Strongly nonlinear parabolic variational inequalities
(pseudomonotone operators/compactness lemma)

FELIX E. BROWDER and HAIM BRÉZIS

Department of Mathematics, University of Chicago, Chicago, Illinois 60637, and Laboratoire d’Analyse Numerique, Université de Paris, VI, Paris 5, France

ABSTRACT. An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form \(\partial u/\partial t + A(u) + g(u) = f \) with \(g \) nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

We consider the strongly nonlinear parabolic partial differential equation of order 2m

\[
\frac{\partial u}{\partial t} + A(u) + g(x,u) = f(x,t)
\]

on the finite cylinder \(Q = \Omega \times [0,T] \), in which \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \) for which the Sobolev imbedding theorem holds (\(n \geq 1 \)). In a preceding note (1), we derived an existence theorem for the solution of the initial-boundary value problem in \(L^p(0,T;L^p(\Omega)) \cap C^0(0,T,L^q(\Omega)) \) with \(u(0) = 0 \), \(p \geq 2 \). In the present note, we obtain existence and uniqueness results for a general class of variational inequalities for Eq. 1 in \(L^p(0,T;W^{m,p}(\Omega)) \), which includes as a special case variational boundary value problems in the usual sense.

We impose the hypotheses i, ii, and iii of ref. 1 on the elliptic term \(A(u) \), i.e.,

\[
A(u) = \sum_{|\beta|\leq m} (-1)^{|\beta|} D^\beta A_\beta(x,t,u,\ldots,D^mu),
\]

with the corresponding bounds, ellipticity, and coerciveness in \(W^{m,p}(\Omega) \). For the strongly nonlinear term \(g(x,u) \), we impose a somewhat stronger hypothesis than in ref. 1, namely:

\(g(x,r) \) is measurable in \(x \), continuous in \(r \);
\(g(x,0) = 0 \) for all \(x \);
\(g(x,r) \) is nondecreasing in \(r \) for fixed \(x \).

For \(u \) and \(v \) in \(L^p(0,T;W^{m,p}(\Omega)) \), we define

\[
a(u,v) = \sum_{|\beta|\leq m} \int_0^T (A_\beta(\xi(u)),D^\beta v) dt.
\]

Let

\[
G(x,r) = \int_0^r g(x,s)ds.
\]

By \(\varphi(\cdot,\cdot) \), \(C \) as a function of \(r \) is convex, nonnegative, and once differentiable. Let \(X = L^p(0,T;W^{m,p}(\Omega)) \), \(X^* \) its conjugate space. For any \(u \) in \(X \), we set

\[
\gamma(u) = \int_Q G(x,u(x,t))dx dt.
\]

Let \(C \) be a closed convex subset of \(W^{m,p}(\Omega) \). We define the nonnegative proper lower semicontinuous function \(\varphi \) from \(X \) to \(R^1 \cup \{+\infty\} \) by setting

\[
\varphi(u) = \begin{cases}
\gamma(u) & \text{if } u \in C \text{ a.e. (almost everywhere)}, \\
+\infty & \text{otherwise}.
\end{cases}
\]

Let \(L \) be the realization of \(\partial/\partial t \) in \(L^q(Q) \) with domain given by

\[
D(L) = \left\{ v \in L^q(Q), \frac{\partial v}{\partial t} \in L^q(Q), \quad v \in C(0,T,L^q(\Omega)),
\right\}
\]

\(v(0) = 0 \).

THEOREM 1. Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^n \) such that the imbedding map of \(W^{m,2}(\Omega) \) into \(W^{m-1,2}(\Omega) \) is compact, \(p \geq 2 \). Suppose that the parabolic equation \(|1| \) satisfies the regularity conditions i, ii, and iii of ref. 1 for \(A(u) \) in \(W^{m,p}(\Omega) \) and that the strongly nonlinear term \(g(x,r) \) satisfies iv'. Let \(f \) be a given element of \(X^* \).

Then there exists \(u \) in \(\Omega \cap C(0,T,L^q(\Omega)) \) with \(u(0) = 0, \(g(u) \) in \(L^q(\Omega) \), \(u(x) \) in \(L^q(\Omega) \) for which the following conditions are satisfied:

(1) \(u(\cdot,t) \) lies in \(C \) for almost all \(t \) in \([0,T] \);

(2) for every \(v \) in \(\Omega \cap D(L) \cap L^q(Q) \) such that \(v(\cdot,t) \) lies in \(C \) a.e.

\((LX,v-u) + a(u,v-u) + \int_0^T g(u,v-u) - (f,v-u) \geq 0 \); and

(3) for every \(\varphi \in \Omega \cap D(L) \) for which \(\varphi(v) < +\infty \),

\((LX,v-u) + a(u,v-u) + \varphi(v) - \varphi(u) \geq 0 \); (1, v – u).

THEOREM 2. If, in addition, \(A \) is monotone (i.e.,

\[
a(u,v-u) - a(v,u-v) \geq 0
\]

for all \(u \) and \(v \) in \(X \), then the solution \(u \) of Theorem 1 is uniquely determined by \(f \).

The proof of Theorem 1 rests upon the compactness result given below for solutions of variational inequalities in Theorem 3. It rests upon simple properties of functional spaces and the operator \(L \) given in the following proposition.

PROPOSITION 1. Let \(X \) be the Banach space \(L^p(0,T;W^{m,p}(\Omega)) \), \(Y = L^q(T;W^{m-1,p}(\Omega)), H = L^q(Q) = L^q(0,T;L^q(\Omega)) \).

Let \(L \) be the realization of \(\partial/\partial t \) defined above, \(\varphi \) the proper l.s.c. (lower semicontinuous) convex function defined above. Then the following properties hold:

(1) \(L \) is a linear maximal monotone operator in the Hilbert space \(H \).

(2) \(X \subset Y \subset H \), in the sense that each inclusion map is continuous. For each \(\delta > 0 \), and for each \(M > 0 \), there exists \(M_M > 0 \) such that if \(u \) and \(v \) are elements of \(X \) with \(\|u\| \leq M, \|v\| \leq M \), then

\[
\|u - v\|_Y \leq \delta + k_M \|u - v\|_H.
\]

(3) For each \(\varepsilon > 0 \), \((1 + \varepsilon L)^{-1} \) maps \(X \) into \(X \), and for a given constant \(c \) and \(\varepsilon < 1 \), then for all \(u \) in \(X \)

\[
\|u\|_X \leq \|u\|_X + \varepsilon \|u\|_X.
\]

(4) For each \(u \) in \(X \), \(\varphi((1 + c L)^{-1}u) \leq \varphi(u) \) for all \(c > 0 \).

(5) For each \(M > 1 \), the set

\[
\{u \in X \cap D(L), \|u\|_X \leq M, \|Lu\|_H \leq M \}
\]

is strongly relatively compact in \(Y \).
THEOREM 5. Let $X \subset Y \subset H$ be a triple of spaces with X and Y Banach spaces, H a Hilbert space. Let L be a linear densely defined operator in H, J a proper l.s.c. convex function from X to $\mathbb{R} ^{+} \cup \{+\infty\}$. Suppose that properties 1 to 5 of Proposition 1 hold. Suppose that $\{u_{k}\}$ is a bounded sequence in X with $J(u_{k}) \leq \varepsilon$ for each k and that for each k there exists a subset S_{k} of $X \cap D(L)$ that contains $(I + \varepsilon l)^{-1/2}(u_{k})$ for all $l > 0$ such that for all v in S_{k},

$$\langle L_{v}, v - u_{k} \rangle + \psi(v) - \psi(u_{k}) \geq -c_{0}$$

for a constant c_{0} independent of k.

Then the sequence $\{u_{k}\}$ is strongly relatively compact in Y.

Proof of Theorem 5: Because the sequence $\{u_{k}\}$ is bounded, it follows from property 3 that if we set $v_{k} = (I + \varepsilon l)^{-1/2}(u_{k})$, then $\|v_{k}\|_{Y} \leq M$. By assumption $v_{k} \in S_{k}$. By property 4,

$$\psi(v_{k}) \leq \psi(u_{k}).$$

Hence

$$\langle L_{v_{k}}v_{k} - u_{k} \rangle \geq -c_{0}$$

Because $L_{v_{k}}v_{k}$ is bounded for all k, for each fixed x, $\{v_{k}\}$ lies in the set $\{x \mid \|x\|_{Y} \leq M, \|L_{v}x\|_{L} \leq 2M^{-1}\}$. Hence by property 5, for each fixed x and for each k, $\|v_{k}\|_{Y}$ lies in a relatively strongly compact subset of Y. On the other hand, by property 2,

$$\|u_{k} - u\|_{Y} \leq \|v_{k} - u\|_{Y} \leq \delta + k_{M}(c_{0})^{1/2},$$

which can be made uniformly small by taking δ and c_{0} small. Hence $\{u_{k}\}$ is strongly relatively compact in Y. q.e.d.

PROPOSITION 2. Let T be the mapping of X into X^{*} given by

$$\langle Tu, v \rangle = a(u, v).$$

Under assumptions i, ii, and iii of ref. 1, T is a bounded continuous coercive mapping of X into X^{*} that is Y-pseudo-monotone in the following sense: Let $\{u_{k}\}$ be a sequence in X converging weakly to u in X and strongly to u in Y and such that $\lim \langle Tu_{k}, u_{k} - u \rangle \leq 0$. Then:

(a) Tu_{k} converges weakly to Tu in X^{*}.

(b) Tu_{k} converges to Tu in L_{u}.

THEOREM 4. Suppose that X and Y are reflexive Banach spaces, H a Hilbert space, $X \subset Y \subset H$. Let L be a linear maximal monotone mapping of H, ψ a nonnegative l.s.c. convex function from X to $\mathbb{R} ^{+} \cup \{+\infty\}$ with $\psi(0) = \varepsilon$, and suppose that properties 1 to 5 hold. Let T be a bounded, continuous, coercive mapping of X into X^{*} that is Y-pseudo-monotone from X to X^{*}.

Then for each x in X^{*}, there exists u in X with $\phi(u) \leq \varepsilon$ and such that for every v in $D(L) \cap X$,

$$\langle Lv, v - u \rangle + \psi(v) - \psi(u) \geq (f, v - u).$$

Moreover, if A is monotone, u is determined by I.

Proof of Theorem 4: Let C_{k} be the closed convex subset of X given by

$$C_{k} = \{x \mid \|x\|_{H} \leq M, \|L_{x}\|_{L} \leq M\}.$$

Then C_{k} is strongly relatively compact in Y, and for each $x > 0$, $(1 + l)^{-1/2}$ maps C_{k} into itself. Moreover, T is pseudo-monotone from C_{k} to X^{*} in the standard sense, whereas L is a bounded monotone mapping from C_{k} to X^{*}. Hence, by the classical theory of variational inequalities, for each k there exists u_{k} in C_{k} such that for all v in C_{k},

$$\langle Lu_{k} + Tu_{k}, v - u_{k} \rangle + \phi(v) - \phi(u_{k}) \geq (f, v - u_{k})$$

with $\phi(u_{k}) < +\infty$. Because L is monotone,

$$\langle Lv, v - u_{k} \rangle \geq (Lv, v - u_{k}).$$

Therefore, for all v in C_{k},

$$\langle L_{v}, v - u_{k} \rangle + \psi(v) - \psi(u_{k}) \geq (f, v - u_{k}).$$

Because 0 lies in each C_{k}, it follows that

$$\langle Tu_{k}, u \rangle + \psi(u_{k}) \geq (f, u - u_{k}).$$

Because T is coercive while ψ is nonnegative, it follows that there exists M_{0} such that for all k, $\|u_{k}\|_{Y} \leq M_{0}$.

For each k, let $S_{k} = (I + \varepsilon l)^{-1/2}(u_{k})$, $l > 0$. The sets S_{k} are uniformly bounded in X and each S_{k} is contained in C_{k}. For v in S_{k},

$$\langle L_{v}, v - u_{k} \rangle + \psi(v) - \psi(u_{k}) \geq (f, v - u_{k}) - (Tu_{k}, v - u_{k}) \geq -c_{0},$$

in which c_{0} is a constant independent of k. Hence, by Theorem 3, $\{u_{k}\}$ is strongly relatively compact in Y.

Passing to an infinite subsequence, we may assume that u_{k} converges weakly to u in X and strongly to u in Y while Tu_{k} converges weakly to v in X^{*}. For any v in $X \cap D(L)$, v lies in C_{j} for some j. Hence for $k \geq j$,

$$\langle L_{v}, u - v \rangle + \phi(v) - \phi(u_{k}) \geq (f, v - u_{k}).$$

We obtain immediately that, for each such v,

$$\lim_{k \to \infty} \langle Tu_{k}, u \rangle \leq \lim_{k \to \infty} \langle L_{v}, u - v \rangle + \phi(v) - \phi(u_{k}) + \langle Tu_{k}, v - u \rangle + (f, v - u_{k}).$$

i.e.,

$$\lim_{k \to \infty} \langle Tu_{k}, u \rangle \leq \langle L_{v}, u \rangle + (f, v - u) + \phi(v) - \phi(u).$$

We introduce into this last inequality the elements $v = (I + \varepsilon l)^{-1/2}u$. Because the family $\{v_{k}\}$ is bounded in X as $\varepsilon \to 0$ while $v \to u$ in H, u converges weakly to u in X. Moreover,

$$\phi(u_{k}) \leq \phi(u); \langle L_{u}, u_{k} - u \rangle = -\varepsilon^{-1}v_{k} - u_{k} \leq 0.$$

Hence

$$\lim_{k \to \infty} \langle Tu_{k}, u \rangle \leq \lim_{k \to \infty} (f, v_{k} - u_{k} - u) = 0.$$

If we apply the Y-pseudo-monotonicity of T from X to X^{*}, we see that, for all v in X, $\langle (Tu_{k}, u_{k} - u) \rightarrow (Tu_{u}, v) \rangle$. Hence for all v in $D(L) \cap X$,

$$\langle L_{v}, v - u \rangle + \phi(v) - \phi(u) \geq (f, v - u).$$

q.e.d.

Theorem 4 yields conclusions a and c of Theorem 1. Furthermore, it is necessary to obtain the facts that u lies in $C(0, T; L^{a}(Q))$ with $u(0) = 0$, as well as $g(u), u(g(u))$ lies in $L^{1}(Q)$ and the validity of the variational inequality. The first fact follows from the proof of Theorem I in II on p. 78 of ref. 2. Another argument using the compactness theorem yields the second set of conclusions as follows:

Proof of Theorem 1: For each positive integer j, let $g^{(j)}(x, r)$ be the truncation of $g(x, r)$ at level j. For fixed j, $g(x, u)$ can be absorbed into $A(u)$. We let $G^{(j)}(x, r) = \int_{0}^{r} g^{(j)}(x, s)ds$, and let $\gamma^{(j)}u$ be the convex linear functional on X given by

$$\gamma^{(j)}u(u) = \begin{cases} 0 & \text{if } u(t) \text{ lies in } C \text{ a.e.} \\ +\infty & \text{otherwise.} \end{cases}$$

Set $\phi^{(j)}(u) = \gamma^{(j)}(u) + \int_{0}^{\infty} G^{(j)}(u(t))ds$. dt.

By Theorem 4, there exists a solution $u^{(j)}$ in X of the variational inequality for v in $D(L) \cap X$,
\begin{align*}
(Le,v - u^{(t)}) + \langle Tu^{(t)}, v - u^{(t)} \rangle + \int_Q g^{(t)}(u) X (p - u^{(t)}) dx dt + \gamma^{(t)}(v) - \gamma^{(t)}(u) \geq \langle f,v - u^{(t)} \rangle.
\end{align*}

Using the subgradient inequality for \(G^{(t)}(x,r) \) as a function of \(r \), we see that each such \(u^{(t)} \) is also a solution of the inequality
\begin{align*}
(Le,v - u^{(t)}) + \langle Tu^{(t)}, v - u^{(t)} \rangle + \varphi^{(t)}(v) - \varphi^{(t)}(u) \geq \langle f,v - u^{(t)} \rangle.
\end{align*}

Arguing as in the proof of Theorem 4, we see that the sequence \(u^{(t)} \) is bounded in \(X \) and strongly compact in \(Y \). Moreover, the related sequence \(\int_Q u^{(t)} g^{(t)}(u^{(t)}) dx dt \) is uniformly bounded.

We may pass to an infinite subsequence (again denoted by \(u^{(t)} \)) that converges weakly in \(X \) and strongly in \(Y \) to \(u \) and \(g(u) \), respectively. It follows immediately that \(g^{(t)}(u^{(t)}) \) converges strongly in \(L^1(Q) \) to \(g(u) \), that \(g(u) \) lies in \(L^1(Q) \), and by Fatou's lemma that \(u g(u) \) lies in \(L^1(Q) \). Moreover, by the same argument as in the proof of Theorem 4,
\begin{align*}
\lim_{t} \langle Tu^{(t)}, u^{(t)} - u \rangle \leq 0.
\end{align*}

Hence, for all \(v \) in \(X \), it follows from the \(Y \)-pseudomonotonicity of \(T \) that
\begin{align*}
(Le,v - u^{(t)}) + \langle Tu^{(t)}, v - u^{(t)} \rangle \rightarrow \langle Tu, v - u \rangle.
\end{align*}

As in Theorem 4, \(u \) satisfies the variational inequality \(c \). If we let \(v \) be any element of \(X \cap D(L) \cap L^\infty(Q) \), and take the limit of inequality 3, we obtain the variational inequality b. q.e.d.

Proof of Theorem 2: Let \(u_0 \) and \(u_1 \) be two solutions. Let \(u = \frac{1}{2}(u_0 + u_1) \) and for \(\epsilon > 0 \) set \(v_\epsilon = (I + \epsilon L)^{-1}u \). If we insert \(v_\epsilon \) in the inequality c for \(u_0 \) and \(u_1 \), and take the limit as \(\epsilon \rightarrow 0 \), we find that
\begin{align*}
\frac{1}{2} \langle Tu_0 - Tu_1, u_1 - u_0 \rangle + [2\varphi(u) - \varphi(u_0) - \varphi(u_1)] \geq 0,
\end{align*}
from which the conclusion of Theorem 2 follows. q.e.d.