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Abstract

The goal of this paper is to make the vertex operator algebra approach
to mirror symmetry accessible to algebraic geometers. Compared to better-
known approaches using moduli spaces of stable maps and special Lagrangian
fibrations, this approach follows more closely the original line of thinking that
lead to the discovery of mirror symmetry by physicists. The ultimate goal
of the vertex algebra approach is to give precise mathematical definitions
of N=(2,2) superconformal field theories called A and B models associated
to any Calabi-Yau variety and then show that thus constructed theories are
related by the mirror involution for all known examples of mirror symmetric
varieties.

1 Introduction

This paper should serve as an introduction to the vertex algebra approach to mirror
symmetry developed in [3]. It is thus understandable that our emphasis and selection
of topics reflects the author’s bias. The reader should keep in mind that other
approaches to mirror symmetry exist and have independent mathematical interest.
In particular, the stable maps approach allowed to state and prove mathematically
the predictions for the (virtual) numbers of rational curves on a quintic threefold
and other similar examples, see [11, 8, 13].

It is widely stated in physics literature that given a Calabi-Yau manifold X
together with an element of its complexified Kähler cone one can construct two
N=(2,2) superconformal field theories called A and B models, see for example [17].
On the other hand, all actual calculations and definitions of these theories involve
Feynman type integrals over infinite-dimensional spaces of all maps from Riemann
surfaces to X. While physicists have developed a good intuitive understanding of
the formal properties of these integrals, they are mathematically ill-defined.

The precise axiomatic definition of N = (2, 2) superconformal field theory that
would include the A and B models above is still not available. Roughly speaking,
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this theory is a modular functor, see for example [15], but the number of labels is,
perhaps, infinite. In particular, there must exist a Hilbert space H such that every
Riemann surface whose oriented boundary consists of k incoming and l outcoming
circles produces an operator from H⊗k to H⊗l, perhaps defined only up to a scalar
multiple. Superconformal field theory is a highly complicated object. Even when
the Riemann surface is a sphere, the structure of superconformal field theory is
rather non-trivial. A typical way to construct such a theory is by building it from
the representation theory of vertex algebras that satisfy certain conditions, see for
example [9]. In fact, mirror symmetry originated from the work of Gepner [7] who
used (finite quotients of) tensor products of the so-called minimal models which are
certain irreducible representations of the N=2 superconformal algebra. He was able
to match the dimensions of chiral rings (see [12]) of the resulting theories with the
dimensions of the cohomology spaces of the Calabi-Yau hypersurfaces in projective
spaces, in particular quintic threefolds.

Vertex algebra approach to mirror symmetry attempts to define rigorously su-
perconformal field theories associated to Calabi-Yau manifolds and then prove that
the corresponding theories for mirror manifolds are related to each other. At this
stage only the vertex algebra of the theory has been recovered and much work is
still to be done. This review contains no new results, and no proofs are presented.
It is intended as an introduction to vertex algebras for algebraic geometers, and
its ultimate goal is to enable an interested reader to understand the paper [3]. In
particular, only vertex algebras that appear in the context of hypersurfaces in toric
varieties are discussed.

Section 2 contains basic definitions and properties of vertex algebras, and follows
closely the book of Kac [10]. Section 3 provides the reader with a simplest non-trivial
example of vertex algebra called one free boson. It is generalized to several bosons
and several fermions in Section 4. Section 5 is devoted to the very important paper
of Malikov, Schechtman and Vaintrob [14] who construct chiral de Rham complex
of an arbitrary smooth variety. We are mostly interested in the case of Calabi-Yau
varieties. Section 6 explains main results of [3] and the last section summarizes
briefly the problems that are still to be addressed in the vertex algebra approach.

This article is based in part on the talks given at Columbia, Northwestern, MIT
and Rutgers. The author wishes to thank these institutions for their hospitality.
The author also thanks Ezra Getzler, Yi-Zhi Huang and Peter Landweber for useful
references and stimulating conversations.

2 Definition and basic properties of vertex alge-

bras

The goal of this section is to state definitions of vertex algebras and to introduce
important notions of normal ordered products and operator product expansions
(OPE). Our treatment follows closely the book of Kac [10]. We also define N=2
superconformal structures and describe BRST cohomology construction necessary
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to understand [3].

Definition 2.1 ([10]) A vertex algebra is the set of data that consists of a super
vector space V (over C), a state-field correspondence Y and a vacuum vector |0〉.
The fact that V is a superspace simply means that V = V0⊕V1. Elements of V0 are
called bosonic or even and elements from V1 are called fermionic or odd. Vacuum
vector |0〉 is a bosonic element of V . The most important structure is the state-field
correspondence Y which is a parity preserving linear map from V to EndV [[z, z−1]]

a→ Y (a, z) =
∑
n∈Z

a(n)z
−n−1

such that for every two elements a and b the elements a(n)b are zero for all sufficiently
big n. To form a vertex algebra the data (V, Y, |0〉) must satisfy the following axioms.
•translation covariance: {T, Y (a, z)}− = ∂zY (a, z) where {, }− denotes the usual
commutator and T is defined by T (a) = a(−2)|0〉;
•vacuum: Y (|0〉, z) = 1V , Y (a, z)|0〉z=0 = a;
•locality: (z − w)N{Y (a, z), Y (b, w)}∓ = 0 for all sufficiently big N , where ∓ is +
if and only if both a and b are fermionic. The equality is understood as an identity
of formal power series in z, z−1, w and w−1. It is often expressed by saying that
Y (a, z) and Y (b, z) are mutually local.

Let a and b be two elements of the vertex algebra V . We denote the corre-
sponding fields Y (a, z) and Y (b, z) by a(z) and b(z) respectively. Locality axiom of
the vertex algebra allows one to express the supercommutators of the modes a(m)

and b(n) in a concise way in terms of operator product expansions (OPEs). Namely,
define normal ordered product :a(z)b(w) :∈ EndV [[z, z−1, w, w−1]] by the formula

:a(z)b(w) : =
∑

m∈Z<0,n∈Z

a(m)b(n)z
−m−1w−n−1 ±

∑
m∈Z≥0,n∈Z

b(n)a(m)z
−m−1w−n−1

where ± is − if and only if both a and b are fermionic. Then it is not hard to show
(see [10] for details) that locality axiom implies

a(z)b(w) =
N−1∑
j=0

cj(w)

(z − w)j+1
+ :a(z)b(w) :

where cj(w) are some elements of EndV [[w,w−1]] and (z − w)−j−1 is Laurent ex-
panded in the region |z| > |w|. Moreover, there holds a remarkable Borcherds OPE
formula, which states that cj(w) = Y (a(j)b, w) so cj are also fields in the vertex
algebra. All information about supercommutators of the modes of a and b is conve-
niently encoded in the

∑
part of this OPE and the parities of a and b. The

∑
part

is called singular part of the OPE.
A vertex algebra with a conformal structure is a vertex algebra (V, Y, |0〉) with

a choice of an even element v such that the corresponding field Y (v, z) =: L(z)
satisfies the operator product expansion

L(z)L(w) =
c/2

(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

z − w
+ :L(z)L(w) :

3



where c is a constant called central charge. In addition, one assumes that L(0)

coincides with the operator T in the definition of vertex algebra. We also assume
that L(−1) is diagonalizable on V , all of its eigenvalues are real numbers, and

{L(−1), Y (a, z)}− = z∂zY (a, z) + Y (L(−1)a, z)

for all a.

Remark 2.2 The same vertex algebra can have many different conformal struc-
tures. Element v that defines a conformal structure is called Virasoro element.

Once a conformal structure is fixed, it is customary to shift the index in the
definition of a(n) as follows. If a has eigenvalue α with respect to L(−1) then we
introduce the notation

Y (a, z) =
∑
n∈Z

a(n)z
−n−1 =:

∑
n∈Z−α

a[n]z−n−α.

The number α is called the conformal weight of a. In particular, we observe that
OPE of L(z)L(w) implies that conformal weight of the Virasoro element is two, and
we introduce L(z) =

∑
n∈Z L[n]z−n−2. In these notations the endomorphisms L[m]

satisfy the commutator relations

{L[m], L[n]}− = (m− n)L[m+ n] +
c

12
(m3 −m)δ0

m+n

of the Virasoro algebra with central charge c.
When one studies Calabi-Yau manifolds, one obtains vertex algebras which have

not only conformal structure, but what is called N=2 superconformal structure. It
consists of the choice of conformal structure plus an even field J and two odd fields
G+ and G− which satisfy the following OPE.

L(z)L(w) =
c/2

(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

z − w
+ :L(z)L(w) : ,

L(z)J(w) =
J(w)

(z − w)2
+
∂wJ(w)

z − w
+ :L(z)J(w) : ,

L(z)G±(w) =
(3/2)G±(w)

(z − w)2
+
∂wG

±(w)

z − w
+ :L(z)G±(w) : ,

J(z)J(w) =
c/3

(z − w)2
+ :J(z)J(w) : ,

J(z)G±(w) = ±G
±(w)

z − w
+ :J(z)G±(w) : ,

G±(z)G∓(w) =
2c/3

(z − w)3
± 2J(w)

(z − w)2
+

2L(w)± ∂wJ(w)

z − w
+ :G±(z)G∓(w) : ,

G±(z)G±(w) = :G±(z)G±(w) : .
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It is common to introduce N=2 charge ĉ = c/3, where c is the central charge of the
usual Virasoro algebra. Also one often changes the notations slightly by introducing
Virasoro field Ltop = L(z) + (1/2)∂zJ(z) of conformal charge 0. Then G±, J and
Ltop form topological structure of dimension ĉ = d.

Notice that if one switchesG+ andG− and changes the sign of J , then one obtains
another N=2 structure. This involution is called mirror involution and it is expected
to switch A and B models constructed from mirror symmetric Calabi-Yau manifolds.
(More precisely, it is supposed to act this way on the holomorphic part and act by
identity on the antiholomorphic part of N=(2,2) superconformal field theory, but
this paper only deals with the holomorphic part. In fact, the absence of precise
understanding of how to put together holomorphic and anti-holomorrhpic parts of
the theory is a big obstacle in the vertex algebra approach to mirror symmetry.)

Given a vertex algebra (V, Y, |0〉) one can construct other algebras by the BRST
cohomology construction. If a ∈ V is such that a2

(0) = 0, then one considers co-
homology of V with respect to a(0), called BRST cohomology. Operator a(0) and
field Y (a, z) are called BRST operator and BRST field respectively. One can show,
see for example [3], that BRST cohomology of V with respect to a(0) has a natural
structure of vertex algebra. Moreover, if a(0) supercommutes with the fields of N=2
structure, then this structure descends to BRST cohomology.

3 First example of vertex algebra: one free boson

The simplest non-trivial example of the vertex algebra is called one free (chiral)
bosonic field. The goal of this section is to describe explicitly the data (V, Y, |0〉).
Moreover, it turns out that this vertex algebra could be provided with a conformal
structure, which we also describe. Most of the calculations are skipped, and the
reader is referred to [10].

Consider an abstract unital associative algebra generated by elements d[n], n ∈ Z
with commutator relations

{d[m], d[n]}− = mδ0
m+n

In other words, d[n] commutes with everything except d[−n], and commutators of
d[n] and d[−n] are proportional to the identity.

There is a standard representation of this algebra called a Fock space. Namely,
consider a vacuum vector |0〉 such that

d[Z≥0]|0〉 = 0

and try to see what space could be built from it. We will call operators d[Z>0]
annihilators and operators d[Z<0] creators. Operator d[0] commutes with all other
operators and will equal zero on this Fock space. Its relevance will be seen later in
Section 6 when we talk about vertex algebras defined by a lattice.

Notice that all creators commute with each other. If we apply all creators to the
vacuum vector, assuming that the results are linearly independent, we get the space

V = ⊕n1,n2,...C
∏
k>0

d[−k]nk |0〉
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where all nk are non-negative integers, and only finitely many of them are nonzero.
Creators obviously act on this space. The action of annihilators could be defined by
means of the commutator rules and the fact that annihilators vanish on the vacuum
vector. For example,

d[3] d[−1]2d[−3]2d[−5]|0〉 = d[−1]d[−3]2d[−5]d[3]|0〉+ d[−1]{d[3], d[−3]2}−d[−5]|0〉

= 6d[−1]d[−3]d[−5]|0〉.

Thus V is a representation of the algebra of d and it is called the Fock space of one
free bosonic field. One can think of it as the space of polynomials in infinitely many
variables d[−1], d[−2], ... with creators acting by multiplication and annihilators
acting by differentiation.

To describe the structure of vertex algebra on this Fock space V , we will need
additional notations. We introduce the field d(z) ∈ EndV [z, z−1] by the formula

d(z) =
∑
n∈Z

d[n]z−n−1.

Notice that d[z]|0〉 =
∑
k≥0 d[−k−1]zk, and when you plug in z = 0 you get d[−1]|0〉.

Eventually d[z] will be a field that corresponds to d[−1]|0〉. To construct other fields
we use the notion of normal ordering introduced in Section 2. If we try to make
sense of d(z)2 = d(z)d(z) as an element of EndV [[z, z−1]], we run into infinities.
On the other hand, one can plug w = z into : d(z)d(w) : and the resulting field
:d(z)d(z) : makes sense as an element of EndV [[z, z−1]]. In terms of the modes, one
can define

: d[m]d[n] : =

{
d[m]d[n] if n ≥ 0
d[n]d[m] if n < 0

and then write

: d(z)d(z) : =
∑

m,n∈Z

: d[m]d[n] : z−m−n−2.

We notice that this field applied to vacuum lies in V [[z]] and

: d(z)d(z) : |0〉z=0 = d[−1]2|0〉.

Similarly, one defines fields

:
∏
k≥0

(
∂kd

∂zk

)nk
:

by pushing all annihilators to the right and all creators to the left. Then the claim
is that these fields form the fields from the definition of the vertex algebra that
correspond to the states ∏

k≥0

(k!)nkd[−k − 1]nk |0〉.

One can also show that these fields are mutually local. This allows us to define the
state-field correspondence Y which satisfies vacuum and locality axioms. One can
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also show that translation axiom is satisfied. Moreover, the operator T could be
written in terms of d[n] as

T =
1

2

∑
k∈Z

d[k]d[−1− k].

As a result, we have constructed our first example of the vertex algebra.
We will now describe how to equip this vertex algebra (V, Y, |0〉) with a conformal

structure. Look at the field

L(z) =
1

2
: d(z)d(z) :

and introduce L[n] by L(z) =
∑
n∈Z L[n]zn−2. Explicitly these operators could be

written as L[n] = (1/2)
∑
k∈Z : d[k]d[n− k] :. Then one can check that the following

commutator relations hold

{L[m], L[n]}− = (m− n)L[m+ n] +
1

12
(m3 −m)δ0

m+n.

Therefore, L[m] form Virasoro algebra with central charge one.
One observes that T = L[−1] is the translation covariance operator T . Also,

L[0] is diagonalizable, because

L[0]d[−1]n1d[−2]n2 ...|0〉 = (
∑
i

ini) d[−1]n1d[−2]n2 ...|0〉.

We can conveniently rewrite the commutators of d[n] in terms of the OPEs.
After an easy calculation, we get

d(z)d(w) =
1

(z − w)2
+ :d(z)d(w) : .

In general, it is straightforward to calculate OPEs of products of free bosons and
their derivatives using Wick’s theorem, see [10]. The key point of Wick’s theorem
is that the commutator of products of two sets of linear operators such that the
pairwise commutators are in the center can be explicitly written in terms of these
pairwise commutators.

4 Further examples of vertex algebras: several

free fermions and bosons

The construction of the previous section can be generalized in several directions.
First of all, instead of considering one free boson, one may consider several of them.
This simply means that one considers the tensor product of a number of copies
of the Fock space of one free boson with the structure of vertex algebra induced
in an obvious way. More generally, for every finite-dimensional vector space W of
dimension r over C equipped with a non-degenerate symmetric bilinear form 〈 , 〉,
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one constructs a vertex algebra. One considers a unital associative algebra generated
by w[n], n ∈ Z, w ∈ W with the commutator relations

{w1[m], w2[n]}− = m〈w1, w2〉δ0
m+n.

Then, analogously to the one-dimensional example, one defines a Fock space gener-
ated from |0〉 by applying negative modes of w[n]. This Fock space carries a natural
structure of vertex algebra, which is isomorphic to the tensor product of dimW
copies of one free boson.

We will be particularly interested in the case of the space W which is a direct
sum of a space W1 and its dual, and thus has a natural non-degenerate symmetric
bilinear product denoted by ·. In terms of the OPEs, the algebra is generated by
the fields a(z) and b(z) where a ∈ W1, b ∈ W ∗

1 and the OPEs are

a1(z)a2(w) = :a1(z)a2(w) : , b1(z)b2(w) = :b1(z)b2(w) : ,

a(z)b(w) =
a · b

(z − w)2
+ :a(z)b(w) : .

So far we have not introduced any fermionic elements. This is easily accom-
plished by changing commutators { , }− to anticommutators { , }+ in the above
formulas. While the construction could be described for a single free fermion, we
will restrict our attention to 2r free fermions constructed from W1 ⊕W ∗

1 where W1

is a vector space of dimension r. One starts with a unital associative algebra gener-
ated by ϕ[n] and ψ[n] with ϕ ∈ W ∗

1 , ψ ∈ W1, n ∈ Z + 1
2

with the anticommutator
relations

{ϕ1[m], ϕ2[n]}+ = 0; {ψ1[m], ψ2[n]}+ = 0;

{ϕ[m], ψ[n]}+ = (ϕ · ψ)δ0
m+n.

The Fock space is constructed by applying pairwise anticommuting creators ϕ[(Z +
1
2
)<0], ψ[(Z + 1

2
)<0] to the vacuum vector |0〉 which is annihilated by the rest of

the modes. The vertex algebra structure is provided by the products of various
derivatives of the fields

ϕ(z) =
∑

n∈Z+ 1
2

ϕ[n]z−n−
1
2 , ψ(z) =

∑
n∈Z+ 1

2

ψ[n]z−n−
1
2 ,

and the parity is defined by the total number of ϕ and ψ. Operator product expan-
sions of the fields ϕ(z) and ψ(z) are

ϕ1(z)ϕ2(w) = :ϕ1(z)ϕ2(w) : , ψ1(z)ψ2(w) = :ψ1(z)ψ2(w) : ,

ϕ(z)ψ(w) =
ϕ · ψ
z − w

+ :ϕ(z)ψ(w) : .

One can provide this vertex algebra with the structure of conformal vertex algebra
by introducing a field

L(z) =
1

2
:∂ψi(z)ϕi(z)− ψi(z)∂ϕi(z) :
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where {ψi} and {ϕi} are dual bases of W1 and W ∗
1 . We implicitly sum over all i

via standard physical convention. A fermionic analog of Wick’s theorem allows us
to calculate that central charge of this conformal structure is dimW1.

Finally, we put together fermions and bosons. The resulting algebra is a crucial
component of the constructions of [14] and [3]. Again, let W1 and W ∗

1 be two dual
spaces. We consider the vertex algebra which is a product of the free fermionic and
free bosonic algebras constructed above. It is generated by fields ϕ(z), ψ(z), a(z)
and b(z). It is equipped with a conformal structure of central charge c = 3dimW1.
Moreover, one can extend this structure to an N=2 structure

G+(z) := ϕi(z)ai(z), G−(z) := ψi(z)bi(z), J(z) := :ϕi(z)ψi(z) : ,

L(z) :=
1

2
:ai(z)bi(z) : +

1

2
:∂ψi(z)ϕi(z)− ψi(z)∂ϕi(z) :

where again {ai} and {bi} are dual bases of W1 and W ∗
1 . We remark that the

resulting N=2 fields are independent from the choice of these bases. The N=2
central charge is ĉ = c/3 = dimW1.

5 Chiral de Rham complex

In a breakthrough paper [14] Malikov, Schechtman and Vaintrob have introduced a
sheaf of vertex algebras which they call chiral de Rham complex for every complex
manifold. Roughly speaking, the idea is to associate to every manifold X a sheaf
which locally over a neighborhood of a point x ∈ X looks like a vertex algebra with
2dimX bosons and 2dimX fermions associated to the vector space W = TX(x) ⊕
T ∗x (X).

There are some important details that we need to address. First of all, one
needs to use a slightly different version of the definition of the vertex algebra of free
bosons. Namely, instead of the commutator relations

{a[m], b[n]}− = m(a · b)δ0
m+n

they use the relations
{a[m], b[n]}− = (a · b)δ0

m+n.

The vacuum is now annihilated by a[Z≥0] and b[Z>0], but b[0] are considered to be
creators. The fields a(z) and b(z) are now defined by

b(z) :=
∑
n∈Z

b[n]z−n

and the basic OPE is

a(z)b(w) =
a · b
z − w

+ :a(z)b(w) : .

Roughly speaking, one uses
∫
b(w)dw instead of b(w). The fields of the N=2 algebra

are modified accordingly.

G+
MSV(z) := ϕi(z)ai(z), G−MSV(z) := ψi(z)∂zbi(z), JMSV(z) := :ϕi(z)ψi(z) : ,
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LMSV(z) :=
1

2
:ai(z)∂zbi(z) : +

1

2
:∂ψi(z)ϕi(z)− ψi(z)∂ϕi(z) : .

The crucial observation of [14] is that the group of automorphisms of the ring of
local coordinates of X at x embeds into the group of vertex algebra automorphisms
of the above vertex algebra. This allows one to glue together the above spaces and
construct a sheaf of vertex algebras over the variety X. Unfortunately, the fields of
the N = 2 algebra are not preserved under general automorphisms. However, if X
is a Calabi-Yau variety, then the existence of the holomorphic volume form allows
one to restrict the attention to the volume-preserving local changes of coordinates,
and these changes do preserve the fields of N = 2 algebra.

In [14] the resulting sheaf is called chiral de Rham complex, because the usual
de Rham complex is naturally embedded in it. We will denote the chiral de Rham
complex by MSV(X). An important remark here is that it is not a quasi-coherent
sheaf. The multiplication map O(X) ×MSV(X) → MSV(X) is defined but is
not associative. Rather, for every open set U the space of sections of MSV over U
forms a vertex algebra and sections of O over U are mapped to the set of pairwise
commuting bosonic fields in Γ(U,MSV). This type of sheaf was called a quasi-loop-
coherent sheaf of vertex algebras in [3].

One then observes that cohomology H∗(X,MSV) of the chiral de Rham complex
is provided with a natural structure of vertex algebra, essentially via a cup product,
see [3] for details. This vertex algebra has a natural N=2 structure, if X is Calabi-
Yau. The corresponding structures of topological algebras, see Section 2, should
correspond to the A and B models. In fact, it was the topological twist of the above
algebra that was considered in [14], so their definition of L is slightly different. As
a result, the (half-integer) notations for the fermionic modes of the operators ϕ and
ψ that we have used above are different from the (integer) notations used in [14].
However, in terms of the natural modes ϕ(n) and ψ(n) our notations coincide.

It is worth mentioning thatMSV(X) possesses a natural filtration, such that the
graded object is a quasi-coherent sheaf isomorphic to a tensor product of an infinite
number of copies of symmetric and exterior algebras of the tangent and cotangent
sheaves on X. This remark allows one to show that the elliptic genus of the variety
X can be naturally formulated in terms of the supertrace over the cohomology of
MSV(X) of the operator yJ [0]qL[0]. The reader is referred to [4] for details.

It would be very interesting to compare the approach of [14] with that of the
monograph of Tamanoi [16].

6 Vertex algebras of Calabi-Yau hypersurfaces in

toric varieties

We will now talk about the contents of the paper [3]. Its major achievement is an
explicit calculation of the cohomology of the chiral de Rham complex for a generic
Calabi-Yau hypersurface X in a smooth toric nef-Fano variety P. There is also some
progress made in the problem of defining chiral de Rham complex for varieties with
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Gorenstein singularities. The description uses certain vertex algebra constructed
from a lattice, whose definition will be provided below.

Before we can describe the cohomology of the chiral de Rham complex of a
generic Calabi-Yau toric hypersurface, we must recall the combinatorial data which
define it that were discovered by Batyrev in [1]. Let M1 and N1 be two dual lattices
of rank d + 1 that contain dual reflexive polyhedra ∆1 and ∆∗1. One defines dual
lattices M = M1⊕Z and N = N1⊕Z of rank d+ 2 and cones K = {(t∆1, t), t ≥ 0}
and K∗ = {(t∆∗1, t), t ≥ 0} in M and N respectively. The conditions on ∆1 and
∆∗1 to form a dual pair of reflexive polytopes is that all their vertices are lattice
points, and that K and K∗ are dual to each other, as the notation suggests. To
specify a nef-Fano toric variety P one also chooses a fan Σ in N1 which subdivides
the minimum fan defined by the faces of ∆∗1. Toric variety P is smooth if and only
if all cones of Σ are generated by a part of the basis of the lattice N1.

We denote the bilinear form on M ⊕ N by ·. We also denote (0, 1) ∈ M by
deg and (0, 1) ∈ N by deg∗. We call deg ·n and deg∗ ·m the degree of n ∈ N
and m ∈ M respectively. Codimension one polytopes ∆1 + deg and ∆∗1 + deg∗ are
denoted by ∆ and ∆∗ respectively. A generic hypersurface X in P is defined by a
generic collection of coefficients fm for all lattice points m ∈ ∆. It is (in general
only partial) desingularization of Proj(C[K]/f). Here f is an element of degree
one defined by

∑
m∈∆ fmx

m where x is a dummy variable used to write C[K] in a
multiplicative form.

To explain the results of [3], we need to introduce a vertex algebra associated
to the lattice M ⊕ N . As a vector space, it is isomorphic to the vector space of
the vertex algebra of 2(d + 2) free fermions and 2(d + 2) free bosons constructed
in Section 4 tensored with C[M ⊕ N ]. For any subset I of M ⊕ N we denote by
FockI the space obtained by tensoring (over C) of the vertex algebra of Section 4
and vector space C[I].

First of all, we need to define how the fields of Fock0⊕0 act on FockM⊕N . We
use the notations of [3] and denote the bosonic fields of Fock0⊕0 by m · B(z) and
n · A(z) and fermionic fields by m · Φ(z) and n · Ψ(z). Here A,B,Φ,Ψ are vector
valued, and m and n are in M ⊗ C and n ⊗ C respectively. For a fixed pair of
lattice elements (m,n), the action of fermionic fields Φ and Ψ on Fockm⊕n is simply
induced by their action on Fock0⊕0. The action of the bosonic fields is modified so
that the zero modes (m1 ·B)[0] and (n1 · A)[0] do not annihilate Fockm⊕n. Rather,
they act by a scalar multiplication by m1 · n and n1 ·m respectively.

To define state-field correspondence we still need to specify which fields of
FockM⊕N correspond to the elements of Fockm⊕n with non-zero (m,n). We denote
the element (|0〉,m⊕ n) ∈ FockM⊕N by |m,n〉, and our first goal is to describe the
field Y (|m,n〉, z). For all (m1, n1) ∈M ⊕N all modes of the field Y (|m,n〉, z) map
Fockm1⊕n1 to Fock(m+m1)⊕(n+n1). We denote the endomorphism of FockM⊕N that
commutes with all non-zero modes of A and B and sends |m1, n1〉 to |m+m1, n+n1〉
by γm,n. Then

Y (|m,n〉, z) := γm,ncm,n : e
∑

0 6=k∈Z
(−z−k/k)((m·B)[k]+(k·A)[k]) : zm·B[0]zn·A[0]

where cm,n acts on Fockm1,n1 by multiplication by (−1)m·n1 . One defines Y (a, z) for
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other elements of Fockm⊕n by inserting appropriate free fields and their derivatives
inside the normal ordering. It is not hard to see that these operators are well defined,
moreover one can show that they are mutually local and satisfy some nice OPEs.
Instead of the complicated notation above we use

Y (|m,n〉, z) := :e
∫

(m·B+n·A)(z) dz :

and similarly for other elements of Fockm⊕n. All |m,n〉 are bosonic and satisfy

Y (|m,n〉, z)Y (|m1, n1〉, w) =
:e
∫

(m·B+n·A)(z) dze
∫

(m1·B+n1·A)(w) dw :

(z − w)m·n1+m1·n

which can be Taylor expanded around z = w to give the OPEs. The details of this
calculation could be found in [10]. In general, it is straightforward to calculate OPEs
in the lattice algebra, but the resulting expressions could be quite complicated.

The vertex algebra FockM⊕N can be equipped with the following N=2 structure
of central charge ĉ = d. Notice that the rank of the lattice M is d+ 2. We will call
it Calabi-Yau N=2 structure, because we will see in a second that it is related to
the N=2 structure of the cohomology of the chiral de Rham complex of Calabi-Yau
hypersurfaces in toric varieties.

G+
CY (z) := (A · Φ)(z)− deg · ∂zΦ(z)

G−CY (z) := (B ·Ψ)(z)− deg∗ · ∂zΨ(z)

JCY (z) := :(Φ ·Ψ)(z) : + deg ·B(z)− deg∗ · A(z)

LCY (z) := :(B ·A)(z) : +
1

2
:(∂zΦ ·Ψ−Φ ·∂zΨ)(z) : −1

2
deg∗ ·∂zA(z)− 1

2
deg ·∂zB(z).

We will also need to describe a certain deformation of the vertex algebra structure
on FockM⊕N defined by the fan Σ1 which is used to define the ambient toric variety
P. Fan Σ1 naturally gives rise to a (generalized) fan Σ in N by simply extending
all of the cones of Σ1 in the direction of deg∗. One can then define a vertex algebra
structure on FockM⊕N by changing γm,n as follows.

γm,n|m1, n1〉 =

{
|m+m1, n+ n1〉 if there exists C ∈ Σ, such that n1, n ∈ C
0 otherwise

This gives a different structure of the vertex algebra, and we denote it by FockΣ
M⊕N

to distinguish it from the usual structure on FockM⊕N . Operator product expansions
of the new fields are either identical to the OPEs in FockM⊕N or vanish. The N=2
superconformal structure on this new algebra is given by the same formulas.

The following theorem is the main result of [3] in the case of smooth ambient
toric variety P.

Theorem 6.1 Let ∆ and ∆∗ be as above, and let Σ1 define a non-singular toric
variety P. Let f : (∆ ∩M) → C define a generic hypersurface X ⊂ P. We pick a
generic collection of coefficients {gn, n ∈ ∆∗∩N}. Then the cohomology of the chiral
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de Rham complex of X is isomorphic as a vertex algebra to the BRST quotient of
FockΣ

M⊕N by the BRST operator

BRST f,g :=
∮

(
∑
m∈∆

fm(m · Φ)(z) :e
∫
m·B(z) : +

∑
n∈∆∗

gn(n ·Ψ)(z) :e
∫
n·A(z) : )dz.

Moreover, the N=2 superconformal structure on H∗(MSV(X)) coincides with the
structure induced by G±CY , JCY , LCY introduced above.

We remark that BRST operator above supercommutes with the fields of N=2
algebra which allows one to induce these fields on the BRST quotient. Moreover, it
was shown in [3] that eigenvalues of L[0] are non-negative on the BRST cohomology,
even though they can definitely be negative on elements of FockΣ

M⊕N . In addition,
all eigenspaces of L[0] have finite dimension.

Notice that a nice feature of the above result is that the cohomology of the
chiral de Rham complexes for mirror symmetric toric hypersurfaces are obviously
related to each other as deformations of a single family of the vertex algebras where
one uses FockM⊕N instead of FockΣ

M⊕N . Then the only difference between mirror
pictures is that one switches the roles of M and N which amounts exactly to the
mirror involution G± → G∓, J → −J, L→ L. Besides, when P = P4 and one picks
fm and gn to be non-zero at the vertices of the simplices only, one appears to recover
the (finite quotient of) tensor product of vertex algebras with fractional charges that
corresponds to the Gepner model [7]. Some details of this correspondence are still
to be worked out, but note the paper [5].

One also observes that combinatorial description of the N=2 superconformal
vertex algebra as a BRST quotient of a certain lattice vertex algebra makes perfect
sense whether or not the ambient toric variety P is non-singular. This prompts
one to try to define chiral de Rham complex for a singular Calabi-Yau hypersurface
X = Proj(C[K]/f) according to the general philosophy that one should be able to
understand mirror symmetry without using partial crepant desingularizations, see
for example [2]. On the other hand it suggests that this chiral de Rham complex
will depend not only on the scheme structure of X but also on some mysterious
coefficients gn. In the smooth case these coefficients are rather irrelevant (all one
needs is for them to be non-zero) but in general they seem to be of importance.

Paper [3] contains a definition of a sheaf of vertex algebras MSV(X) for a
Calabi-Yau hypersurface in a toric variety. Namely, for a toric affine chart AC of
P that corresponds to a cone C1 ∈ Σ1 one considers a subcone C ⊂ K defined by
{(n1, t) ∈ K, s.t. n1 ∈ C}. Then sections of MSV(X) over the intersection of X
with AC are defined as BRST quotient of FockM⊕C by BRSTf,g. Here one induces
the vertex algebra structure from FockM⊕N to FockM⊕C and ignores n /∈ C in the
definition of BRSTf,g. Some progress is made in the singular case, but the exact
analog of 6.1 is still an open problem. However, we were able to use the results of
this analysis in the singular case to define the elliptic genus of a singular Calabi-Yau
hypersurface in a toric variety and prove that it satisfies the expected mirror duality,
see [4].
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7 Open questions

In this short section we briefly describe major open problems and minor technical
obstacles that are still to be faced in the vertex algebra approach to mirror symmetry.

The most important problem is that it is not clear how to see instanton cor-
rections in terms of the cohomology of the chiral de Rham complex of a variety
X. Geometrically, chiral de Rham complex seems to deal with the neighborhood of
the constant loops in the loop space of X, while the instanton corrections are more
global in nature. One may have to introduce some modules over the vertex algebra
H∗(MSV(X)) to deal with this difficulty. This is also related to the problem of
putting together holomorphic and antiholomorpic parts of the N=(2,2) superconfor-
mal field theory associated to a Calabi-Yau manifold. One distinct possibility, which
the author plans to explore, is that the true vertex algebra of the superconformal
theory associated to a generic Calabi-Yau hypersurface in a toric variety is BRST
quotient of FockM⊕N , and that FockΣ

M⊕N appears when one expands the correlators
around the limiting point that corresponds to the degeneration of C[M ⊕ N ] into
C[M ⊕ N ]Σ. Then one hopes to recover instanton corrections as higher terms in
this expansion.

Another big issue is a possible extension of these definitions to curves of higher
genus. This is always a highly non-trivial problem in conformal field theory, and
it is interesting to see if an explicit description could be obtained in the case of
hypersurfaces in toric varieties.

Less formidable problems include the extension of all definitions and results to
the case of singular varieties with some mild singularities. One also wants to show
that the families of vertex algebras given by Theorem 6.1 are flat in the appropriate
sense, that is the dimensions of the L[0] graded components are generically constant.
One should somehow see how GKZ hypergeometric system of differential equations
appears in the context of the above vertex algebra. Also, it was suggested by Yi-Zhi
Huang that one should expect this vertex algebra to have an invariant bilinear form
in the sense of [6].

It is our hope that the interplay of vertex algebras and algebraic geometry will
enrich both fields and will provide deep mathematical understanding of conformal
field theories that are currently only defined in terms of path integrals.
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