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Abstract

We construct explicitly regular sequences in the semigroup ring R = C[K]
of lattice points of the graded cone K. We conjecture that the quotients of R
by these sequences describe locally string-theoretic cohomology of a toroidal
singularity associated to K. As a byproduct, we give an elementary proof of
the result of Hochster that semigroup rings of rational polyhedral cones are
Cohen-Macaulay.

1 Introduction

String cohomology vector space of a variety X with Gorenstein toroidal singularities
is a rather mysterious object. It is supposed to be a chiral ring of no less mysterious
N = (2, 2) superconformal field theory constructed from X and it has known graded
dimension. However, the space itself has not been identified so far in such generality.
The goal of this paper is to present a candidate for the ”contribution of a singular
point” to this cohomology space.

The paper is organized as follows. Section 2 contains important preliminary
results on the structure of lattice points of the graded cone K. Section 3 uses these
results to show that some explicitly written sequences of elements of R = C[K] are
regular in R and in R-module Ropen = C[Kopen]. It also contains the proof of an
analog of Poincaré duality. It is worth mentioning that we give a short elementary
proof of the theorem of Hochster [13]. Finally, the last section describes the relation
of these results to Mirror Symmetry and string cohomology.

The author was inspired by recent preprints of Hosono [14] and Stienstra [16] who
clarified the relationship between the solutions of GKZ hypergeometric system and
Mirror Symmetry. The construction of this paper belongs to the A-side of Mirror
Symmetry, any B-side construction should involve solutions of GKZ systems.

One of the basic ideas of the argument has the flavor of the theory of Gröbner
bases, which the author learned from [4]. It also appears that it involves the large
complex structure limit, see for example [15].

Author would like to thank Dave Bayer and Sorin Popescu for helpful remarks.
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2 Decomposition of Cone Lattice Points

Let N be a free abelian group of rank r. Let K be a rational polyhedral cone inside
N⊗R. We will assume that K−K = N and K∩(−K) = {0}. We will also assume
that the cone K is graded, that is there exists an element deg ∈ M = Hom(N,Z)
such that the integer generators of all one-dimensional faces of the cone K have
degree 1. We will denote the interior of K by Kopen.

Another piece of data is a subset {ei}, i = 1, ..., d of the set of lattice points of
degree 1 that lie in K. The only condition on the subset is that it includes the
generators of all one-dimensional faces of K, that is∑

R≥0ei = K.

We also choose a maximum regular triangulation T based on these points ei and
denote by ψ a strictly convex function on K which is linear on the simplices of
triangulation T .

Our first goal is to construct a decomposition of the sets K ∩N and Kopen ∩N
into the disjoint union of sets Sk of the form

Sk = bk +
∑
i∈Ik

Z≥0ei

where Ik is a simplex of triangulation T of maximum dimension r and bk is a lattice
point inside

∑
i∈Ik R≥0ei.

To carry out the construction for a given cone K we fix a generic vector ξ ∈
N ⊗R that lies in Kopen. For every I ∈ T of maximum dimension, we consider the
coordinates of ξ in I, that is we look at βI,i, such that

ξ =
∑
i∈I

βI,iei.

Because of the genericity of ξ, all β-s are non-zero. We introduce the sets BI,ξ and
BI,−ξ as follows

BI,ξ = {b ∈ I ∩N, such that b =
∑
i∈I

γiei with 0 < γi ≤ 1 if βI,i < 0

and 0 ≤ γi < 1 if βI,i > 0},

BI,−ξ = {b ∈ I ∩N, such that b =
∑
i∈I

γiei with 0 < γi ≤ 1 if βI,i > 0

and 0 ≤ γi < 1 if βI,i < 0}.

Proposition 2.1 In the above notations the following statements hold.
(a) The set K∩N is the disjoint union of sets b+

∑
i∈I Z≥0ei taken over all I ∈ T

of maximum dimension and all b ∈ BI,ξ.
(b) The set Kopen ∩N is the disjoint union of sets b+

∑
i∈I Z≥0ei taken over all

I ∈ T of maximum dimension and all b ∈ BI,−ξ.
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Proof. (a) If n ∈ K ∩N , consider n+ εξ for very small ε > 0. It lies in
∑
i∈I R≥0ei

for some maximum simplex I ∈ T . Therefore, we have

n+ εξ =
∑
i∈I

αi(ε)ei

and
n =

∑
i∈I

(αi(ε)− εβI,i)ei

where αi(ε) > 0. Notice that (αi(ε) − εβI,i) are independent of ε. Therefore, they
are always nonnegative. Moreover, they are positive for such i that βI,i < 0. This
easily implies that n ∈ b+

∑
i∈I Z≥0ei for some b ∈ BI,ξ.

Conversely, if n ∈ b +
∑
i∈I Z≥0ei with b ∈ BI,ξ, then for small ε > 0, the vector

n + εξ lies in
∑
i∈I R>0ei, which determines I uniquely. Besides, there are clearly

no intersections between b1 +
∑
i∈I Z≥0ei and b2 +

∑
i∈I Z≥0ei for different b1 and b2

from BI,ξ. The proof of (a) could now be finished by observation that if n+ εξ lies
in some

∑
i∈I R>0ei for small ε, then n lies in K.

(b) The proof is completely analogous. We use the fact that n − εξ lies in one
of
∑
i∈I R>0ei if and only if n lies in Kopen. 2

Corollary 2.2 Let us introduce polynomials

S(t) = (1− t)r
∑

n∈K∩N
tdeg(n) and T (t) = (1− t)r

∑
n∈Kopen∩N

tdeg(n).

Then
S(t) =

∑
I,b∈BI,ξ

tdeg(b), T (t) =
∑

I,b∈BI,−ξ
tdeg(b).

Proof. Follows immediately from the above proposition. 2

Notice that the standard duality formula

S(t) = trT (t−1)

follows immediately from this corollary together with the definitions of BI,ξ and
BI,−ξ.

In the next section we will use the following result. Let us fix a lattice element
n ∈ K. We look for all possible ways of representing n in the form

n = b+
d∑
i=1

kiei

where ki are non-negative integers and b ∈ ∪BI,ξ. The decomposition of K ∩ N
above gives us one such representation

n = b0 +
∑
i∈I0

liei.

We claim that it has special properties with respect to the convex function ψ.
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Proposition 2.3 If n = b+
∑d
i=1 kiei then for small ε > 0

ψ(n+ εξ) ≥ ψ(b+ εξ) +
d∑
i=1

kiψ(ei)

and equality holds if and only if b = b0, ki = li for i ∈ I0, ki = 0 for i /∈ I0.

Proof. The inequality is the basic property of the convex function ψ. Equality holds
if and only if there exists a maximum simplex I such that the cone

∑
i∈I R≥0ei

contains b+εξ and all ei for which ki are non-zero. Therefore, n+εξ ∈ ∑i∈I R≥0ei and
the proof of Proposition 2.1(a) shows that I = I0. Because of b+ εξ ∈ ∑i∈I0 R≥0ei,
the lattice element b lies in b1 +

∑
i∈I0 Z≥0ei for some b1 ∈ BI0,ξ. Because the union

of such sets is disjoint, we have b = b1. So b ∈ BI,ξ and therefore b must equal b0.
2

We will also need a similar statement for Kopen.

Proposition 2.4 Consider a lattice element n in Kopen. If n = b +
∑d
i=1 kiei for

some b ∈ ∪BI,−ξ then for small ε > 0

ψ(n− εξ) ≥ ψ(b− εξ) +
d∑
i=1

kiψ(ei)

and equality holds if and only if b = b0, ki = li for i ∈ I0, ki = 0 for i /∈ I0, where
n = b0 +

∑
i∈I0 liei is given by Proposition 2.1(b).

Proof. The proof of this proposition is completely analogous to the proof of the
previous one. 2

3 Regular Sequences

Let us fix a basis m1, ...,mr of the vector space M ⊗ C where M = Hom(N,Z).
We introduce the semigroup ring R = C[K] and for every n ∈ K we denote the
corresponding element in R by xn. We also introduce r elements of R by the formula

Zj =
d∑
i=1

< mj, ei > e2πiaixi.

Here ai are some numbers assigned to the lattice elements ei and the elements in
R that correspond to ei are denoted by xi. These Zj-s act on R itself, and also on
R-module Ropen = C[Kopen], which is an ideal in R.

The goal of this section is to show that for a generic choice of ai the sequence
Z1, Z2, ..., Zr is regular on both R and Ropen. The following proposition is crucial.

Proposition 3.1 Denote by Z the ideal generated by Z1, ..., Zr. Then the following
statements hold for generic ai.

(a) Images of xb for b ∈ ∪BI,ξ generate R/ZR as C-vector space.
(b) Images of xb for b ∈ ∪BI,−ξ generate Ropen/ZRopen as C-vector space.
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Proof. (a) We introduce the ring R1 = C[x1, ..., xd] and consider R and R/ZR
as R1-modules. Proposition 2.1 implies that these R1-modules are generated by
xb, b ∈ ∪BI,ξ. Therefore, for each q we have a surjective map

⊕b∈∪BI,ξR1[xb]→ R/ZR→ 0 (1)

of R1-modules.
The kernel of map (1) contains generators of two types.

• Binomial relations. Whenever we have an identity in the lattice N

n = b1 +
d∑
i=1

ki1ei = b2 +
d∑
i=1

ki2ei

we have a generator of the form

d∏
i=1

xki1i [xb1 ]−
d∏
i=1

xki2i [xb2 ].

• Linear relations. We have generators Zjr1[xb] for j = 1, ..., d, b ∈ ∪BI,ξ, r1 ∈ R1.
It is enough to show that ⊕C[xb] maps surjectively on the part of R/ZR of

degree less than some fixed big number D. Really, it is enough to show that any
element of form xi[x

b] can be re-expressed as
∑
b αb[x

b] modulo above relations, and
degrees of xb are less than r.

Let us pick a parameter q and choose

e2πiai = qψ(ei).

We will also make the following change of variables for each non-zero q. We introduce

(xi)new = qψ(ei)xi, [xb]new = qψ(b+εξ)[xb]

where ε is chosen to be small enough to fit in Proposition 2.3 for all n of degree less
than D. Then we rewrite the generators of the kernel of map (1) in terms of new
variables.
• Binomial relations. Whenever we have an identity in the lattice N

n = b1 +
d∑
i=1

ki1ei = b2 +
d∑
i=1

ki2ei

we have a generator of the form

qψ(b1+εξ)+
∑

i
ki1ψ(ei)−ψ(b2+εξ)−

∑
i
ki2ψ(ei)

d∏
i=1

(xi)
ki1
new[xb1 ]new −

d∏
i=1

(xi)
ki2
new[xb2 ]new.

• Linear relations. We have generators

Zjr1[xb]new =
d∑
i=1

< mj, ei > (xi)newr1[xb]new.
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Among the binomial relations, we will pick only the ones where n = b1+
∑d
i=1 ki1ei

is given by the decomposition of Proposition 2.1. Then, by Proposition 2.3, the
power of q is positive, unless b2 = b1, k·2 = k·1.

Pick a basis of ⊕b(R1[xb]new)deg<D that consists of the products of monomials
in R1 and [xb]new. For every q we can introduce a matrix A(q) which describes the
map to ⊕b(R1[xb]new)deg<D from the direct sum

⊕bC[xb]new ⊕binomial C[binomial] ⊕j,b,ri CZjri[x
b]new

where the direct sum is over the binomial relations that we have just picked and ri
are chosen to be monomials in xnew of degree less than D.

To show that the vector space ⊕bC[xb]new surjects onto (R/ZR)deg<D, it is
enough to demonstrate that the matrix A(q) has full rank. Notice, that we have
picked relations in such a way that A(q) has a limit A(0) as q → 0. Therefore, it
will be enough to show that A(0) has full rank.

The binomial relations become monomial in the limit q → 0 and hence the
image of A(0) contains all basis elements of ⊕b(R1[xb]new)deg<D except, perhaps, the
elements of the form

∏
i∈I(xi)

ki
new[xb]new for b ∈ BI,ξ. However, if we use the linear

relations, we can express (xi)new, i ∈ I in terms of other (xi)new, which shows that
all the basis elements except for [xb]new themselves are in the image of A(0). And
since [xb]new are also included in the image of A(0) by construction, we have the
desired surjectivity of A(0), which finishes the proof of (a).

The proof of (b) is completely analogous. 2

From now on we assume that ai are generic. It is easy now to prove that Z1, ..., Zr
form a regular sequence on R and Ropen. We thus reprove for graded cones the result
of Hochster [13] which states that R is Cohen-Macaulay.

Proposition 3.2 The sequence Z1, ..., Zr is regular on R and Ropen. Thus Ropen is
a Cohen-Macaulay module over the Cohen-Macaulay ring R.

Proof. Let us show that Z1, ..., Zr is regular on R. For every two power series f(t)
and g(t) we say that f(t) > g(t) if the first non-zero coefficient of f(t) − g(t) is
positive.

For each k = 0, ..., r we denote

fk(t) =
∑
l≥0

tldimC(R/(Z1, ..., Zk)R)deg=l .

The exact sequence

R/(Z1, ..., Zk)R→ R/(Z1, ..., Zk)R→ R/(Z1, ..., Zk+1)R→ 0

implies that
fk+1(t) ≥ fk(t).

On the other hand, the fact that ⊕b∈∪BI,ξC[xb] surjects onto R/ZR implies that

the power series (in fact, it is a polynomial) fr(t) is less or equal to
∑
I,b∈BI,ξ t

deg(b)

which is equal to (1− t)rf0(t) by Corollary 2.2. Therefore, all intermediate inequal-
ities are equalities, which shows that the above sequences are exact on the left.

The same argument works for Ropen. 2
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Remark 3.3 Theorem of Hochster could be proved in full generality using our
methods. Really, for any cone K we can pick points ei on one-dimensional faces that
lie in the same hyperplane deg = 1 for some deg ∈M ⊗Q. Then the only difference
is that deg(n) is allowed to take values in 1

l
Z for some l, which also requires the use

of fractional powers of t. However, this does not present any problems, because the
integrality of deg(n) was never used.

Corollary 3.4 Surjective maps of Proposition 3.1 are isomorphisms.

Proof. It follows from the proof of Proposition 3.2 that graded dimensions of these
spaces are the same, so surjectivity implies bijectivity. 2

Remark 3.5 Regularity of the sequence Z was used in a special case without proof
in the paper [11]. In the later correction note [12] the result is stated explicitly, but
the proof is inadequate.

Because of the duality S(t) = trT (t−1), we have dimC(Ropen/ZRopen)deg=r = 1.
We denote by ϕ a surjective map Ropen/ZRopen → C that sends (Ropen/ZRopen)deg<r

to zero. Then we have a pairing

(R/ZR)⊗C (Ropen/ZRopen)→ C

which maps x⊗ y to ϕ(xy).

Proposition 3.6 (Poincaré Duality) The pairing

(R/ZR)⊗C (Ropen/ZRopen)→ C

is non-degenerate.

Proof. We need to show that for every element x ∈ Ropen/ZRopen the principal
R-submodule it generates inside Ropen/ZRopen is non-zero at degree r. Let us pick
a homogeneous x whose principal submodule is zero in degree r, which has the
highest degree (less than r) among all x with this property. Denote by R>0 the
maximum ideal in R. For every homogeneous y ∈ R>0 the principal submodule of
xy is zero in degree r, but xy has a higher degree, so it must be zero. This implies
that there is a non-trivial homomorphism from C = R/R>0 to Ropen/ZRopen, which
maps 1 to x. Since the top element certainly provides us with a homomorphism
C→ Ropen/ZRopen, it suffices to show that

HomR(C, Ropen/ZRopen) ∼= C.

Now we use the well-known result (see, for example, [6]) that Ropen is the canon-
ical module for R. Hence

ExtRi (C, Ropen) ∼= 0, i 6= r, ExtRr (C, Ropen) ∼= C,

which is a standard property of canonical modules, see [5]. Now it can be easily
deduced from the Koszul complex associated to Z and Ropen that

HomR(C, Ropen/ZRopen) ∼= ExtRr (C, Ropen) ∼= C,

which completes the proof. 2
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4 Relation to String Cohomology

Now it is time to explain the title of the paper. String-theoretic cohomology of a
variety X with toroidal Gorenstein singularities is supposed to be a generalization
of the usual cohomology H∗(X,C). However, no general construction exists at this
time.

Physicists like to think of the cohomology of a smooth projective variety X as
of a chiral ring of the superconformal field theory which they call A model of X (cf.
[17]). Unfortunately, their definition of this object uses path integrals over spaces
of all maps from a surface to X which are mathematically ill-defined. In addition,
physicists introduce A models for some varieties with Gorenstein singularities that
admit a crepant resolution and calculate the chiral rings in several examples (cf.
[10]). This suggests that there exists a mathematical notion of string cohomology
vector spaces of varieties with Gorenstein toroidal singularities which should be
defined directly without any reference to path integrals. It is expected to carry
a Hodge structure and to satisfy Poincare duality. In the smooth case it should
coincide with the usual cohomology.

A very nice formula for the graded dimension of string-theoretic cohomology
vector spaces was suggested by Batyrev and Dais in their paper [3]. It was later ver-
ified in [2] that this definition of string-theoretic Hodge numbers is compatible with
mirror duality of Calabi-Yau hypersurfaces and complete intersections in Gorenstein
toric Fano varieties.

Definition 4.1 ([3]) Let X = ∪i∈IXi be a stratified algebraic variety over C with
at most Gorenstein toroidal singularities such that for any i ∈ I the singularities
of X along the stratum Xi of codimension ki are defined by a ki-dimensional finite
rational polyhedral cone Ki; that is X is locally isomorphic to

Cdim(X)−ki × UKi

at each point x ∈ Xi where UKi is a ki-dimensional affine toric variety which is asso-
ciated with the cone Ki (see [6]). Batyrev and Dais have introduced the polynomial

Est(X;u, v) =
∑
i∈I

E(Xi;u, v) · SKi(uv)

where E(Xi;u, v) are E-polynomials of Danilov and Khovanskîi, see [7]. It is called
the string-theoretic E-polynomial of X. If we write Est(X;u, v) in form

Est(X;u, v) =
∑
p,q

ap,qu
pvq,

then the numbers hp,qst (X) = (−1)p+qap,q are called the string-theoretic Hodge num-
bers of X.

It is known that these numbers are nonnegative and satisfy Poincare duality.
Moreover, when X admits a crepant toroidal desingularization, string Hodge num-
bers of X coincide with the usual Hodge numbers of the desingularization (cf. [3].)
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We can compare this definition with the calculation of the graded dimension of
the intersection cohomology of X (cf. [8, 9]). The only difference is that for inter-
section cohomology polynomials SKi are replaced by polynomials GKi which depend
on the combinatorics of the face poset of Ki. This suggests that there should exist
a complex of sheaves SC∗(X) on X analogous to the intersection complex IC∗(X)
whose hypercohomology is precisely the string cohomology of X. The cohomology
sheaves of SC∗ should be locally constant on the strata and their dimensions should
be given by SKi(t

2).
We suggest that locally over a point x in Xi the cohomology of SC∗(X) is given

by C[Ki]/ZC[Ki] where Z is the regular sequence considered in Section 3. Of course,
to define such a sequence one needs to choose a generic collection of coefficients {aj}
assigned to all points of degree one in all cones Ki. We emphasize that the complex
SC∗(X) is not constructed yet and that its construction will require some further
work. The peculiar feature of our approach is that instead of one space of string
theoretic cohomology we expect to get the whole family of such spaces, depending
on the choice of {aj}.

Let us make this more precise.

Definition 4.2 Let X be a stratified variety as above and let {aj} be a generic
collection of coefficients for all points of degree one in all cones Ki. If a stratum Xk

lies in the closure of the stratum Xl then Kl is a face in Kk. We assume that the
collection {aj} is compatible with this face inclusion, that is for any point of Kl the
corresponding coefficients in Kk and Kl are the same. Then one can construct a
locally constant on strata sheaf A on X as follows. The germ of A over a point x in
Xi is given by C[Ki]/ZC[Ki] where Z is the regular sequence constructed in Section
3. For a small Zariski open neighborhood U of x the sections of A are collections
of elements of C[Kl]/ZC[Kl] for the corresponding cones Kl (which are faces of Ki)
which agree under the natural surjective maps

C[Ki]/ZC[Ki]→ C[Kl]/ZC[Kl]

induced from the projection to the face Kl.

The sheaf A is naturally graded by the degree in Ki. We will denote its degree
d component by Ad. For instance, A0 is simply the constant sheaf C(X).

Conjecture 4.3 For a generic choice of {aj} there exists a complex of coherent
sheaves SC∗(X) on X whose odd-dimensional cohomology sheaves are zero and
whose even-dimensional cohomology sheaves are

H2dSC∗(X) = Ad.

String cohomology of X will then be defined as the hypercohomology of SC∗(X).

Remark 4.4 If the complex SC∗(X) in the above conjecture successfully con-
structed, one gets a spectral sequence from ⊕Hk(Ad) to ⊕Hk+2d

string(X). We expect
it to degenerate immediately in the case when X has only quotient singularities.
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When X admits a crepant desingularization, this spectral sequence should be sim-
ilar to the Leray spectral sequence for the constant sheaf on the desingularization.
Hopefully, this could be made precise when the complex SC∗(X) is constructed.

Remark 4.5 The original motivation behind the idea of a family of string coho-
mology spaces is the following. Physicists claim that A model superconformal field
theory depends on both complex and Kähler parameters when X is smooth. When
X is a Calabi-Yau hypersurface in a Gorenstein toric Fano variety, the choice of the
Kähler structure roughly amounts to the choice of an element of the mirror family,
see [1] for precise definitions of mirror duality in the toric setting. This amounts
to the choice of coefficients {ai} for all points of degree one in the fan defining the
ambient toric variety. So it is natural no allow this data to be a part of the definition
of string cohomology.
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