Remarks on the Euler Equation*

J. P. BOURGUIGNON

Centre de Mathématiques, École Polytechnique, 17 Rue Descartes, Paris 5e

AND

H. BREZIS

Département de Mathématiques, Université Paris VI, 4 Place Jussieu, Paris 5e

Received May 30, 1973

INTRODUCTION

Let \(\Omega \) be a bounded domain of \(\mathbb{R}^N \) with smooth boundary \(\partial \Omega \) and outward normal \(n \). The motion of an incompressible perfect fluid is described by the Euler equation

\[
\frac{\partial u_i}{\partial t} + \sum_{j=1}^{N} u_j \frac{\partial u_i}{\partial x_j} = f_i + \frac{\partial \bar{\omega}}{\partial x_i}, \quad 1 \leq i \leq N,
\]
on \(\Omega \times (0, T) \),

(1)

\[
\text{div } u = 0 \quad \text{on } \Omega \times (0, T),
\]

(2)

\[
u \cdot n = 0 \quad \text{on } \partial \Omega \times (0, T),
\]

(3)

\[
u \mid_{t=0} = u_0 \quad \text{on } \Omega,
\]

(4)

where \(f(x, t) \) and \(u_0(x) \) are given, while the velocity \(u(x, t) \) and the pressure \(\bar{\omega}(x, t) \) are to be determined.

The Euler equation has been considered by several authors including L. Lichtenstein (1925–30), J. Leray (1932–37), M. Wolibner (1938). T. Kato proved the existence of a global solution for \(N = 2 \) \([3]\) and of a local solution for \(\Omega = \mathbb{R}^3 \) \([4]\). Recently, D. Ebin and J. Marsden \([2]\) have proved the existence of a local solution in the general case. Their proof relies heavily on techniques of Riemannian geometry on infinite dimensional manifolds. Our purpose is to present

* Part of this paper was written while the first author was visiting at SUNY (Stony Brook) and the second author was visiting at the University of Chicago.
a more “classical” proof of their result by reducing (1)–(4) to an ordinary differential equation on a closed set of a Banach space; actually, we get a slightly more general result valid for L^p data instead of L^2 data.

The main theorem is the following

Theorem 1. Let $1 < p < +\infty$, and let $s > (N/p) + 1$ be an integer. Suppose $u_0 \in W^{s,p}(\Omega; \mathbb{R}^n)$ with $\text{div} \, u_0 = 0$ on Ω and $u_0 \cdot n = 0$ on $\partial \Omega$. Suppose $f \in C([0, T]; C^{s+1+\alpha}(\Omega; \mathbb{R}^n))$ with $0 < \alpha < 1$. Then there exists $0 < T_0 < T$ and a unique function

$$u \in C([0, T_0]; W^{s,p}(\Omega; \mathbb{R}^n))$$

satisfying (1)–(4).

We thank D. Ebin and J. P. Penot for helpful conversations.

1. Notations and Preliminaries

Let $W^{s,p}$ be the Sobolev space of real-valued functions in L^p such that all their derivatives up to order s are in L^p. In the following we assume that $s > (N/p) + 1$ so that by the Sobolev embedding theorem $W^{s,p}(\Omega) \subset C^{1+s}(\bar{\Omega})$ with $\alpha = s - 1 - N/p$. The norm in $W^{s,p}$ is denoted by $\| \cdot \|_{s,p}$. Let

$$\mathcal{D}_{s,p} = \{ \eta \in W^{s,p}(\Omega; \mathbb{R}^n); \eta \text{ is bijective from } \overline{\Omega} \text{ onto } \bar{\Omega} \text{ and } \eta^{-1} \in W^{s,p}(\Omega; \mathbb{R}^n) \}.$$

Note that $\eta \in \mathcal{D}_{s,p}$ if and only if $\eta \in W^{s,p}(\Omega; \mathbb{R}^n)$ and η is a C^1 diffeomorphism with $\eta(\partial \Omega) \subset \partial \Omega$.

Let

$$\mathcal{D}_{s,p}^\mu = \{ \eta \in \mathcal{D}_{s,p}; \text{ Jac } \eta \mid = 1 \text{ on } \Omega \},$$

where $\text{Jac } \eta$ denotes the Jacobian matrix of η and $| \text{ Jac } \eta |$ its determinant. Note that $\eta \in \mathcal{D}_{s,p}^\mu$ if and only if $\eta \in W^{s,p}(\Omega; \mathbb{R}^n)$, $| \text{ Jac } \eta | = 1$ on Ω and $\eta(\partial \Omega) \subset \partial \Omega$.

Let

$$T_{e,0}^{s,p} = \{ u \in W^{s,p}(\Omega; \mathbb{R}^n); u \cdot n = 0 \text{ on } \partial \Omega \}$$

and

$$T_{e,\mu}^{s,p} = \{ u \in T_{e}^{s,p}; \text{ div } u = 0 \text{ in } \Omega \}.$$

1 In fact, it is sufficient to assume $f \in C([0, T]; W^{s+1,p}(\Omega; \mathbb{R}^n))$.
Recall that if $V(x, t) \in C^1(\overline{\Omega} \times [0, T])$ is such that V is tangent to the boundary, i.e., $V(x, t) \cdot n(x) = 0$ on $\partial \Omega \times [0, T]$ and if $\eta(x, t)$ is the flow generated by V, i.e. the solution of

$$(d\eta/dt)(x, t) = V(\eta(x, t), t),$$

then

$$(d/dt) | \text{Jac} \eta(x, t)|_{t=\tau} = (\text{div } V)(\eta(x, \tau), \tau) | \text{Jac} \eta(x, \tau)|.$$ \hspace{1cm} (5)

So that in particular if $\text{div } V = 0$ on $\Omega \times [0, T]$, then

$$| \text{Jac} \eta(x, t)| = | \text{Jac} \eta(x, 0)| \quad \text{on} \quad \Omega \times [0, T].$$

The following lemmas are well-known (see, e.g., [5]).

Lemma 1 (Neumann problem). Given an $f \in W^{k,p}(\Omega)$ ($k \geq 0$ an integer) and a $g \in W^{k+1-1/p,p}(\partial \Omega)$ such that

$$\int_{\Omega} f \, dx = \int_{\partial \Omega} g \, d\sigma,$$

there exists a $u \in W^{k+2,p}(\Omega)$ satisfying

$$\Delta u = f \quad \text{on} \quad \Omega,$$

$$\frac{\partial u}{\partial n} = g \quad \text{on} \quad \partial \Omega.$$

In addition,

$$\| \text{grad } u \|_{k+1,p} \leq C(\| f \|_{k,p} + \| g \|_{k+1-1/p,p}).$$

Lemma 2. Given an $f \in W^{k,p}(\Omega; \mathbb{R}^N)$, there exists a unique $g \in T^e_{\mu} \mathbb{R}^{k,p}$ and a $\bar{\omega} \in W^{k+1,p}(\Omega)$ such that

$$f = g + \text{grad } \bar{\omega}.$$

We set $g = P(f)$. P is called the projection on divergence free vector fields; it is a bounded operator in $W^{k,p}(\Omega; \mathbb{R}^N)$. P is related to the solution of the Neumann problem in the following way: let $\bar{\omega} \in W^{k+1,p}(\Omega)$ be a solution of

$$\begin{cases}
\Delta \bar{\omega} = \text{div } f \quad \text{on} \quad \Omega, \\
\frac{\partial \bar{\omega}}{\partial n} = f \cdot n \quad \text{on} \quad \partial \Omega.
\end{cases}$$

Then

$$g = Pf = f - \text{grad } \bar{\omega}.$$
2. REDUCTION OF THE EULER EQUATION TO AN ORDINARY DIFFERENTIAL EQUATION

Following an idea of V. Arnold [1], we shall work as in [2] with Lagrange variables. So, we use the configuration γ of the fluid (i.e. the flow generated by u) as unknown. As we shall see, this leads us to the study of a second-order "ordinary" differential equation.

Assuming (1)–(4) has a solution u, let γ be the flow of u:

$$
\frac{d\gamma}{dt}(x, t) = u(\gamma(x, t), t), \quad \gamma(x, 0) = x.
$$

Let us rewrite the equation (1)–(4) in terms of γ. Equation (4) becomes

$$
(\frac{d\gamma}{dt})(x, 0) = u_0(x).
$$

Equation (3) corresponds to the fact that, for each t, $\eta(\cdot, t)$ is a diffeomorphism from Ω onto itself and Eq. (2) is equivalent to

$$
|\text{Jac} \eta(x, t)| = 1 \quad \text{on} \quad \Omega \times [0, T].
$$

In order to write down (1) in terms of γ, we eliminate the pressure $\bar{\omega}$ by applying P to (1). Using (2) we get

$$
\left(\frac{\partial u}{\partial t} \right) + P \left(\sum_j u_j \frac{\partial u_j}{\partial x_j} \right) = Pf.
$$

On the other hand, by differentiating (6) with respect to t, we obtain

$$
\left(\frac{\partial^2 \gamma}{\partial t^2} \right)(x, t) = \sum_i \left(\frac{\partial u_i}{\partial x_i} \right)(\gamma(x, t), t) \left(\frac{\partial \gamma_i}{\partial t} \right)(x, t) + \left(\frac{\partial u_i}{\partial t} \right)(\gamma(x, t), t)
$$

$$
= \sum_i u_i(\gamma(x, t), t) \left(\frac{\partial u_i}{\partial x_i} \right)(\gamma(x, t), t) + \left(\frac{\partial u_i}{\partial t} \right)(\gamma(x, t), t).
$$

Therefore,

$$
\left(\frac{\partial^2 \gamma}{\partial t^2} \right)(x, t) = \left[(I - P) \sum_i u_i \left(\frac{\partial u_i}{\partial x_i} \right) \right] (\gamma(x, t), t) + (Pf)(\gamma(x, t), t).
$$

If we keep in mind that

$$
u = \left(\frac{\partial \gamma}{\partial t} \right)(\gamma^{-1}, t),$$

we can consider (7) as an equation involving only γ.

A crucial observation is that (7) should not be regarded as a partial differential equation in γ but rather as an ordinary differential equation in γ (this fact is outlined in [2, p. 147]).
We first write (7) as a system

\[
\begin{cases}
\frac{d\eta}{dt} = v \\
\frac{dv}{dt} = \left[(I - P) \sum_{i} (v \circ \eta^{-1}_i) \frac{\partial}{\partial x_i} (v \circ \eta^{-1})\right] (\eta, t) + (Pf)(\eta, t)
\end{cases}
\]

or

\[
(d/dt)(\eta, v) = A(t; \eta, v),
\]

where

\[
A(t; \eta, v) = (v, B(v \circ \eta^{-1}) \circ \eta + (Pf)(\eta, t))
\]

and

\[
Bv = (I - P) \left(\sum_i v_i \frac{\partial v}{\partial x_i} \right).
\]

We shall work in the space \(X = W^{s,p}(\Omega; \mathbb{R}^N) \times W^{s,p}(\Omega; \mathbb{R}^N) \).

Clearly, \(A \) is not everywhere defined on \(X \) and not even on an open subset because of the additional requirement \(\eta \in \mathcal{D}^{s,p}_\mu \). Thus we cannot apply standard existence theorems for ordinary differential equations, but shall use the following theorem which is a particular case of a result of R. Martin [6].

Theorem 2. Let \(F \) be a closed subset of a Banach space \(X \), and let \(A(t; z): [0, T) \times F \rightarrow X \) be locally Lipschitz in \(z \) and continuous in \(t \). Suppose that for each \((t, z) \in [0, T] \times F\) the following holds

\[
\lim_{h \to 0} \frac{1}{h} \text{dist}(z + hA(t, z), F) = 0.2
\]

Then for every \(z_0 \in F \) the equation

\[
\frac{dz}{dt} = A(t, z), \quad z(0) = z_0,
\]

admits a local solution \(z \in C^1([0, T_0]; F) \).

We shall apply Theorem 2 with \(F = \{ (\eta, v) \in X; \eta \in \mathcal{D}^{s,p}_\mu \land v \circ \eta^{-1} \in T_\varepsilon \mathcal{D}^{s,p}_\mu \} \) which is clearly closed in \(X \).

The main steps in proving Theorem 1 are the following:

(a) Prove that \(A(t; \eta, v) \) is locally Lipschitz in \((\eta, v)\) from \(F \) into \(X \) (see Section 3).

\[2\] Where \(\text{dist}(\cdot, F) \) denotes the distance to \(F \).
One has to be rather careful because the mapping \(\eta \mapsto \eta^{-1} \) is not locally Lipschitz from \(D^s_p \) into itself (it is only continuous); similarly, the mapping \([\psi, \eta] \mapsto \psi \circ \eta\) is not locally Lipschitz from \(D^s_p \times D^s_p \) into \(D^s_p \).

(b) Prove that \(A(t; \eta, v) \) is tangent to \(F \) in the sense of (11) (see Section 4).

Remark. In case \(f = 0 \), Eq. (7) represents the equation of geodesics on the manifold \(D^s_p \) for an appropriate weak Riemannian metric. Since the metric is weak (i.e. the topology induced by this metric is weaker than the topology of \(D^s_p \)), the existence of a Riemannian connection and of geodesics does not follow at once, but is proved in [2].

3. \(A \) is Locally Lipschitz

First of all, we observe the following.

Lemma 3. Let \(f \) be as in Theorem 1. The mapping \((t, \eta) \mapsto (Pf)(\eta, t)\) is continuous in \(t \) and locally Lipschitz in \(\eta \).

Proof. As \(t \to t_0 \), \(f(\cdot, t) \to f(\cdot, t_0) \) in \(C^0(\Omega; \mathbb{R}^N) \), and therefore \(Pf(\cdot, t) \to Pf(\cdot, t) \) in \(W^{s,p}(\Omega; \mathbb{R}^N) \). We conclude by Lemma A.4 that \(Pf(\eta, t) \to Pf(\eta, t_0) \) in \(W^{s,p}(\Omega; \mathbb{R}^N) \).

For a fixed \(t \), \(f(\cdot, t) \in C^{s+1,0}(\Omega) \) and so \(Pf(\cdot, t) \in C^{s+1,0}(\Omega) \). Thus, by Lemma A.3, \(\eta \mapsto (Pf)(\eta, t) \) is locally Lipschitz from \(D^s_p \) into \(W^{s,p}(\Omega; \mathbb{R}^N) \).

Remark. It is actually sufficient to assume that \(f \in W^{s+1,p}(\Omega, \mathbb{R}^N) \) and use the remark following Lemma A.5 instead of Lemma A.3.

We shall now prove

Theorem 3. The mapping \((\eta, v) \mapsto B(v \circ \eta^{-1}) \circ \eta \) (\(B \) is defined in (10)) is locally Lipschitz from \(F \) into \(W^{s,p}(\Omega; \mathbb{R}^N) \).

The proof of Theorem 3 relies on an appropriate factorization of \(B \). Note that if \(u \in T_0 D^s_p \), we have by Lemma 2, \(Bu = \text{grad} \bar{\omega} \) where \(\bar{\omega} \) is a solution of

\[
\Delta \bar{\omega} = \text{div} \left(\sum_i u_i \frac{\partial u}{\partial x_i} \right) \quad \text{on} \quad \Omega,
\]

\[
\frac{\partial \bar{\omega}}{\partial n} = \left(\sum_i u_i \frac{\partial u}{\partial x_i} \right) \cdot n \quad \text{on} \quad \partial \Omega.
\]
But
\[\text{div} \left(\sum_{i} u_i \frac{\partial u}{\partial x_i} \right) = \sum_{i,j} \frac{\partial}{\partial x_j} \left(u_i \frac{\partial u_j}{\partial x_i} \right) = \sum_{i,j} \frac{\partial u_i}{\partial x_i} \frac{\partial u_j}{\partial x_j} \]
(since \(\text{div} u = 0 \)) and
\[\left(\sum_{i} u_i \frac{\partial u}{\partial x_i} \right) \cdot n = \sum_{i,j} u_i \frac{\partial u_j}{\partial x_i} n_j = \beta(\cdot; u, u) \]
where \(\beta(x; u, u) \) denotes the second fundamental form of \(\partial \Omega \). More precisely, let \(\delta(x) \) be a smooth function on \(\mathbb{R}^N \) such that
\[\Omega = \{ x \in \mathbb{R}^N; \delta(x) > 0 \}, \]
\[\partial \Omega = \{ x \in \mathbb{R}^N; \delta(x) = 0 \}, \]
and \(\text{grad} \delta = -n \) on \(\partial \Omega \). For \(u \in T_{\partial \Omega}^{\mu,p} \), we have \(u, \text{grad} \delta = 0 \) on \(\partial \Omega \) and by differentiation we obtain
\[u \cdot \text{grad}[u, \text{grad} \delta] = 0 \quad \text{on} \quad \partial \Omega, \]
i.e.,
\[\sum_{i,j} u_i \frac{\partial}{\partial x_i} \left(u_j \frac{\partial \delta}{\partial x_j} \right) = 0 \quad \text{on} \quad \partial \Omega. \]
Therefore on \(\partial \Omega \) we have
\[\sum_{i,j} u_i \frac{\partial u_j}{\partial x_i} n_j = \sum_{i,j} \frac{\partial^2 \delta}{\partial x_i \partial x_j} u_i u_j = \beta(\cdot; u, u). \quad (12) \]
Note that \(\beta \) is a quadratic form in \(u \) depending smoothly on \(x \in \partial \Omega \).
We consider first the mapping \(Q \) defined by
\[Q(\eta, v) = \left(\eta, \sum_{i,j} \left(\frac{\partial u_j}{\partial x_j} \frac{\partial \eta}{\partial x_i} \right) \circ \eta, \beta(\eta; v, v) \right), \]
where \(u = v \circ \eta^{-1} \), which maps \(F \) into \(Z \), where
\[Z = \left\{ (\eta, f, g) \in \mathbb{D}_\mu^{\delta, p} \times W^{s-1, p}(\Omega) \times W^{s-1, p,p}(\partial \Omega); \int_{\Omega} f \, dx = \int_{\partial \Omega} g \circ \eta^{-1} \, ds \right\}. \]
Next, let \(S(\eta, f, g) \) be defined from \(Z \) into \(W^{s, p}(\Omega; \mathbb{R}^N) \) by
\[S(\eta, f, g) = (\text{grad} \pi) \circ \eta, \]
where π is a solution of
\[
\Delta \pi = f \circ \eta^{-1} \quad \text{on } \Omega,
\]
\[
\frac{\partial \pi}{\partial n} = g \circ \eta^{-1} \quad \text{on } \partial \Omega.
\]
Therefore we obtain
\[
B(v \circ \eta^{-1}) \circ \eta = (S \circ Q)(\eta, v),
\]
and it is sufficient to prove the following propositions:

Proposition 1. The mapping $(\eta, v) \mapsto Q(\eta, v)$ is locally Lipschitz from F into Z.

Proposition 2. The mapping $(\eta, f, g) \mapsto S(\eta, f, g)$ is locally Lipschitz from Z into $W^{s,p}(\Omega; \mathbb{R}^n)$.

The following lemma will be very useful.

Lemma 4. Let $f \in W^{s,p}(\Omega)$ and $\eta \in \mathcal{D}^{s,p}_\mu$. Then
\[
\|\text{grad}(f \circ \eta^{-1}) \circ \eta - \text{grad} f\|_{s-1,p} \leq C_{\eta} \|\eta - e\|_{s,p} \|f\|_{s,p},
\]
where e denotes the identity of Ω and C_{η} a constant depending only on $\|\eta\|_{s,p}$.

Proof of Lemma 4. We have
\[
\text{grad}(f \circ \eta^{-1}) = \text{Jac} \eta^{-1} \cdot (\text{grad} f)(\eta^{-1})
\]
and
\[
(\text{grad}(f \circ \eta^{-1})) \circ \eta = \text{Jac} \eta^{-1}(\eta) \text{grad} f = (\text{Jac} \eta)^{-1} \cdot \text{grad} f.
\]
We deduce from Lemma A.1 that
\[
\|\text{grad}(f \circ \eta^{-1}) \circ \eta - \text{grad} f\|_{s-1,p} \leq C \|\text{Jac} \eta\|^{-1} - I \|s-1,p\| \|\text{grad} f\|_{s-1,p}
\]
\[
\leq C \|\text{Jac} \eta\|^{-1} \circ (I - \text{Jac} \eta)\|s-1,p\| \|f\|_{s,p}.
\]

Remark. Lemma 4 holds true for any first-order differential operator and in a particular grad can be replaced by div or by curl.

Proof of Proposition 1. From Lemma 4, it follows easily that $(\eta, f) \mapsto (\text{grad}(f \circ \eta^{-1})) \circ \eta$ is locally Lipschitz from $\mathcal{D}^{s,p}_\mu \times W^{s,p}(\Omega)$.
into $W^{s-1,p}(\Omega; \mathbb{R}^N)$. Indeed, by Lemma A.4 (applied with $\alpha = s - 1$ and $q = p^*$), we have

\[\| (\text{grad}(f \circ \eta^{-1}_1)) \circ \eta_1 - (\text{grad}(f \circ \eta^{-1}_2)) \circ \eta_2 \|_{s-1,p} \]
\[\leq C \| (\text{grad}(f \circ \eta^{-1}_1)) \circ \eta_1 \circ \eta_2^{-1} - \text{grad}(f \circ \eta_2^{-1}) \|_{s-1,p}(\| \eta_2 \|_{s,p} - 1) \]
\[\leq C(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} \| f \|_{s,p} \]

where $C(\eta_1, \eta_2)$ is locally bounded. Hence, by Lemma A.1, the mapping

\[(\eta, v) \mapsto \sum_{i,j} \frac{\partial (v_i \circ \eta^{-1})}{\partial x_j}(\eta) \frac{\partial (v_j \circ \eta^{-1})}{\partial x_i}(\eta) \]

is locally Lipschitz.

It remains to check that $(\eta, v) \mapsto \beta(\eta; v, v)$ is locally Lipschitz from F into $W^{s-1/p,p}(\partial \Omega)$. This is clear (by Lemma A.5) since $\beta(x; v, v)$ is smooth in x and quadratic in v.

In the proof of Proposition 2, we shall use the following:

Lemma 5. There is a positive constant α such that

\[\alpha \| w \|_{s,p} \leq \| \text{div} w \|_{s-1,p} + \| \text{curl} w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p} + \| w \|_{s-1,p} \]

for all $w \in W^{s,p}(\Omega; \mathbb{R}^N)$, where $\text{curl} u$ denotes the matrix with coefficients $\varphi_{ij} = (\partial w_i/\partial x_j) - (\partial w_j/\partial x_i)$.

Proof of Lemma 5. We have

\[(\partial^2 w_i/\partial x_i \partial x_j) - \partial^2 w_j/\partial x_i \partial x_i = \partial \varphi_{ij}/\partial x_i, \]

and thus for all $1 \leq j \leq N$,

\[\frac{\partial}{\partial x_j}(\text{div} w) - \Delta w_j = \sum_i \frac{\partial \varphi_{ij}}{\partial x_i}. \quad (13) \]

Let $v = (v_j) \in C^\infty(\overline{\Omega}; \mathbb{R}^N)$ be such that $v = n$ on $\partial \Omega$ and let $U = \sum_j v_j w_j$. So that

\[\Delta U = \sum_j v_j \frac{\partial}{\partial x_j}(\text{div} w) - \sum_{i,j} v_j \frac{\partial \varphi_{ij}}{\partial x_i} + 2 \sum_{i,j} \frac{\partial v_j}{\partial x_i} \frac{\partial w_j}{\partial x_i} + \sum_j (\Delta v_j) w_j. \]
Therefore, by a regularity theorem for the Dirichlet problem ((see [5]), we have
\[
\| U \|_{s,p} \leq C(\| \Delta U \|_{s-2,p} + \| U \|_{\partial \Omega} \|_{s-1/p,p})
\]
\[
\leq C'(\| \text{div } w \|_{s-1,p} + \| \text{curl } w \|_{s-1,p} + \| w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p}).
\]

Finally, for all \(1 < i < N\),
\[
V_i = \sum_j v_j \frac{\partial w_i}{\partial x_j} = \sum_j \frac{\partial}{\partial x_i}(w_j v_j) - \sum_j \frac{\partial v_j}{\partial x_i} w_j + \sum_j v_j \varphi_{ij}
\]
\[
= \frac{\partial U}{\partial x_i} - \sum_j \frac{\partial v_j}{\partial x_i} w_j + \sum_j v_j \varphi_{ij}.
\]
Hence, \(\partial w_i / \partial \eta = V_i|_{\partial \Omega} \in W^{s-1-1/p, p}(\partial \Omega)\) and we have the estimate
\[
\left\| \frac{\partial w_i}{\partial n} \right\|_{s-1-1/p, p} \leq C(\| U \|_{s,p} + \| w \|_{s-1,p} + \| \text{curl } w \|_{s-1,p}).
\]

On the other hand, by (13), \(\Delta w_i \in W^{s-2, p}(\Omega)\). Moreover,
\[
\| \text{grad } w_i \|_{s-1,p} \leq C \left(\| \Delta w_i \|_{s-2,p} + \left\| \frac{\partial w_i}{\partial n} \right\|_{s-1-1/p, p} \right)
\]
so that by (13) and the previous estimate we get
\[
\| w \|_{s,p} \leq C(\| \text{div } w \|_{s-1,p} + \| \text{curl } w \|_{s-1,p} + \| w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p}).
\]

Remark. For any norm \(\| \cdot \|\) on \(W^{s-1,p}\) which is weaker than \(\| \cdot \|_{s-1,p}\), there is a constant \(\alpha > 0\) such that
\[
\alpha \| w \|_{s,p} \leq \| \text{div } w \|_{s-1,p} + \| \text{curl } w \|_{s-1,p} + \| w \cdot n \|_{s-1/p,p} + \| w \|,
\]
since the injection \(W^{s,p} \subset W^{s-1,p}\) is compact.

Proof of Proposition 2. We have to estimate
\[
X = \| \text{grad } \pi_1 \circ \eta_1 - \text{grad } \pi_2 \circ \eta_2 \|_{s,p}
\]
where
\[
\Delta \pi_i = f_i \circ \eta_i^{-1} \text{ on } \Omega, \quad (\partial \pi_i / \partial n) = g_i \circ \eta_i^{-1} \text{ on } \partial \Omega, \quad i = 1, 2.
\]
By Lemma A.4 we know that
\[
X \leq C(\eta_2) \| (\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2 \|_{s,p}.
\]
We shall use the Remark following Lemma 5 to estimate
\[\| (\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2 \|_{s,p}. \]

Let
\[\begin{align*}
X_1 &= \| \text{div}[(\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2]\|_{s-1,p}, \\
X_2 &= \| \text{curl}[(\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2]\|_{s-1,p}, \\
X_3 &= \|[(\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2] \cdot n\|_{s-1/p,p}, \\
X_4 &= \|[(\text{grad } \eta_1) \circ \eta_1 \circ \eta_2^{-1} - \text{grad } \pi_2]\|.
\end{align*} \]

where we choose
\[\| u \| = \sup \{ \int_{\Omega} u \cdot \xi \, dx; \xi \in C^\infty(\overline{\Omega}; \mathbb{R}^N), \xi = 0 \text{ on } \partial \Omega \text{ and } \| \xi \|_{C^s} \leq 1 \}. \]

We have
\[\text{div } \text{grad } \pi_2 = \Delta \pi_2 = f_2 \circ \eta_2^{-1} \]
and
\[\text{div}[(\text{grad } \pi_1) \circ \eta_1 \circ \eta_2^{-1}] = [\text{div}(\text{grad } \pi_1)] \circ \eta_1 \circ \eta_2^{-1} + R \]
where, by the Remark following Lemma 4 (used with \(f = (\text{grad } \pi_1) \circ \eta \) and \(\eta = \eta_1 \circ \eta_2^{-1} \)), we have
\[\begin{align*}
R \|_{s-1,p} &\leq C(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} \| \text{grad } \pi_1 \|_{s,p} \\
&\leq C'(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \circ \eta_1^{-1} \|_{s-1,p} + \| g_1 \circ \eta_1^{-1} \|_{s-1/p,p}) \\
&\leq C'(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \|_{s-1,p} + \| g_1 \|_{s-1/p,p}).
\end{align*} \]

Hence
\[\begin{align*}
X_1 &\leq C'(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \|_{s-1,p} + \| g_1 \|_{s-1/p,p}) \\
&\quad + \| f_1 \circ \eta_2^{-1} - f_2 \circ \eta_2^{-1} \|_{s-1,p}
\end{align*} \]
and thus
\[X_1 \leq C'(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \|_{s-1,p} + \| g_1 \|_{s-1/p,p}) + \| f_1 - f_2 \|_{s-1,p}. \]

Similarly, since \(\text{curl } \text{grad} = 0 \), we get
\[X_2 \leq C(\eta_1, \eta_2) \| \eta_1 - \eta_2 \|_{s,p} (\| f_1 \|_{s-1,p} + \| g_1 \|_{s-1/p,p}). \]
Next letting $\eta = \eta_1 \circ \eta_2^{-1}$ we have

$$X_3 \leq \|\text{grad } \eta_1 \circ \eta \|_{s-1,p} \cdot (n - n \circ \eta) + \|\frac{\partial \eta_1}{\partial n} \|_{s-1,p} + \|\frac{\partial \eta_2}{\partial n} \|_{s-1,p} \cdot \|\omega \|_{s-1,p} + \|\eta_1 - \eta_2 \|_{s,p} \leq C(\eta_1, \eta_2) \|\eta_1 - \eta_2 \|_{s,p}$$

Finally we estimate X_4; let $\zeta \in C^s(\overline{\Omega}; \mathbb{R}^N)$ be such that $\zeta = 0$ on $\partial \Omega$. Let

$$K(\zeta) = \int_{\Omega} [(\text{grad } \eta_1) \circ \eta - \text{grad } \eta_2] \cdot \zeta \, dx$$

$$= \int_{\Omega} [(\text{grad } \eta_1) \cdot (\zeta \circ \eta^{-1}) - \text{grad } \eta_2 \cdot \zeta] \, dx.$$

Let ω and ω_n be solutions of the equations

$$\begin{cases}
\Delta \omega = \text{div } \xi & \text{on } \Omega \\
\frac{\partial \omega}{\partial n} = 0 & \text{on } \partial \Omega
\end{cases}$$

$$\begin{cases}
\Delta \omega_n = \text{div}(\zeta \circ \eta^{-1}) & \text{on } \Omega \\
\frac{\partial \omega_n}{\partial n} = 0 & \text{on } \partial \Omega.
\end{cases}$$

We can always assume that

$$\|\omega\|_{C^s} \leq C \|\zeta\|_{C^s},$$

$$\|\omega_n - \omega\|_{s,p} \leq C \|\zeta \circ \eta^{-1} - \xi\|_{s-1,p} \leq C(\eta_1, \eta_2) \|\eta_1 - \eta_2\|_{s,p} \|\xi\|_{C^s},$$

by Lemma A.3. Thus

$$\|\omega_n \circ \eta - \omega\|_{s-1,p} \leq C \|\omega_n \circ \eta - \omega \|_{s-1,p} + \|\omega \circ \eta - \omega\|_{s-1,p}$$

$$\leq C(\|\omega_n - \omega\|_{s-1,p} + \|\omega\|_{C^s} \|\eta - \xi\|_{s,p})$$

by Lemma A.3 and A.4. Hence

$$\|\omega_n \circ \eta - \omega\|_{s-1,p} \leq C(\eta_1, \eta_2) \|\eta_1 - \eta_2\|_{s,p} \|\xi\|_{C^s}.$$

But

$$K(\zeta) = \int_{\Omega} [\pi_1 \cdot \Delta \omega_n - \pi_2 \cdot \Delta \omega] \, dx$$

$$= \int_{\Omega} (\Delta \pi_1 \cdot \omega_n - \Delta \pi_2 \cdot \omega) \, dx - \int_{\partial \Omega} (g_1 \circ \eta_1^{-1} \cdot \omega_n - g_2 \circ \eta_2^{-1} \cdot \omega) \, d\sigma$$

$$= \int_{\Omega} [(f_1 \circ \eta^{-1}) \cdot \omega_n - (f_2 \circ \eta^{-1}) \cdot \omega] \, dx$$

$$- \int_{\partial \Omega} [(g_1 \circ \eta^{-1}) \cdot \omega_n - (g_2 \circ \eta^{-1}) \cdot \omega] \, d\sigma.$$
The first term can be estimated by

$$
\| f_1 - f_2 \|_{L^p(\Omega)} \| \omega \|_{L^1(\Omega)} + \| f_1 \|_{L^1(\Omega)} \| \omega \circ \eta - \omega \|_{L^p(\Omega)},
$$

while the second term can be estimated by

$$
\| g_1 - g_2 \|_{L^p(\Omega)} \| \omega \|_{L^1(\Omega)} + \| g_2 \|_{L^p(\Omega)} \| \omega \circ \eta - \omega \|_{L^1(\Omega)}
$$

$$
+ \| g_2 \|_{L^p(\eta)} \| \eta_1^{-1} - \eta_2^{-1} \|_{L^1(\partial \Omega)} \| \omega \|_{L^p(\eta)},
$$

So finally

$$
K(\xi) \leq C(\eta_1, \eta_2) \| \xi \|_{C^s} \left[\| f_1 - f_2 \|_{L^p(\Omega)} + \| \eta_1 - \eta_2 \|_{s,p} \| f_1 \|_{L^1(\Omega)}
$$

$$
+ \| g_1 - g_2 \|_{L^p(\Omega)} + \| \eta_1 - \eta_2 \|_{s,p} \left(\| g_2 \|_{L^p(\partial \Omega)} + \| g_2 \|_{L^p(\eta)} \right) \right],
$$

and

$$
X_4 = \sup_{\xi \neq 0} \frac{K(\xi)}{\| \xi \|_{C^s}}.
$$

4. **A is "Tangent" to the Closed Set F**

Let \(u \) and \(\gamma \) be given so that \(u \in W^{s,p}(\Omega; \mathbb{R}^N) \) with \(\text{div} \, u = 0 \) on \(\Omega \) and \(u \cdot n = 0 \) on \(\partial \Omega \) and \(\gamma \in W^{s,p}(\Omega; \mathbb{R}^N) \) satisfying

$$
\text{div} \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) = 0 \text{ on } \Omega, \quad \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) \cdot n = 0 \text{ on } \partial \Omega.
$$

In order to prove that \(A \) is tangent to \(F \), we shall exhibit a curve \(\eta \in C^s(I; \mathcal{D}^{s,p}_\mu) \) \((I = [0, t_0], t_0 \text{ small enough}) \) such that \(\eta_0 = e, \eta_0 = u, \eta_0 = \gamma \). This curve will be a "good approximation" in \(\mathcal{D}^{s,p}_\mu \) of \(e + tu + (t^2/2)\gamma \).

Theorem 4. Let \(u \in \mathcal{D}^{s,p}_\mu \) and \(\gamma \in W^{s,p}(\Omega; \mathbb{R}^N) \) with \(s > (N/p) + 1 \) such that

$$
\text{div} \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) = 0 \text{ on } \Omega, \quad \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) \cdot n = 0 \text{ on } \partial \Omega.
$$
Then there exists a curve η_1 satisfying $\eta \in C^2(I; \mathbb{D}_\mu^{s,p})$

$$\eta_0 = e,$$

$$\dot{\eta}_0 = u,$$

$$\ddot{\eta}_0 = \gamma.$$

Remark. Conversely, if η is a curve satisfying (14), then $u = \dot{\eta}_0 \in T_\mu \mathbb{D}_\mu^{s,p}$ and $\gamma = \ddot{\eta}_0 \in W^{6,p}(\Omega; \mathbb{R}^N)$ verify

$$\text{div} \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) = 0 \quad \text{on } \Omega \quad \text{and} \quad \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) \cdot n = 0 \quad \text{on } \partial \Omega.$$

The proofs of Theorem 4 and its Remark are based on the following lemma.

Lemma 6. Let \mathcal{C} and \mathcal{B} be Banach spaces, and let φ be a C^2 mapping defined on a neighborhood of 0 in \mathcal{C} with values into \mathcal{B}, such that $\varphi(0) = 0$ and $D_0 \varphi$ is a split surjection (i.e. $D_0 \varphi$ is onto \mathcal{B} and $\ker D_0 \varphi$ has a topological complement in \mathcal{C}).

Given U, V in \mathcal{C}, there exists a curve $\zeta \in C^2(I; \mathcal{C})$ such that

$$\varphi(\zeta_t) = 0 \quad \text{for } t \in I, \quad \zeta_0 = 0,$$

$$\dot{\zeta}_0 = U,$$

$$\ddot{\zeta}_0 = V,$$

if and only if U and V satisfy

$$D_0 \varphi \cdot U = 0,$$

$$D_0 \varphi \cdot V + D_0^2 \varphi(U, U) = 0.$$

Proof of Lemma 6. It is easy to check that $U = \dot{\zeta}_0$ and $V = \ddot{\zeta}_0$ satisfy necessarily (20) and (21) by differentiating (17). The converse relies on the implicit function theorem. Let $\mathcal{C} = \ker D_0 \varphi$, and let P be a continuous projection from \mathcal{C} onto \mathcal{E}. Define $\psi: \mathcal{C} \rightarrow \mathcal{B} \times \mathcal{C}$ by $\psi(u) = (\varphi(u), Pu)$, so that $D_0 \psi = D_0 \varphi \times P$ is an isomorphism from \mathcal{C} onto $\mathcal{B} \times \mathcal{C}$. Therefore, by the implicit function theorem, ψ is a C^2 isomorphism from a neighborhood of 0 in \mathcal{C} onto a neighborhood of 0 in $\mathcal{B} \times \mathcal{C}$. For t small enough, consider

$$\zeta_t = \psi^{-1}(0, tU + (t^2/2) PV).$$
Therefore, \(\varphi(\xi_t) = 0 \) and \(P_t = tU + (t^2/2) PV \). Consequently,
\[D_0 \varphi \cdot \xi_0 = 0 \quad \text{and} \quad P_{\xi_0} = U, \]
which implies \(\xi_0 = U \). Also,
\[D_0 \varphi \cdot \xi_0 + D_0^2 \varphi(U, U) = 0 \]
and \(P_{\xi_0} = PV \). Hence, \(D_0 \varphi(\xi_0 - V) = 0 \) and \(P(\xi_0 - V) = 0 \), which implies \(\xi_0 = V \). ■

Proof of Theorem 4. Let \(\mathcal{C} = W^{s,p}(\Omega; \mathbb{R}^N) \) and let
\[\mathcal{B} = \left\{ (f, g) \in W^{s-1,p}(\Omega) \times W^{s-1,p}((\partial \Omega)); \int_\Omega f \, dx = \int_{\partial \Omega} g \, d\sigma \right\}. \]

We consider the mapping \(\varphi \) defined on \(\mathcal{C} \) by \(\varphi(u) = (\varphi_1(u), \varphi_2(u)) \) where
\[\varphi_1(u) = |\text{Jac}(e + u)| - \frac{1}{\text{Vol} \Omega} \int_\Omega |\text{Jac}(e + u)| \, dx \quad \text{and} \quad \varphi_2(u) = -\delta \circ (e + u)|_{\partial \Omega} \]
(recall that \(\delta \) is smooth and \(\partial \Omega = \{ x; \delta(x) = 0 \} \)). Observe that \(\varphi \) takes its values in \(\mathcal{B} \) and that \(\varphi \in C^\infty \) since \(|\text{Jac}| \) is a polynomial in the first derivatives (we suppose \(s > (N/p) + 1 \); cf. Lemma A.1) and since \(\delta \) is \(C^\infty \). For \(u \) small enough, \(\varphi(u) = 0 \) implies that \((e + u) \in \mathbb{R}^{a,p} \). Indeed, \(\eta = (e + u) \) is a \(C^1 \) diffeomorphism and \(\eta(\partial \Omega) \subset \partial \Omega \). Therefore, \(\eta \in \mathbb{R}^{a,p} \) and since \(|\text{Jac} \eta| \) is constant on \(\Omega \), we have \(\text{Vol} \Omega = \text{Vol} \eta(\Omega) = \int_\Omega |\text{Jac} \eta| \, dx = C \text{Vol} \Omega \); so that \(C = 1 \) and \(\eta \in \mathbb{R}^{a,p} \). For \(v \in \mathcal{C} \), we have the expansion
\[|\text{Jac}(e + tv)| = 1 + t \text{div} v + \frac{t^2}{2} \left(|\text{div} v|^2 - \sum_{i,j=1}^N \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \right) + \cdots \]
since for any matrix \(M = (m_{ij}) \) we know that
\[|I + \epsilon M| = 1 + \epsilon \text{tr} M + \frac{\epsilon^2}{2} \left(|\text{tr} M|^2 - \sum_{i,j=1}^N m_{ij}m_{ji} \right) + \cdots \]

Hence,
\[D_0 \varphi_1 \cdot v = \text{div} v - \frac{1}{\text{Vol} \Omega} \int_\Omega \text{div} v \, dx - \frac{1}{\text{Vol} \Omega} \int_{\partial \Omega} v \cdot n \, d\sigma = \text{div} v; \]
and $D_0\varphi_2 \cdot v = v \cdot n$. Consequently, $D_0\varphi \cdot v = (\text{div } v, v \cdot n)$ is a split surjection onto \mathcal{B}. Also

$$D_0^2\varphi_1(v, v) = \lim_{{\epsilon \to 0}} \frac{\varphi_1(\epsilon v) + \varphi_1(-\epsilon v)}{{\epsilon}^2} = |\text{div } v|^2 - \sum_{i,j=1}^{N} \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i}$$

$$- \frac{1}{\text{Vol } \Omega} \int_{\Omega} \left(|\text{div } v|^2 - \sum_{i,j=1}^{N} \frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \right) dx$$

$$- \frac{1}{\text{Vol } \Omega} \int_{\partial \Omega} \sum_{i,j=1}^{N} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} v_i v_j d\sigma,$$

and

$$D_0^2\varphi_2(v, v) = - \sum_{i,j=1}^{N} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} v_i v_j = -\beta(\cdot ; v, v).$$

We apply now Lemma 6 with $U = u$ and $V = \gamma$. Conditions (20) and (21) are satisfied since

$$D_0\varphi \cdot u = (\text{div } u, u \cdot n) = 0,$$

and by (12),

$$D_0\varphi_1 \cdot \gamma + D_0^2\varphi_1(u, u) = \text{div } \gamma - \sum_{i,j=1}^{N} \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} + \frac{1}{\text{Vol } \Omega} \int_{\Omega} \sum_{i,j=1}^{N} \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} dx$$

$$- \frac{1}{\text{Vol } \Omega} \int_{\partial \Omega} \sum_{i,j=1}^{N} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} u_i u_j d\sigma = 0,$$

$$D_0\varphi_2 \cdot \gamma + D_0^2\varphi_2(v, u) = \gamma \cdot n - \sum_{i,j=1}^{N} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} u_i u_j = 0.$$

Theorem 5. A is "tangent" to F in the following sense:

$$\lim_{{h \to 0}} \frac{\text{dist}((\eta, v) + hA(t; \eta, v), F)}{h} = 0 \quad \text{for all } (\eta, v) \in F,$$

where $\text{dist}(\cdot, F)$ denotes the distance to the closed set F in the space $X = W^{s,p}(\Omega; \mathbb{R}^N) \times \dot{W}^{s,p}(\Omega; \mathbb{R}^N)$.

Proof of Theorem 5. We recall that

$$A(t; \eta, u) = (u, B(u \circ \eta^{-1}) \circ \eta + P(f_t) \circ \eta)$$
(where \(f_i \) is the given field of external forces),

\[
F = \{(\eta, u) \in X; \eta \in D^{s,p}_\mu \text{ and } u \circ \eta^{-1} \in T_e D^{s,p}_\mu \}.
\]

We start by proving (22) for the case \(\eta = e \). We observe then that \(u \in T_e D^{s,p}_\mu \) and \(\gamma = B(u) + P(f) \) meets the requirements of Theorem 4, i.e.,

\[
\text{div} \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) = 0 \quad \text{on } \Omega \quad \text{and} \quad \left(\gamma - \sum_i u_i \frac{\partial u}{\partial x_i} \right) \cdot n = 0 \quad \text{on } \partial \Omega
\]

since \(\gamma - \sum_i u_i (\partial u/\partial x_i) = P(f - \sum_i u_i (\partial u/\partial x_i)) \) by the definition of \(B \).

From Theorem 4 we know that there exists a curve \(\eta \in C^2(I; D^{s,p}_\mu) \) with initial data \((e, u, \gamma)\). Since \((\eta_h, \dot{\eta}_h) \in F\), we have

\[
(1/h) \text{dist}[(e, u) + hA(t; e, u), F] \leq (1/h) \text{dist}[(e, u) + hA(t; e, u), (\eta_h, \dot{\eta}_h)].
\]

By construction of \(\eta \), the right-hand side tends to 0 as \(h \to 0 \), which proves Theorem 5 at \(\eta = e \). For the general case, we just have to notice that

\[
A(t; \eta, u) = A(t; e, u \circ \eta^{-1}) \circ \eta,
\]

that \(\gamma(F) = F \) for \(\eta \in D^{s,p}_\mu \), and that the map \(v \mapsto v \circ \eta \) is continuous (cf. Lemma A.4). Therefore, we can apply the result at \(e \), completing the proof of Theorem 5.

APPENDIX: PRODUCT AND COMPOSITION OF FUNCTIONS IN SOBOLEV SPACES

1. PRODUCT OF TWO FUNCTIONS

Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain with smooth boundary.

Lemma A.1. Let \(\alpha \geq 1 \) be an integer, and let \(1 \leq p \leq +\infty \), \(1 \leq q \leq +\infty \).

If \(u \in W^{\alpha,p}(\Omega) \) and \(v \in W^{\alpha,q}(\Omega) \), then \(u, v \in W^{\alpha,r}(\Omega) \), where \(r \) is defined by

\[
1/r = (1/p) + (1/q) - \alpha/N \quad \text{when} \quad \max\{p, q\} < N/\alpha, \tag{1}
\]

\[
r \quad \text{arbitrary} \quad \text{if} \quad \max\{p, q\} = N/\alpha, \tag{2}
\]

\[
(r = 1 \text{ if } p = q = N = \alpha = 1),
\]

\[
r = \min\{p, q\} \quad \text{when} \quad \max\{p, q\} > N/\alpha. \tag{3}
\]
In addition, \(\| u \cdot v \|_{W^{\alpha,r}} \leq C \| u \|_{W^{\alpha,p}} \| v \|_{W^{\alpha,q}} \), where \(C \) depends only on \(\alpha, p, q, r, \) and \(\Omega \).

Proof. By induction on \(\alpha \), the proof is easy for \(\alpha = 1 \). In order to show that \(u \cdot v \in W^{\alpha,r}(\Omega) \), we have to prove that \(u \cdot v \in L^r(\Omega) \) (which is straightforward) and that \(Du \cdot v + u \cdot Dv \in W^{\alpha-1,r}(\Omega) \). By symmetry, it is sufficient to check that \(Du \cdot v \in W^{\alpha-1,r}(\Omega) \). But \(Du \in W^{\alpha-1,p}(\Omega) \) and \(v \in W^{\alpha,q}(\Omega) \subset W^{\alpha-1,q^*}(\Omega) \), where \(q^* \) is determined by

\[
\frac{1}{q^*} = \begin{cases} \frac{1}{q} - \frac{1}{N} & \text{when } q < N, \\ \text{arbitrarily small with} & \\ \frac{1}{q^*} < \frac{1}{q} & \text{when } q = N, \\ 0 & \text{when } q > N.
\end{cases}
\]

We have now to distinguish three cases:

Case 1. \(\max\{p, q\} < N/\alpha \) and thus \(\max\{p, q^*\} < N/(\alpha - 1) \). By the induction assumption, we know that \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \) where \(1/s = (1/p) + (1/q^*) - (\alpha - 1)/N = (1/p) + (1/q) - \alpha/N \).

Case 2. \(\max\{p, q\} = N/\alpha \). Either \(p \leq q = N/\alpha \), so that \(q^* = N/(\alpha - 1) \). Thus, \(\max\{p, q^*\} = N/(\alpha - 1) \) and by the induction assumption we know that \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \) for any \(s < \min\{p, q^*\} = p = \min\{p, q\}. \) Or \(q < p = N/\alpha \), so that \(\max\{p, q^*\} < N/(\alpha - 1) \) and by the induction assumption \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \) with

\[
1/s = (1/p) + (1/q^*) - (\alpha - 1)/N = (1/p) + (1/q) - \alpha/N = 1/q.
\]

Hence \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \) with \(s = \min\{p, q\} \).

Case 3. \(\max\{p, q\} > N/\alpha \). Either \(q > N/\alpha \) so that \(\max\{p, q^*\} > N/(\alpha - 1) \) and by the induction assumption \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \) with \(s = \min\{p, q^*\} \geq \min\{p, q\}. \) Or \(p > N/\alpha \) and \(q < N/\alpha \); by the induction assumption \(Du \cdot v \in W^{\alpha-1,s}(\Omega) \), for \(s \) as follows: when

\[
\max\{p, q^*\} < N/(\alpha - 1)
\]
we have $1/s = (1/p) + (1/q^*) - (\alpha - 1)/N$ and $1/s < 1/q$. Therefore, $Du \cdot v \in W^{s-1,n}(\Omega)$ with $s = \min\{p, q\}$. When
\[
\max\{p, q^*\} \geq N/(\alpha - 1),
\]
we have $Du \cdot v \in W^{s-1,n}(\Omega)$ for any $s < \min\{p, q^*\}$ and in particular we can choose $s = \min\{p, q\}$. ■

2. COMPOSITION OF TWO MAPPINGS

Let $\Omega' \subset \mathbb{R}^M$ be a bounded domain with smooth boundary.

Lemma A.2. Let $\alpha \geq 1$ be an integer, and let $1 \leq p \leq +\infty$ with $\alpha > N/p$. Let $F \in C^\alpha(\Omega')$, and let $G \in W^{s,p}(\Omega; \mathbb{R}^M)$ such that $G(\Omega) \subset \Omega'$. Then $F \circ G \in W^{s,p}(\Omega)$ and
\[
\|F \circ G\|_{W^{s,p}} \leq C \|F\|_{C^\alpha} \left(\|G\|_{W^{s,p}}^{\alpha-1} + 1\right),
\]
where C depends only on $\alpha, p, \Omega,$ and Ω'.

Proof. By induction on α, the proof is easy for $\alpha = 1$. In order to show that $F \circ G \in W^{s,p}(\Omega)$, we have to check that $F \circ G \in L^p(\Omega)$ (which is obvious) and that $(DF \circ G) \cdot DG \in W^{s-1,p}(\Omega)$.

Since $\alpha - 1 > N/p^*$, we know by the induction assumption that $DF \circ G \in W^{s-1,p^*}(\Omega)$ with
\[
\|DF \circ G\|_{W^{s-1,p^*}} \leq C \|F\|_{C^\alpha} \left(\|G\|_{W^{s-1,p^*}}^{\alpha-1} + 1\right).
\]
But $DG \in W^{s-1,p}(\Omega)$ and from Lemma A.1 (Case 3) we get $(DF \circ G) \cdot DG \in W^{s-1,p}(\Omega)$ with the corresponding estimate. ■

Remark. A slightly sharper version of Lemma A.2 can be found in [7].

Lemma A.3. Let $\alpha \geq 1$ be an integer and let $1 \leq p \leq +\infty$ with $\alpha > N/p$. Let $F \in C^{\alpha+1}(\Omega')$, and let $G \in W^{s,p}(\Omega; \mathbb{R}^M)$ and
\[
H \in W^{s,p}(\Omega; \mathbb{R}^M)
\]
such that $G(\Omega) \subset \Omega'$, $H(\Omega) \subset \Omega'$. Then
\[
\|F \circ G - F \circ H\|_{W^{s,p}} \leq C \|F\|_{C^{\alpha+1}} \|G - H\|_{W^{s,p}} \left(\|G\|_{W^{s,p}} + \|H\|_{W^{s,p}} + 1\right),
\]
where C depends only on α, p, Ω and Ω'.
Proof. By induction on 0_1, the proof is easy for $0_1 = 1$. In order to show that (4) holds, we have to check that
\[\| F \circ G - F \circ H \|_{L^p} \leq C \| G - H \|_{W^{1,p}} \]
(which is obvious) and that
\[\|(DF \circ G) \cdot DG - (DF \circ H) \cdot DH\|_{W^{a-1,p}} \]
can be bounded by the right-hand side in (4). But
\[(DF \circ G) \cdot DG - (DF \circ H) \cdot DH = (DF \circ G - DF \circ H) \cdot DG + (DF \circ H) \cdot (DG - DH). \]
The first term in the right-hand side is bounded in $W^{a-1,p}(\Omega)$ by
\[C \| F \|_{C^{a+1}} \| G - H \|_{W^{a-1,p}} \left(\| G \|_{W^{a-1,p}}^{a-1} + \| H \|_{W^{a-1,p}}^{a-1} + 1 \right) \| G \|_{W^{a,p}} \]
(using the induction assumption and Lemma A.1 with $q = p^*$), while the second term in the right-hand side is bounded in $W^{a-1,p}$ by
\[C \| G - H \|_{W^{a,p}} \| F \|_{C^a} \left(\| H \|_{W^{a-1,p}}^{a-1} + 1 \right) \]
(using Lemmas A.1 and A.2). \hfill \Box

The following result differs essentially from Lemma A.2 by the fact that we assume only that $F \in W^{a,p}(\Omega)$ (instead of C^a), but G is here a diffeomorphism.

Lemma A.4. Let $\alpha \geq 2$ be an integer, and let $1 \leq p \leq q \leq +\infty$ such that $\alpha > (N/q) + 1$. Let $F \in W^{a,p}(\Omega)$, and let $G \in \mathcal{S}^a, q(\Omega)$ (i.e. $G \in W^{a,q}(\Omega; \mathbb{R}^N)$ and G is a C^1 diffeomorphism from Ω onto $\bar{\Omega}$). Then $F \circ G \in W^{a,p}(\Omega)$ and
\[\| F \circ G \|_{W^{a,p}} \leq C \| F \|_{W^{a,p}} \frac{1}{\inf \| \text{Jac} \ G \|^{1/p}} \left(\| G \|^{a-1}_{W^{a,p}} + 1 \right), \]
where C depends only on α, p, q and Ω.

Proof. By induction on α, we consider first the case where $\alpha = 2$. It is clear that $F \circ G \in L^p(\Omega)$ and
\[\| F \circ G \|_{L^p} \leq \frac{1}{\inf \| \text{Jac} \ G \|^{1/p}} \| F \|_{L^p}. \]
Also, \(D(F \circ G) = (DF \circ G) \cdot DG \) belongs to \(W^{1,p}(\Omega) \) by Lemma A.1 since \(DG \in W^{1,q}(\Omega) \) \((q > N)\) and \(DF \circ G \in W^{1,p}(\Omega) \) with
\[
\| DF \circ G \|_{W^{1,p}} \leq \frac{1}{\inf |\text{Jac} G |^{1/p}} (\| DF \|_{L^p} + \| D^2 F \|_{L^p} \| DG \|_{L^p}).
\]

In the general case, we have to check that \(F \circ G \in L^p(\Omega) \) and that \((DF \circ G) \cdot DG \in W^{\alpha-1,p}(\Omega)\). By the induction assumption, we know that \(DF \circ G \in W^{\alpha-1,p}(\Omega) \) (since \(\alpha - 1 > (N/q) + 1 \)) and
\[
\| DF \circ G \|_{W^{\alpha-1,p}} \leq C \| F \|_{W^{\alpha-1,p}} \frac{1}{\inf |\text{Jac} G |^{1/p}} (\| G \|_{W^{\alpha-1,q}}^{\alpha-1} + 1).
\]

From Lemma A.1, we conclude that \((DF \circ G) \cdot DG \) belongs to \(W^{\alpha-1,p}(\Omega) \) with the corresponding estimate.

Lemma A.5. Let \(\alpha \geq 2 \) be an integer, and let \(1 < p < q < +\infty \) be such that \(p < +\infty \) and \(\alpha > (N/q) + 1 \). Let \(F \in W^{\alpha,p}(\Omega) \); then the mapping \(G \mapsto F \circ G \) is continuous from \(\mathcal{D}^{a,q}(\Omega) \) into \(W^{\alpha,p}(\Omega) \).

Proof. Given \(\delta > 0 \), there exists \(\tilde{F} \in C^{a+1}(\overline{\Omega}) \) such that
\[
\| F - \tilde{F} \|_{W^{\alpha,p}} < \delta.
\]

We have
\[
F \circ G - F \circ H = (F \circ G - \tilde{F} \circ G) + (\tilde{F} \circ G - \tilde{F} \circ H) + (\tilde{F} \circ H - F \circ H).
\]
The first and third terms in the right-hand side can be bounded in \(W^{\alpha,p}(\Omega) \) (using Lemma A.4) by
\[
C \delta \inf |\text{Jac} G |^{1/p} (\| G \|_{W^{a,v}}^{a} + 1) + C \delta \inf |\text{Jac} H |^{1/p} (\| H \|_{W^{a,v}}^{a} + 1),
\]
while the second term can be bounded in \(W^{\alpha,q}(\Omega) \) (and *a fortiori* in \(W^{\alpha,p}(\Omega) \)), using Lemma A.3, by
\[
C \| \tilde{F} \|_{C^{a+1}} (\| G \|_{W^{a,v}}^{a} + \| H \|_{W^{a,v}}^{a} + 1). \]

Remark. More generally, one can show, under the assumptions of Lemma A.5, that if \(F \in W^{a+b,p}(\Omega) \), then the mapping \(G \mapsto F \circ G \) is of class \(C^b \) from \(\mathcal{D}^{a,q}(\Omega) \) into \(W^{a,p}(\Omega) \)[\(\mathcal{D}^{a,q}(\Omega) \) is provided with an appropriate manifold structure].
3. Integration of Vector Fields

Let $F(x, t): \Omega \times [0, T] \rightarrow \mathbb{R}^N$ be a vector field tangent to $\partial \Omega$ on $\partial \Omega$ (i.e. $F(x, t) \cdot n(x) = 0$ for $x \in \partial \Omega$ and $t \in [0, T]$).

Lemma A.6. Assume $F \in C([0, T]; W^{\alpha, p}(\Omega; \mathbb{R}^N))$ with

$$\alpha > (N/p) + 1 \quad \text{and} \quad 1 \leq p < +\infty.$$

Then the differential equation

$$(du/dt)(x, t) = F(u(x, t), t)$$

$$u(x, 0) = x$$

has a solution $u \in C^1([0, T]; \mathcal{D}^{\alpha, p}(\Omega))$.

Remark. Lemma A.6 is not used in our paper, but it answers a question raised by Ebin and Marsden [2] who proved the same result for the case where $p = 2$ and $\alpha > (N/2) + 2$.

Proof. When $\alpha = 2$ (so that $p > N$), we have

$$F \in C([0, T]; C^{1, \lambda}(\Omega; \mathbb{R}^N))$$

where $\lambda = 1 - N/p$. In this case, it is well-known that there exists a solution $u \in C^1([0, T]; C^{1, \lambda}(\Omega; \mathbb{R}^N))$ and in addition $(d/dt) Du = DF(u(x, t)) Du$. On the other hand, $x \mapsto u(x, t)$ is a diffeomorphism for all $t \in [0, T]$ since

$$|\text{Jac } u(x, t)|_{t=0} = \text{div } F(u(x, t), t) = 0$$

and thus $|\text{Jac } u(x, t)| \geq e^{-Ct}$. Hence, $DF(u(x, t), t) \in W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ for all $t \in [0, T]$; more precisely, the mapping $t \mapsto DF(u(x, t), t)$ is continuous from $[0, T]$ into $W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ (as in the proof of Lemma A.5). For a fixed $u \in C^1(\Omega, \overline{\Omega})$, the operator $v \mapsto DF(u, t) \cdot v$ is bounded from $W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$ into itself (by Lemma A.1). Therefore, the linear differential equation $dv/dt = DF(u, t) \cdot v$ (considered in the Banach space $W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)$) has a solution

$$v \in C^1([0, T]; W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)).$$

Consequently, $Du \in C^1([0, T]; W^{1, p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N))$ and

$$u \in C^1([0, T]; W^{\alpha, p}(\Omega; \mathbb{R}^N)).$$
In the general case, the proof is by induction on \(\alpha \). Since
\[
F \in C([0, T]; W^{\alpha-1,p}(\Omega; \mathbb{R}^N)),
\]
we know from the induction assumption that \(u \in C^1([0, T]; \mathcal{D}^{\alpha-1,q}(\Omega)) \), where \(q = p^* \) for \(p \leq N \) and \(q \) is any finite number for \(p > N \).

Lemma A.4 shows that \(DF(u, t) \in W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N) \) for all \(t \in [0, T] \); more precisely, it follows from Lemma A.5 that the mapping \(t \mapsto DF(u(x, t), t) \) is continuous from \([0, T]\) into \(W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N) \). Therefore, the linear differential equation
\[
\frac{dv}{dt} = DF(u, t) \cdot v
\]
has a solution \(v \in C^1([0, T]; W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)) \). Consequently, \(Du \in C^1([0, T]; W^{\alpha-1,p}(\Omega; \mathbb{R}^N \times \mathbb{R}^N)) \) and \(u \in C^1([0, T]; W^{\alpha,p}(\Omega; \mathbb{R}^N)) \).

\[\square\]

References