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1. INTRODUCTION
Consider the problem
~Au = f(x, u) on Q,
u=z0, u¥l on Q. (1)
u=20 onéQ2

where Q C RV is a bounded domain with smooth boundary and f(x, u): Q x [0, %) — R.
We make the following assumptions:

fora.e. x € Q the function u+> f(x, u) is continuous on

2
[0, =) and the function u+> f(x, u)/u is decreasing on (0, =) @)
for each u = 0 the function x = f(x, u) belongs to L*(Q); 3)
there is a constant C > O such that n

fle, i) s Clu+1)forae.x€Q, Vu=0.
Set

ag(x) = Iilnéf(x, u)/u
a.(x) = liTrtlf(x, w)/u

so that —% < gy(x) < += and —= < a,(x) < —=. By a solution of (1) we mean a function
u € H{(Q) N L=(Q) satisfying (1). It follows from (2), (3), (4) that f(x, u) € L*(Q); indeed
we have

=1f Gl < £l u@)) < C(Ju()f + 1).

Consequently a solution of (1) belongs to W>?(Q) for every p < =.
Our main result is the following:

THEOREM 1. There is at most one solution of (1). Moreover. a solution of (1) exists if and only
if

A(=A = ay(x)) <0 (3
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and
i(=A—a.x))>0. (6)

Here 4,(—=A — a(x)) denotes the first eigenvalue of —A — a(x) with zero Dirichlet condition.
Since a(x) may take the values == the precise meaning of (5) and (6) will be explained in
Section 3. In the special case where f(x. «) = f(u) is independent of x. then (3)~(6) is equivalent
to

a, < }1(*A) < ap.

Theorem 1 is closely related to a number of earlier results. We refer in particular to
Krasnoselskii [12, theorems 7.14, 7.15], Keller and Cohen {11], Cohen and Laetsch [6], Keller
(10]. Simpson and Cohen (14], Laetsch (13]. Amann {1,2]. Hess [9]. DeFigueiredo (7].
Berestycki [3], and Smoller and Wasserman [15].

The main novelties in our approach are the following:

(a) Our proof of uniqueness involves a simple “energy’” device which is reminiscent of the
device used in the theory of monotone operators—in contrast with all the previous proofs
based on a comparison argument and on the maximum principle.

(b) Our proof of existence relies on a minimization technique while the earlier works used
most often a sub-super-solution method. In addition, we point out that the functional to be
minimized, namely

E(u) = %[ IVul* - f Flx, u) where F(x,u) = fu flx,sydx

is convex with respect to the variable p = «*. This fact is based on an observation of Benguria
[3] (see also [4]).

(c) In most earlier works it has not been noticed—or explicitly stated—-that, under assump-
tions (2)—(4), there is indeed a simple necessary and sufficient condition for the existence of a
solution of (1).

Our paper is organized as follows: 1. Introduction; 2. Uniqueness; 3. Condition (3)~(6) is
necessary; 4. Condition (5)—(6) is sufficient.

2. UNIQUENESS
Here we use only assumptions (2) and (3). We start with the following lemma.

LemMa 1. Assume (2), (3) and let u be a solution of (1). Then we have

u>0 on Q (7)
and
ou
— <0 ondf , (8)
an

(n denotes the outward normal direction).

Proof. Since u < |lu|. it follows that

fle ) _ fe )

w o ful
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and therefore
f(x,u) = -Mu on Q
for some constant M = 0. Hence u satisfies
—Au+Mu=0 on Q
and the conclusion follows from the strong maximum principle (see, e.g. Gilbarg and Trudinger
(8D).
Proof of uniqueness. Suppose u, and u, are two solutions of (1). We write

_ Ay, + Auy  flx, uy) _f(x, uy)
23 U, Uy U,

: 9

multiply (9) through by u? — «3 and integrate over Q. Note that u3/u, and u}/u, belong to
H} and

2 2 2 2
us U, us ui U, 1231
V(——)=2-—Vu2——3Vul, v(— =28y, Ly,
Uy u, uy Uy U, us

(We use here the fact that u,/u; and u,/u, belong to L*, which is a consequence of lemma 1.)
After some rearrangements we obtain the identity

A A
J’(—J—l+—ﬁ>(uf —uj) = f 'Vu1 —ﬂVuz
Uy U, U,

2 2

=0. (10)

U,
+{Vu, — =V
We deduce from (9) and (10) that

J(f(x, u) fGx, “”)(u% — W) =0

U, U,

and we conclude (using assumption (2)) that u;, = u,.

Remark 1. If instead of (2) we just assume that the function u ~ f(x, 1)/u is nonincreasing
(for a.e. x € Q), uniqueness may fail. However, we obtain
Vu,  Vu, f(xaul)__f(x’ul)

—= and s

Uy u, u, U,

which implies in particular that u,/u, is a constant. In many cases we can still conclude that
ul = uz.

3. CONDITION (5)-(6) IS NECESSARY
First we observe that
a.(x)<f(x,1) and ayp(x)=f(x,1) forae.xEQ
and hence there is a constant C = 0 such that

a-(x) < C and ay{x)=—~C fora.e.x € Q.
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The precise meamag of A,(—A — a(x)) is

A (=A - a(x) = mf{fw¢ﬁ—f aw}
) (0]
loir=

Note that [{,.q a¢® makes sense if a(x) is any measurable function such that either a(x) < C
or a(x) = —C a.e. on Q. In the first case 4,(—A — a(x)) € (==, +=] and in the second case
A(—A —alx)) € [-=, +=).
Proof of (5). By definition of A;(—A — ay(x)), and since « >0 on Q, we have
[1Vui? = [ agu?
A(=A=ay(x)) < _—f—u——i—
On the other hand we have

f]Vu!z = jf(x,u)u < fao(x)uz
and (5) follows.

Proof of (6). Set

fellu].+ 1)

a(x) = Tl 1 e L*(Q)

and
w= (=4 - ax)).
Let y denote the corresponding eigenfunction, that is,
-Ay —ady = uy on
py>0 on Q
w=0 on 4Q.
Multiplying (1) through by y and integrating on Q we find
[ w(arp + ww) = [ fec .
On the other hand we have f(x, u) > a(x)u and thus we obtain u [ uy > 0; hence ¢ > 0. Finally
we claim that
A(~A—a.)=u
(since a.(x) < d(x)) and the conclusion follows.

4. EXISTENCE

We shail establish an existence result slightly stronger than announced in theorem 1. Instead
of (2) we just assume that

for a.e. x € Q the function u = f(x, ) is continuous on [0, ). 11
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However, we also assume that
for each 6 > 0 there is a constant C4 = 0 such that f(x, u) = —Csu
Yu € [0, 9], ae. x € Q.

(Note that (12) is a weaker assumption that (2) + (3).)
Set

(12)

fx,u)
u

ay(x) = li{‘n‘ ionf

flx, )
L

a.{x) = listup
Under assumptions (12) and (4) there is a constant C such that ag(x) = —C and a.(x) = C.
THEOREM 2. Assume that (3), (4), (11), (12), (5) and (6) hold. Then there is a solution of (1).
Proof. Consider the functional
E(u)=%f|Vul2—fF(x,u), u€ Hi(Q)

where F(x, u) = [§ f(x, t) dt and f(x, u) is extended to be f(x, 0) for u < 0. Note that £(u) €
(==, +=] is well-defined since F(x,u) < C(u® + |u) Yu € R. We claim that:

E is coercive on H}, that is, “ ”lim E(u) = x; (13)
full g} —=

Eis l.s.c. for the weak H} topology; (14)

there is some ¢ € H} such that E(¢) <O0. (15)

Proof of (13). Assume, by contradiction, that there is some sequence (u,) in H} such that

lually—= and  E(u,)<C

We have
éf|Vu,,|2$jF(x,u,,)+C (16)
and consequently we obtain
i V<[ @+, (17)
Set
ta=luall  and v, =u,/1,.

It follows from (17) that

=%, loah =1 and Jo.fwy <C.
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We may therefore assume that
v, — v weakly in H}, v, — v strongly in L and a.e. with [jo], = 1.

We claim that

F ’tfl n
lim sup —Q—j—)sgf a,vl.

n—x ti
(0>0]
Indeed we write
fF(x’ tnvn) = f
[v>0] [v=<0] {vn=0]
We estimate the second integral by
[ Ferehsc| [Eeiren
[v=0] [v=0)
and we deduce that
F(x, t v}
f -—(—-—T—‘—) = 0(1) asn— >
t
[v=0] n
since v,— v in L2
We estimate the third integral by
[ Fwwod=c|ulvl
[vn=0]
and thus we obtain
j F(x, t,v,)
2

[vn=0] "

<0(1) asn—> x,

We now turn to the first integral. We note that

. Flx, u)
lim sup

u— +x uz

< fa.(x) fora.e. xEQ

and therefore

F(x, tyvz (x))
lim sup ————— < $a.(x)v*(x) a.e.on{v >0].

n—+x tn

On the other hand we have

Fx, t,07 ., 1
e, tron) C[(v,’,’)' + [—2]

[’l n

Flx,t,0}) + f Flx,t,05) + f Flx,t,0,).

(18)

19)

(20)

02y

(22)

and since v, — v in L? we may find a fixed function # € L' such that (for some subsequence)

Flr,t,03) _

5 a.e.on Q,Vn.
tn

(23)
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From (22), (23) and Fatou’s lemma we obtain

Fx,t,07)

lim sup 3
ta

n-+x

<} j a,vl. (24)

(v>0] (v>0]

Combining (19), (20), (21) and (24) we see that (18) holds. Passing to the limit in (16) we find
(using (18))

gj[vuv s&J' a0, (25)

[v>0}
Finally we have (by definition of @)

[ori = [ auo? = allo*I3 9)

[o>0]
where a = A,(—A - a*(x)) > 0.
Combining (25) and (26) we deduce that v* = 0 and going back to (25) we obtain v = 0—
a contradiction since {|v|,, = 1.

Proof of (14). Suppose u,— u weakly in H}. Since F(x,u,) < C(u? + 1) we may apply
Fatou’s lemma and conclude that

lim sup J’ Flx,u,) = J F(x, u).

Proof of (15). We fix any ¢ € H}, satisfying

JW‘PP ‘f ay9* <0
{p=0]
(such a ¢ exists by assumption (5)).
We may always assume that ¢ >0 and that ¢ € L™ (otherwise we replace ¢ by |¢| and
truncate ¢). We note that

.. e u)
I‘E‘L‘g‘f ) = ay(x)
and thus
F(x,
1imii(r)1f _(’f_i:;i(i)) = fay(x)p*(x)  a.e.on[¢ #0].
£
On the other hand we deduce from (12) that

F(x, e9)
2

=-C¢p?=-C.
5= =Co C

We may therefore apply Fatou’s lemma and conclude that

Flx, e
lim inf —(—72) = éf agd?;
40 Jigsg € (p20]
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thus we have

11m ffF(X £¢) Zéf agp°.

[p=0]
Hence we obtain

[ wop - [H229 <

for € > 0 small enough.

Proof of theorem 2 concluded. Using (13), (14) and (15) we see that uIEr}{fé E(u) is achieved

by some u # 0. We may always assume that u = 0—otherwise we replace u by «~ and use the
fact that F(x, u) < F(x, u*) (which holds since F(x, u) = f(x, 0)u < 0 for u < 0). If we knew in
addition that u € L™ we would easily conclude that u is a solution of (1). We claim that indeed
we may also assume that

ue Lx. (27)
For this purpose we introduce a truncated problem. We set, for each integer & >0
FH(x, 1) = Max{f(x, u), —ku} ifu=0
{f"(x, u) = f*¥x,0) = f(x, 0) ifu<0

and

f()

k

a(x) = llm mf ak(x) = lim‘supf (J;, Lt)'

Assumptions (3), (4), (11) and (12) hold for f¥(x, u). Assumption (5) holds for a* since
A=A =af(x) A (A —ay(x)) <0

because f< f* and thus a, < a§. Moreover, assumption (6) holds for a* provided k is large
enough. Indeed, it is easy to check that 1,(—A — a%(x)) 1 A;(—A — a.(x)) since a% | a, as
k1.

Set

E (u) = %j|\7u}z - fF"(x, u), u€E Hy.

It follows from the previous argument that Inf E(u) is achieved by some u,. Moreover, u;
satisfies H;

—Auy = f*(x, uy) onQ
=0, uy +0 on Q
u, =0 ondQ
(note that E, is of class C! since |f*(x, u)| < Ci(lu| + 1)).
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A standard bootstrap argument shows that u, € L™,
Set
v =Min{u, u,}.

We claim that

E(v) < E(u), (28)
and this will conclude the proof of (27).

Indeed, we have

1Vl = [ Py <t [ 9ol - [ Fae) Vo, 29)

In (29) we choose ¢ = Max{u, u,} and we find

%f Vi ]? —f F"(x,u,c)sgf

[tk<u] [uk<u] [uk<u]

|Vu|? = J' F*(x, u). (30)

fuk<u]

On the other hand we have

E(v) ~ E(w) = [ Var* = HVul? = F(x, uy) + Fx, w)}

[uk<u]

and using (30) we obtain

F*(x, u) — Fo(x, u) — F(x,uy) + F(x,u) = Jm [fx, ) = f¥(x,n]de <0

uk

on the set {1, < u]. Thus (28) is proved.

Remark 2. We assume again that (2) holds. Then the functional E is convex with respect to
the variable p = u2. More precisely, the functional p = E(Vp) defined on the convex set

K={peL':p=0ae.and Vp€E H}}

is convex. Indeed, it is known (and easy to prove) that the functional p ~ []VVp|? is convex
(see [3] and also [4]) while the function p = —F(x, V/p) is convex since its derivative

fix, Vp)

_%_____.

Vp

is increasing.
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