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Remarks on Some Fourth Order Variational Inequalities

H. BRÉZIS (*) - G. STAMPACCHIA (**)

dedicated to H an8 Lewy

1. - Introduction.

Some years ago the Authors studied the regularity of a variational in-
equality for a second order variational inequality [1], which turned out to
be useful in the solution of the elastic-plastic torsion of a bar ([2], [3]).

We recall briefly the result we obtained there:
Let K be the convex of H’(S2)

where S~ is a domain of RN satisfying suitable conditions and let f be a
function in (2  p  + oo).

The solution u of the variational inequality

belongs to 
The purpose of this paper is to consider an analogous problem related

to the biharmonic operator in place of the laplacian. We shall consider two
types of boundary conditions.

The variational inequalities we consider are the following

(*) Universit6 de Paris VI.
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(I) Let K be the closed convex set

where, for sake of simplicity, a and fl are two constants such that

and ,S2 is a bounded open set of RN. We assume that S~ is smooth; so that
in particular the bilinear form

is coercive in HI(92) n H2(Q).
Let f be an element of (2  p  + oo) and denote by u E Kl the

solution of the variational inequality

There exists one and only one solution of (1.1).
We shall prove the following

THEOREM 1. The solutions u of the variational inequality (1.1 ) belongs to

The second variational inequality we shall consider is the following

(II) Let 1~2 be the closed convex set

where again 0153  0  ~ and is a bounded open set of R" with smooth
boundary; in particular the bilinear form a(u, v) is coercive in H’(s2).

Let f be an element of and denote by u the solution of the

(1) There is no difficulty to consider two functions a(x) and instead of
constants.
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variational inequality:

There exists a unique solution to (1.2). We shall prove the following

THEOREM 2. The solution u of the variational inequality (1.2) belong

2. - Proof of theorem 1.

First of all we consider a very simple variational inequality. Let .F be

a function in (2 p  + oo) and ~o the closed convex set

The (unique) solution of the variational inequality

is given by

Thus we have the following

LEMMA. 2.1. The solution of the variational inequality (2.1) is the projec-
tion of F on 3(,0 and is given by

where i(t) is the tr2cneation function
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and hence, for. we have In particular

PROOF OF THEOREM 1. Let .F’ be the solution of the boundary value

problem

Since f E it follow~s that F E 

The variational inequality (1.1 ) may be written

and consequently if we set we get

for all

where 3G is the convex set defined above. It follows from lemma 2.1 that

Therefore the function u is the solution to the boundary value problem

and consequently ,
Thus theorem 1 is proved.

3. - Proof of theorem 2.

We begin by introducing some notation.
In addition to the convex set ~ that we have already defined, we con-

sider the closed linear space ~1

and we set
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The proof of theorem 2 is based on an approximation argument by a

penality method.
Let y(t) be the function defined by

and set, for A&#x3E;0:

Let .F be the solution of problem (2.3) ; we recall that F E 
We prove the following:

LEMMA 3 .1. There exists a unique f unction UA E ~1 such that

as A - 0, UA converge8 in Z 2 (S~ ) to a function U 8uch that U 
y and

PROOF. Since the operator I + yi - F is monotone hemicontinuous and
strongly coercive in L2(Q), there exists a unique solution to the variational
inequality

o

i.e.

and this means that (3.1) holds.
Multiplying (3.1) by U~, and integrating we have

and thus, since it follows that
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Now let V be any function then

since = 0. Therefore

By (3.3) there exists a subsequence  U, of UA such that

Since lim inf we get at the limit

and (3.2) is proved.
In order to show that it is enough to prove that 
Let be a primitive of y, i.e.; .~T’’ (t ) = y (t ), jT(0)==0. Since is a

convex function, we have

and thus

const. indep. of Â, y

which implies

Passing to the limit as 1 - 0 we get

From this relation it follows that a. e. in Q, i.e.
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By uniqueness of the solution of (3.2) it follows that U~, converges weakly
to U as A goes to 0.

In order to complete the proof of the lemma we remark, first, that by (3.4),
for any V G K

and then, choosing V = U, we get

Hence

Nowwe prove the following

LEMMA 3.2. Let U be the solution of the variational inequality (1.2). There

exists a function z E such that d z = 0 and

where -c is given by (2.2) and F is the solution of (2.3).

PROOF. a) Set

where ZAEXf. Therefore 0 for all indeed
It follows that 0

in the sense of distribution and thus ZA E 

b) Since for all yi(V) = 0 we have

o

i.e.
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Consequently

From this we deduce first that

and then that

and in particular, since 0, we have is bounded by a constant
depending only on K cc D.

Thus, there exists a subsequence converging uniformly on any compact
if Sa to a function z such that

Moreover, y by Fatou’s lemma, z E 
On the other hand

and hence

where WA is the inverse function of t + It is easy to check that

uniformly on bounded intervals, and passing to the limit in (3.5), we have

and the lemma is proved.

REMARK. . Since z E and If E H’,P(S2) it follows that

PROOF OF THEOREM 2. Let u be the solution of the boundary value problem

where U is the function (3.6).
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From the remark above,
we have

such that

(v = exterior normal)

since Since the trace of ( on 8Q is arbitrary it follows that

Let v be any function in K2, then Y = and from (3.2 ) and (3.7 )
we get

Since the solution of the variational inequality (1.2) is unique, theorem 2
is proved.

REMARK. Two natural questions remain open:

1) It is true that

2) It is true that

REMARK. It is clear from the representation formulas (2.2) and (3.6)
that the solutions of the variational inequalities (1.1) and (1.2) do not belong
in general to t

REMARK. It would be interesting to study the regularity of solutions
of variational inequalities (1.1) and (1.2) } when the constraints involve

quadratic functions of the second derivatives.
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