation 

(10) - AU= N ( N  - 2)UP on R N  

A stronger uniqueness statement (see Obata [22], Gidas-Ni-Nirenberg [ 141 or 
Gidas [13]) asserts that any positive solution of (10) with U E L2*(RN) and 
v U E L2(R ”) must be-modulo translations-of the form 

Incidentally, it is an interesting open problem to decide whether the same 
conclusion holds without positivity: 

QUESTION 3. Assume V E L2*(R N ,  with v V E L2(R N ,  satisfies the equation 

- A V =  lVIJ’-’’V on R N .  

Does V have constant sign? 

We return now to the question whether J defined by (5) is achieved. The 
analysis below will show that one has always 

(12) J 2 S. 

A very useful tool in order to prove that J is achieved is the following: 

LEMMA 1. Assume 

(13) J S ;  

then J is achieved. 
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Proof: Let (u,)  be a minimizing sequence for J ,  that is, 

Since ( u , )  is bounded in H t ( Q ) ,  we may assume that u, - u weakly in H i .  Next, 
we use a device introduced by E. Lieb in [17]; we write 

u, = u i- u, 

with 0,-0 weakly in HA, u, -, 0 strongly in L2 and a.e. The relation (14) 
becomes 

On the other hand, we deduce from a result of [lo] that 

so that (15) becomes 

and therefore we obtain (by convexity) 

(18) 1 6 IIUII;+~ + IIUjII;+l + ~ ( l ) .  

Combining (16) and (18) we find 

Since (by definition of J )  we have 
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Sobolev’s inequality says that 

S23 

and thus we are led to 

i.e., u, -, 0 strongly in H i .  It follows that u, -+‘u strongly in H,’ and conse- 
quently u is a minimizer for J .  

Remark 1. The strong convergence was originally pointed out by F. Browder 
at an  earlier stage when the argument was less transparent. It shows that below 
the level S some form of compactness holds. We shall encounter a more 
sophisticated version of the same phenomenon in Section 2. 

In view of Lemma 1, we now look for “concrete” assumptions which 
guarantee that (13) holds. For some strange reason it turns out that the cases 
N = 3 and N 2 4 are quite different and they will be examined separately. 

1.1. The case N 2 4. The main result is the following 

THEOREM 3 (H. Brezis-L. Nirenberg [ll]). Assume is any bounded domain 
in R with N 2 4. Then, the following properties are equivalent: 

(19) a( x)  > 0 somewhere on Q ,  

(20) J < S ,  

(21) J is achieved. 

Sketch of the proof: (19) =. (20). One constructs explicitly a function @ such 
that Q ( @ )  < S. Without loss of generality we may assume that 0 E and that 
a(0)  > 0. Fix any cut-off function { E C?(Q) such that {(x) = 1 near x = 0 and 
set 

E > 0 ,  @e(4 = l ( x ) v , ( x ) ,  

where V,(x)  is defined by (11). A careful expansion as E -+ 0 (see [ll]) leads to 

S - a(0 )C~ ’  + O ( . e N P 2 )  if N 2 5, 
S - a(O)Ce2Ilog&I + O ( E * )  if N = 4, Q ( % )  = { 

where C depends only on N. The conclusion follows by choosing E > 0 small 
enough. 
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(20) =. (21). See Lemma 1. 

(21) * (19). Suppose by contradiction that a ( x )  5 0 everywhere on Q .  Let cp 
be a function such that 1 1 + 1 1 2 .  = 1 and /lV+I2 - acp2 = J .  Therefore /lv+l* 5 J .  
On the other hand, the expansion above-without any assumption on 
a(x)-shows that we always have J 5 S .  Thus + would be a minimizer for the 
Sobolev inequality-a contradiction. 

Consider now the special case where a ( x )  = A is a constant, that is, 

- A u = u P + X u  on 52,  

(22) u > o  on 52,  

u = o  on d Q .  

Then the following assertions hold. 

COROLLARY 4. Assume Q is any bounded domain in R N  with N 2 4 and 
assume 

(23) 0 A < A,.  

Then, there exists a solution of (22). There is no solution of (22)  for A 2 A,. Also, 
there is no solution of (22) for A 5 0 if Q is star-shaped. 

Proof: The first assertion follows from Theorem 3. The last assertion is a 
consequence of Pohozaev’s identity, namely, any solution of (22) satisfies 

where n denotes the outward normal to L? 

Let us return briefly to the general case a ( x )  and let me emphasize that if 
a ( x )  5 0 everywhere on Q ,  problem (1) may still have solutions. But, in view of 
Theorem 3 ,  these solutions cannot be obtained by minimization (and it is therefore 
tempting to use Morse theory as in Section 2). In fact, it is easy to construct such 
an example. Fix any function f E C z ( Q )  with f k  0, f f 0, and let u be the 
solution of the problem 

- A u =  f on 52,  

u = O  on a Q ,  
so that u > 0 on 52. Set 



IMPACT OF TOPOLOGY S25 

Note that a ( x )  is a smooth function and a ( x )  5 0 on 52 provided p is a large 
constant. It is clear that u = p u  satisfies (1). This leads us to the following: 

QUESTION 4. Suppose (for simplicity) that 52 is a ball and that a ( x )  5 0 on 
52. Find conditions on a ( x )  (hopefully a necessary and sufficient condition!) 
which guarantee that (1) has a solution. 

Note that Pohozaev’s identity applied to a solution u of (1) says that 

An obvious necessary condition for the existence of a solution is that 
( a  + + E x i  da/dx,)  should be positive somewhere on 52. 

1.2. The case N = 3. The situation is much more complicated; there are 
striking differences to the case N 2 4. Many problems are still open; here is a 
first natural question: 

QUESTION 5. We know, by Lemma 1, that 

( J  < S )  * ( J  is achieved). 

Is the converse true (as in dimension N 2 4)? 

I shall start with some results concerning the special case where a ( x )  = A is a 
constant, so that problem (1) takes the form 

- A u = u 5 + A u  on 52,  

( 2 6 )  u > o  on 52 ,  

u = o  on 6’52. 

Set 

THEOREM 5 (H. Brezis-L. Nirenberg [ll]). Assume 52 is any bounded domain 
in R3. Then, there is a constant A* = A*(S2) E (0, A,) such that 

(29) Jh c S for A > A*. 

In addition, JA is not achieved for A A*. 
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It is an open problem whether J,. is achieved (this is a special case of 
Question 5). Another open problem is: 

QUESTION 6. Suppose 3 is star-shaped (or convex). Can problem (26) have a 
solution for some X 5 A*? 

I t  is only in the case where !J is a bull that we have a complete answer to all 
these questions: 

THEOREM 6 (H. Brezis-L. Nirenberg [ll]). Assume !J is a ball - in R3. Then 
A* = $A,. Moreprecisely, we have 

(30) J ,  < S for X > $Al,  

and 

(31) there is no solution ofproblem (26) for X 5 :A,. 

We return now to the case of a general domain !J and a function a ( x ) .  
Recently, B. McLeod [19] and R. Schoen [27] have made an interesting contribu- 
tion. Independently, they have displayed the important role of the regular part of 
the Green’s function of the operator L = - A  - a. B. McLeod was motivated by 
Theorem 6, while R. Schoen was working on Yamabe’s problem-but his main 
idea holds in our context as well. In what follows we assume that (4) holds and 
we consider the Green’s function G ( x ,  y )  for L ,  so that, for each fixed y E 3, 
G ( - ,  y )  is the solution of 

A G - a G = a ( * - y )  on !J, 

G = O  on d !J .  
We write 

g(x, y )  is the regularpart of the Green’s function and it is easy to see that g is 
continuous on !J x Q including the diagonal (x, x). 

THEOREM 7 (B. McLeod [19], R. Schoen [27]). Assume is any bounded 
domain in R 3  and 

(33) 

(34) 

Then 

g( x, x )  > 0 somewhere on Q .  

J < S ,  

and consequently there is a solution of (1). 
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We do not know whether the converse holds: 

QUESTION 7. Does (34) imply (33)? 

It is perhaps worth it to try Question 7 in the special case where a ( x )  = A is a 
constant: Let G ,  and gh be the Green's function and its regular part for 
L = - A  - A. It follows from the maximum principle that g, increases with X 
and hence there is a constant A** = A**(C?) such that 

maxgh(x, x )  > 0 for A > A**, 
X € Q  

while 

maxg,(x, x )  5 0 for A 5 A**.  
X € Q  

Theorem 7 says that A* 5 A**. Is it true that A** = A*? (Yes, if 
Remark 2). 

is a ball, see 

Remark 2. In practice it is not easy to decide whether (33) holds. However, 

(i) If is a ball and a(x) = A, then (33) holds if and only if A > ahl. 
there are two special cases of interest: 

Indeed, for the unit ball and A > 0, we have 

so that 

maxg,(x, x )  = gA(O,O) = -fi/477 tanfi. 
X C Q  

In particular we recover assertion (30) of Theorem 6 (but not assertion (31)!) 

from the positive mass theorem (see [28] and [29]). 
(ii) In the Yamabe problem (see the Introduction) assumption (33) follows 

Proof of Theorem 7: Without loss of generality we may assume that 0 E Q 
and that g(0,O) > 0. I shall describe a slight modification of a construction due 
to Bahri and Coron [5 ] .  Namely, we shall use as testing function +, the solution of 
the problem 

A+, - a+e = -AK on 

+, = 0 on 

where U,(x) is defined by (ll), that is, 
7 

                  m



S28 H. BREZIS 

where C is some positive (universal) constant. We shall first check that 

and then 

where 

These two relations yield (36) with C = ~ T K ’ / K .  (Note that S = /IVU,(2/IJUlJI: 
= -(/AUl Ul)/(lUlll~ = 3llUJi: = 3 ~ ~ 1 ~  since -AUl = 3U,’.) Set 

h e  = (+€ - U€)/& 

so that, by (35), we have 

Since u(x)/(e2 + 
elliptic estimates that h ,  -+ h ,  uniformly on n, where h ,  is the solution of 

remains bounded in L2(Q) ,  we deduce from standard 

- A h o  - 

1 
h o =  -- on aQ. 

1x1 

Thus, h o ( x )  = 4ng(x,O). On the other hand, it is clear that 
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and 

1 - U,‘ - ~ ’ 8  weakly in the sense of measures. 6 ( 4 1 )  

S29 

It  is now easy to check (37) and (38 ) .  Indeed we have 

/lV%I2 - = / ( -A% - a+&,)% = / - (AUe)Ge 

= 3 / u : ( u ,  + &he) = 3 K  + 3 ~ ’ 4 s g ( O , O ) ~  + o ( E ) ,  

and 

= K + 6 ~ ’ 4 s g ( O , O ) ~  + o ( E ) .  

2. The Impact of Topology 

In this section, I would like to explain some of the new ideas introduced by 
Bahri and Coron for the proof of Theorem 2. The main assumption concerns the 
topology of 52 and it is expressed in terms of homology groups. 

DEFINITION. We shall say that a smooth bounded domain 52 in R N  has 
nontriuial topology if there is an integer k 2 1 such that either H 2 k - 1 ( Q ;  Q) # 0 
or Hk(52; 2/22) # 0. 

The main result is the following theorem already stated in the introduction. 

THEOREM 2 (Bahri-Coron [5 ] ) .  Assume 52 has nontrivial topology. Then, 
there exists a solution of (3). 

Remark 3. It is clear that any domain with nontrivial topology is not 
contractible (to a point). When N = 3 ,  the converse is also true, that is, every 
domain which is not contractible has nontrivial topology (see e.g. [5 ] ) .  Therefore, 
if N = 3, Theorem 2 may be stated with the assumption that 52 is not contract- 
ible. When N 2 4, the converse fails (i.e., there exist domains which are not 
contractible and such that H2k-1(52; Q) = 0 and Hk(Q;  2/22!) = 0 for all k 2 1). 
If N 2 4, it is an open problem whether the conclusion of Theorem 2 holds under 
the sole assumption that is not contractible. Note that the assumption “52 has 
nontrivial topology” covers a large variety of domains. For example, a domain 52 
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which is (topologically) equivalent to a solid torus satisfies H,(Q;Q)  # 0 (for all 
N ) ,  a domain Q c R N  with holes satisfies HNP1(Q2; H / 2 Z )  # 0 (for all N ) .  

The method used in the proof of Theorem 2 is quiteflexible and it is likely 
that it can be applied to problems (1) and (2) as well. In fact, it is very plausible 
that the following question has a positive answer: 

QUESTION 8. Assume Q has nontrivial topology and (4) holds. Is there 
always a solution of (l)? Likewise, if M is any manifold without boundary and 
(4) holds, is there always a solution of (2)? 

In another direction, it would be interesting to know whether the topology of 
Q affects the number of solutions: 

QUESTION 9 (Bott). Assume Q has several holes. Are there several solutions 
of (3)? How many? 

The proof of Theorem 2 relies on a kind of Morse analysis. I shall first recall 
some elementary principles of Morse theory and then indicate what modifications 
have to be made for the proof of Theorem 2. 

2.1. Some elementary principles of Morse theory (see e.g. [6] ,  [21], [23], [30]). 
Let H be a Hilbert space (finite- or infinite-dimensional). Let F: H -+ R be a 
function of class C2. Given a E R we set 

F,= { u E H ; F ( u ) 6 a } .  

A critical point is an element u E H such that F’( u )  = 0. A critical value c is a 
real number such that c = F ( u )  for some critical point u. A crucial assumption 
in Morse theory is the Palais-Smale condition (PS) (sometimes called condition 
(C)) which says that: 

every sequence ( u , )  in H such that IF(u,)l is bounded and 
(”) ~ ~ ~ ’ ( u ~ > l l - +  o is relatively compact in H .  

(Of course the (PS) condition is irrelevant if the theory takes place on a compact 
manifold instead of the linear space H.) 

For our purposes it is convenient to use a weaker form introduced in [9]. 
Given c E R we say that (PS), holds if 

every sequence ( u , )  in H such that F(u, )  -, c and llF’(u,,)l\ 0 
(”)‘ is relatively compact in H .  

In some sense the (PS) condition prevents critical points from “leaking at 
infinity”. If the (PS), condition fails at some level c, this means, roughly 
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speaking, that c is a critical value which corresponds to “critical points at 
infinity”-a concept introduced by A. Bahri in [3]. 

THEOREM A. Let a < b and assume 

(42) F has no critical value in the interval [ a ,  b ] ,  

(43) Fsatisfies ( P S ) ,  foreveryc E [ a ,  b ] .  

Then Fa = Fb (homotopy equivalence). (In fact F, is a deformation retract of Fb.) 

The next basic principle of Morse theory tells us how to “compute” the 
change in topology between Fa m‘d Fb across a critical value c: 

THEOREM B. Let a < b and assume (43). Suppose c E ( a ,  b )  is a critical 
value corresponding to a unique nondegenerate critical point u. Suppose there is no 
other critical value in the interval [a ,  b] .  Then 

( Fb, F, ) = ( B k ,  S - * ) ( homotopy equivalence of pairs ) , 

where k is the Morse index of u,  i.e., the number of negative eigenvalues of the 
Hessian D2F( u).  

Here, Bk = { x E R k ;  1x1 5 1 )  and Sk-‘  = aBk.  The conclusion says that Fb 
has the homotopy type of Fa with a k-cell “handle” attached. Of course, if F has 
no critical value in the interval [a ,  b ]  there may still be a change in topology 
between Fa and Fb if the ( P S ) ,  condition fails at some level c E [a ,  b].  In that 
case, the change in topology (Fb,  F,) is analyzed by studying the Hessian D2F 
near the “critical points at infinity”. Needless to say that such a study may be 
complicated, especially if the critical points at infinity are not isolated. Bahri and 
Coron have carried out the analysis on a specific example. 

2.2. Sketch of the proof of Theorem 2. Set H = H;(s2) and 

1 - /,,,,,+l, 
P + l  

where u+ = max( u, 0). So far, s2 can be any smooth bounded domain in IW N-the 
assumption that !J has nontrivial topology will be used only much later. Note 
that u = 0 is a critical point of F and that the nonzero critical points of F 
correspond precisely to the solutions of (3). Theorem 2 is established by con- 
tradiction and therefore we shall assume, in what follows, that 

(44) u = 0 is the onh critical point of F 
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It is not difficult to see that the condition (PS), fails at the levels c = k Z ,  
where k = 1,2 ,3 ,  - and Z = ( l / N ) S N / ’ .  Indeed, fix any point X E 0 (which 
serves as “point of concentration”) and fix any sequence E, -+ 0, E,, > 0, (which 
serves as “speed of concentration”). 

Consider the sequence of functions 

u J . 4  = S(X)U& - 

with 5 E CF(fi) ({ is independent of n ) ,  5 >= 0, S = a near X, the positive 
constant a (= a N )  being adjusted so that 

- A ( a U , )  = ( U U , ) ~  on R N ,  

(in view of (10) one has to impose u p - ’  = N ( N  - 2)). A quick calculation shows 
that F(u,)  + Z and F’(u , )  + 0 (in the H-’ norm); for this calculation it is 
useful to observe that 

so that 

jlV(UU,)(’ = J ( U U E ) ” + l  = S N / 2  

and 

(in these equalities, / means the integral on all of RN). Moreover, the sequence 
(u,)  is not relatively compact in H i ( 0 )  since u ,  + 0 in L2(0 )  but not in H;(Q) .  
Therefore, the condition (PS), fails at the level c = 2.  

Next, we may superimpose k such gadgets. Namely, fix k distinct 
points of concentration XI, X2,*  . ., x k  in 0 and k speeds of concentration 
€1. n ,  E 2 . w ’  . . , E ~ , ,  (any positive sequences tending to 0). Then, the sequence of 
functions 

- 

satisfies F ( u , )  + kZ and F’(u , )  -+ 0 while ( u , )  is not relatively compact in 
H t ( 0 ) .  Therefore, the condition ( P S ) L ,  fails at the levels k Z .  

It  is a striking fact that the condition (PS), fails on& at the levels kZ and that 
formula (45) provides a good representation of the “critical points at infinity” for 
the level k Z .  
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LEMMA 2. The condition (PS), fails precisely when c = k 8 ,  k = 1,2,3, . 

Remark 4. The conclusion of Lemma 2 relies on the assumption that u = 0 
is the only critical point of F. In general, the conclusion would be that (PS), fails 
precisely at the levels c = u + kZ, where u is any critical value of F and 
k = 1,2,3;-* . 

Sketch of the proof of Lemma 2: It is clear that the (PS), condition holds 
c and F ’ ( u , )  - 0. when c < X. Indeed let ( u , )  be a sequence such that F ( u , )  

Then we have 

1 
IJlvu,12 - --J(u.‘,”” P + l  = c + o(1) 

and 

A standard argument shows that ( u , )  is bounded in HA and thus we obtain 
(from (47)) 

(48) JIvu.12 = J( u;”” + o ( 1 )  

Combining (46) and (48) we are led to 

/IVu,J2 = Nc + o(1) and J(U;)~+’ = NC + o(1). 

Sobolev’s inequality implies that 

and therefore we find 

which says that either c = 0 or c 2 (1/N)SN/2 = 8. By assumption, c < 2: so 
that c = 0 and we conclude that u, + 0 in HA. 

Next, we check that the condition (PS), holds when kZ < c < (k + 1)Z and 
k 2 1 is an integer. In fact, there exists no sequence ( u , )  such that F( u, )  -+ c, 
F ’ ( u , )  + 0 and kZ < c < ( k  + l ) X .  Suppose, by contradiction, that ( u , )  is 
such a sequence. Again, we have (46) and (47), so that ( u , )  is bounded in H i  and 
moreover u , - 0  weakly in H i .  (Note that if u f l k - u  weakly in HA, then u 
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satisfies -Au  = ( u + ) ~ ,  so that u = 0 by (44)) Moreover, u,  does not tend to 0 
strongly in HA; otherwise we would have c = 0. 

At this stage the proof becomes rather technical and I shall be very sketchy; 
see [5] ,  [8] and [33] for more details. As in [18], it is convenient to use the 
concentration function in order to catch a first singularity. More precisely, there 
exists a sequence (x,) in s2 and a sequence E ,  + 0 such that 

J S(X,. t") 
IVu,12 = v with v > 0 small enough. 

The singular behavior of ( u , )  is analyzed by a blow-up technique. Namely, set 

( u ,  is extended by 0 outside a), so that ii, satisfies 

and 

s2 - x ,  
- ~ i i , =  (G,)~+& on a,,= -, 

En 

with 6, + 0. 
Passing to the limit on the sequence ii, (or rather a subsequence) one can 

show that ii, -, w strongly in LLb' (RN)  and vii, + vw strongly in L;o,(IWN). 
It follows that 

- A w =  (a+)' on RN, 

and w f 0; therefore w is an old friend! 
We remove this first singularity by letting 

x E Q. 

One proves that ( u,) satisfies 

F ( u , )  + c - 2 and F'(u , )  + 0 

(recall that i / R N I ~ ~ 1 2  - (1/(p + l ) ) / R ~ ~ P + l  = Z). 
In other words, the sequence (u,)  is like the sequence ( u,), except that c is 

replaced by c - 2. Iterating k times this construction we obtain a sequence (w ,) 
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such that 

F(w,)  -+ c - kZ < Z and F’(w,) --* 0. 

1 emphasize that each singularity contributes the same amount of energy, name& Z. 
Thus, we are led to the case considered at the very beginning and we conclude 
that c - kZ = 0 which is a contradiction since c > k Z .  

Remark 5 .  The main idea behind the proof of Lemma 2 originates in the 
work of Sacks-Uhlenbeck [26]. They consider a problem about harmonic maps 
which has the same kind of “scaling invariance” as ours. They point out-for 
the first time-that a sequence ( u , )  which is bounded in H’ and such that 
F’(u, , )  --* 0 can have a “singular behavior” only at a finite number of points. 
Subsequently, this type of argument has been used by many authors for various 
problems; see Meeks-Yau [20], Sin-Yau [32], Sedaleck [31], Taubes [36], [38], 
Donaldson [12], P. L. Lions [18], Brezis-Coron [8], Struwe [33], Bahri-Coron [4], 
etc. 

The next objective is to get a good grasp of the critical points at infinity for 
each level k Z .  Consider for example a sequence ( u , )  in H i  such that 

(49) F(u , )  -+ Z and F’(u , )  + 0. 

Then one can show that there exists a sequence ( x , )  in Ll and a sequence of 
positive numbers E ,  -+ 0 such that 

and 

1 -dist(x,, an) -+ 00. 
En 

Conversely, if ( u n )  is any sequence satisfying (50) and (51), then (49) holds. 
Of course, we may also assume (modulo a subsequence) that x ,  + X, where X 

is the point of concentration of (u , ) .  If X E Ll, u , ( x )  is roughly equivalent to 
a U J x  - 5). When X E 80, the situation is more delicate; however property (51) 
shows that the “boundary effect” is negligible compared to the “concentration 
effect”. This means that, for all “practical purposes”, any sequence ( u , )  satisfy- 
ing (49) behaves like aU,Jx - X) with X E Q.  

The situation at the level k Z  is similar: 

LEMMA 3. Assume ( u , )  is a sequence in H t  satisfying 

(52) F ( u , )  -+ kZ and F ’ ( u , )  + 0. 



S36 H. BREZIS 

Then, there exist k sequences ( x 1 3  ,,) in Q and k sequences of positive numbers ( 
with e l ,  , + 0 as n --j 00 ( for  all i = 1,2,. . . , k )  such that 

,,) 

1 -dist(xi,,, d Q )  --j 0 0 ,  
E i .  n n + m  

(54) 

Conoersely, if ( u , )  is any sequence satisfying (53)’ (54) and (55 ) ,  then ( 5 2 )  holds. 

The proof relies on a blow-up analysis (as in the proof of Lemma 2); for the 
details, see [ 5 ] ,  [8], [33]. Of course, we may also assume (modulo a subsequence) 
that x i ?  , -+ X, as n -+ 00, where XI is the point of concentration. If all the points 
X I  are distinct and belong to Q ,  then, roughly speaking, we have u , ( x )  = 
Lf-laU,, ,Jx - F l ) .  However, if some of the points X, coincide, then the situation 
is more delicate. Property (55) says, for example, that if, for some i # j ,  XI = X J  
and E , . ,  = E ~ , , ,  then the speed at which the singularities coalesce is much slower 
thun the speed of concentration-so that one sees two distinct waves as in the first 
case. Again, for all “practical purposes”, a sequence ( u , )  satisfying (52) behaves 
like Cfi,,aU,,,Jx - XI) with distinct points X, in Q. 

Lemma 2 provides a complete representation of the critical points at 
infinity. In some sense, they can be parametrized, at the level kZ, by Q k  = 
Q x Q x . . x Q (k times). The next goal is to describe the change in topology 
across the level kZ. 

At the first level, 2, the answer is simply 

( 5 6 )  (FZ+@ F2-J = ( Q  x B1, Q x SO), 

where So = dB’ = { -1, +1}. 
At the level kZ the answer is more delicate. We have to introduce some 

notation: For each x = ( x ~ ,  x2;. ., x k )  E Q k ,  let m ( x )  denote the k X k sym- 
metric matrix ( m , , ( x ) )  whose coefficients are given by 

G ( x i , x j )  if i # j ,  

g(x,, x i )  if i = j .  
m I J ( x )  = 

(G(x, y )  is the Green’s function of - A  with zero boundary condition and 
g(x, y )  is the regular part of G ( x ,  y )  as in Section 1.) 
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Let p ( x )  denote the largest eigenvalue of m i J ( x )  ( p ( x )  = + co if x, = xJ for 
some i Z j )  and 

Ik = { x  E ilk; p ( x )  2 o} 

(note that I ,  = 0). 

IW k ;  L.;k-lx, = 1, x, 2 o for all i >. 
Finally, ak denotes the group of permutations of order k and A k - l  = { x E 

LEMMA 4. For every k 2 1 one has 

where 

(ak  x d A k - ' )  u (Ik x A k - l )  
, A =  Q k  x Ak-' X =  

' k  ' k  
, 

Y = A' and B = dA' (so that A c Xand  B c Y ) .  

Lemma 4 is proved-like Lemma B-by a deformation method, i.e., pushing 
down with a gradient flow. It requires a delicate Morse analysis of D2F near the 
critical points at infmity and therefore it involves a study of F on a sequence like 
Cf,laU, (x - 5,). This leads to expansions (as + 0) similar to the expan- 
sions of Section 1-except that interaction terms are also present; see [5] .  

The last two steps deal with topological properties of the pair ( Fkz+E, Fkzpe ) .  

LEMMA 5 .  There is some integer k ,  (= k, (Q))  such that the pair 

I , "  

(FkZ+€, FkL-€)  is trivial for every k 2 k,.  

In other words, Fk2+e = Fkz-e for k 2 k, ,  so that there is no change in 
topology across the level kZ for k 2 k,. The key observation is that, roughly 
speaking, I k  = Q k  for k large enough. Indeed, if k is very large and x is any 
element in Q k ,  then at least two of the points x i  and x j  (with i # j )  must be very 
close, and thus G ( x i ,  x j )  = + 00-so that p ( x )  2 0; see [5 ] .  

It is only the last lemma which uses the topological assumption on 52. 

LEMMA 6. Assume 52 has nontrivial topology. Then, for each k 2 1, the pair 
( F,, + E ,  F,, - e) is  nontrivial. 

The argument is by induction on k (the conclusion is obvious for k = 1) and 

We have reached a contradiction between Lemma 5 and Lemma 6. This 
relies heavily on tools from algebraic topology; see [5 ] .  

means that assumption (44) is absurd and so F has nonzero critical points. 
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