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Abstract. We propose a construction of string cohomology spaces for Calabi-

Yau hypersurfaces that arise in Batyrev’s mirror symmetry construction. The

spaces are defined explicitly in terms of the corresponding reflexive polyhedra
in a mirror-symmetric manner. We draw connections with other approaches

to the string cohomology, in particular with the work of Chen and Ruan.
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1. Introduction

The notion of orbifold cohomology has appeared in physics as a result of studying
the string theory on orbifold global quotients, (see [DiHVW]). In addition to the
usual cohomology of the quotient, this space was supposed to include the so-called
twisted sectors, whose existence was predicted by the modular invariance condition
on the partition function of the theory. Since then, there have been several attempts
to give a rigorous mathematical formulation of this cohomology theory. The first
two, due to [BDa] and [B3], tried to define the topological invariants of certain
algebraic varieties (including orbifold global quotients) that should correspond to
the dimensions of the Hodge components of a conjectural string cohomology space.
These invariants should have the property arising naturally from physics: they are
preserved by partial crepant resolutions; moreover, they coincide with the usual
Hodge numbers for smooth varieties. Also, these invariants must be the same as
those defined by physicists for orbifold global quotients. In [B3, B4], Batyrev has
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successfully solved this problem for a large class of singular algebraic varieties. The
first mathematical definition of the orbifold cohomology space was given in [ChR]
for arbitrary orbifolds. Moreover, this orbifold cohomology possesses a product
structure arising as a limit of a natural quantum product. It is still not entirely
clear if the dimensions of the Chen-Ruan cohomology coincide with the prescription
of Batyrev whenever both are defined, but they do give the same result for reduced
global orbifolds.

In this paper, we propose a construction of string cohomology spaces for Calabi-
Yau hypersurfaces that arise in the Batyrev mirror symmetry construction (see
[B2]), with the spaces defined rather explicitly in terms of the corresponding re-
flexive polyhedra. A peculiar feature of our construction is that instead of a single
string cohomology space we construct a finite-dimensional family of such spaces,
which is consistent with the physicists’ picture (see [G]). We verify that this con-
struction is consistent with the previous definitions in [BDa], [B3] and [ChR], in
the following sense. The (bigraded) dimension of our space coincides with the def-
initions of [BDa] and [B3]. In the case of hypersurfaces that have only orbifold
singularities, we recover Chen-Ruan’s orbifold cohomology as one special element
of this family of string cohomology spaces. We also conjecture a partial natural
ring structure on our string cohomology space, which is in correspondence with the
cohomology ring of crepant resolutions. This may be used as a real test of the Chen-
Ruan orbifold cohomology ring. We go further, and conjecture the B-model chiral
ring on the string cohomology space. This is again consistent with the description
of the B-model chiral ring of smooth Calabi-Yau hypersurfaces in [M2].

Our construction of the string cohomology space for Calabi-Yau hypersurfaces is
motivated by Mirror Symmetry. Namely, the description in [M3] of the cohomology
of semiample hypersurfaces in toric varieties applies to the smooth Calabi-Yau
hypersurfaces in [B2]. Analysis of Mirror Symmetry on this cohomology leads to a
natural construction of the string cohomology space for all semiample Calabi-Yau
hypersurfaces. As already mentioned, our string cohomology space depends not
only on the complex structure (the defining polynomial f), but also on some extra
parameter we call ω. For special values of this parameter of an orbifold Calabi-Yau
hypersurface, we get the orbifold Dolbeault cohomology of [ChR]. However, for non-
orbifold Calabi-Yau hypersurfaces, there is no natural special choice of ω, which
means that the general definition of the string cohomology space should depend
on some mysterious extra parameter. In the situation of Calabi-Yau hypersurfaces,
the parameter ω corresponds to the defining polynomial of the mirror Calabi-Yau
hypersurface. In general, we expect that this parameter should be related to the
“stringy complexified Kähler class”, which is yet to be defined.

In an attempt to extend our definitions beyond the Calabi-Yau hypersurface case,
we give a conjectural definition of string cohomology vector spaces for stratified
varieties with Q-Gorenstein toroidal singularities that satisfy certain restrictions
on the types of singular strata. This definition involves intersection cohomology
of the closures of strata, and we check that it produces spaces of correct bigraded
dimension. It also reproduces orbifold cohomology of a Q-Gorenstein toric variety
as a special case.

Here is an outline of our paper. In Section 2, we examine the connection be-
tween the original definition of the string-theoretic Hodge numbers in [BDa] and
the stringy Hodge numbers in [B3]. We point out that these do not always give
the same result and argue that the latter definition is the more useful one. In
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Section 3, we briefly review the mirror symmetry construction of Batyrev, mainly
to fix our notations and to describe the properties we will use in the derivation of
the string cohomology. Section 4 describes the cohomology of semiample hypersur-
faces in toric varieties and explains how mirror symmetry provides a conjectural
definition of the string cohomology of Calabi-Yau hypersurfaces. It culminates in
Conjecture 4.8, where we define the stringy Hodge spaces of semiample Calabi-Yau
hypersurfaces in complete toric varieties. We spend most of the remainder of the
paper establishing the expected properties of the string cohomology space. Sec-
tions 5 and 6 calculate the dimensions of the building blocks of our cohomology
spaces. In Section 6, we develop a theory of deformed semigroup rings which may
be of independent interest. This allows us to show in Section 7 that Conjecture
4.8 is compatible with the definition of the stringy Hodge numbers from [B3]. In
the non-simplicial case, this requires the use of G-polynomials of Eulerian posets,
whose relevant properties are collected in the Appendix. Having established that
the dimension is correct, we try to extend our construction to the non-hypersurface
case. Section 8 gives another conjectural definition of the string cohomology vector
space in a somewhat more general situation. It hints that the intersection coho-
mology and the perverse sheaves should play a prominent role in future definitions
of string cohomology. In Section 9, we connect our work with that of Chen-Ruan
[ChR] and Poddar [P]. Finally, in Section 10, we provide yet another description
of the string cohomology of Calabi-Yau hypersurfaces, which was inspired by the
vertex algebra approach to Mirror Symmetry.

Acknowledgments. We thank Victor Batyrev, Robert Friedman, Mainak Poddar,
Yongbin Ruan and Richard Stanley for helpful conversations and useful references.
The second author also thanks the Max-Planck Institut für Mathematik in Bonn
for its hospitality and support.

2. String-theoretic and stringy Hodge numbers

The string-theoretic Hodge numbers were first defined in the paper of Batyrev
and Dais (see [BDa]) for varieties with Gorenstein toroidal or quotient singularities.
In subsequent papers [B3, B4] Batyrev defined stringy Hodge numbers for arbitrary
varieties with log-terminal singularities. To our knowledge, the relationship between
these two concepts has never been clarified in the literature. The goal of this section
is to show that the string-theoretic Hodge numbers coincide with the stringy ones
under some conditions on the singular strata.

We begin with the definition of the string-theoretic Hodge numbers.

Definition 2.1. [BDa] Let X =
⋃
i∈I Xi be a stratified algebraic variety over C

with at most Gorenstein toroidal singularities such that for each i ∈ I the singular-
ities of X along the stratum Xi of codimension ki are defined by a ki-dimensional
finite rational polyhedral cone σi; i.e., X is locally isomorphic to

C
k−ki × Uσi

at each point x ∈ Xi where Uσi is a ki-dimensional affine toric variety which is
associated with the cone σi (see [D]). Then the polynomial

EBD
st (X;u, v) :=

∑
i∈I

E(Xi;u, v) · S(σi, uv)
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is called the string-theoretic E-polynomial of X. Here,

S(σi, t) := (1− t)dimσi
∑
n∈σi

tdegn = (t− 1)dimσi
∑

n∈intσi

t−degn

where deg is the linear function on σi that takes value 1 on the generators of
one-dimensional faces of σi, and intσi is the relative interior of σi. If we write
Est(X;u, v) in the form

EBD
st (X;u, v) =

∑
p,q

ap,qu
pvq,

then the numbers hp,q(BD)
st (X) := (−1)p+qap,q are called the string-theoretic Hodge

numbers of X.

Remark 2.2. The E-polynomial in the above definition is defined for an arbitrary
algebraic variety X as

E(X;u, v) =
∑
p,q

ep,qupvq,

where ep,q =
∑
k≥0(−1)khp,q(Hk

c (X)).

Stringy Hodge numbers of X are defined in terms of the resolutions of its sin-
gularities. In general, one can only define the E-function in this case, which may
or not be a polynomial. We refer to [KoMo] for the definitions of log-terminal
singularities and related issues.

Definition 2.3. [B3] Let X be a normal irreducible algebraic variety with at worst
log-terminal singularities, ρ : Y → X a resolution of singularities such that the
irreducible components D1, . . . , Dr of the exceptional locus is a divisor with simple
normal crossings. Let αj > −1 be the discrepancy of Dj , see [KoMo]. Set I :=
{1, . . . , r}. For any subset J ⊂ I we consider

DJ :=
{ ⋂

j∈J Dj if J 6= ∅
Y if J = ∅ and D◦J := DJ \

⋃
j∈ I\J

Dj .

We define an algebraic function Est(X;u, v) in two variables u and v as follows:

Est(X;u, v) :=
∑
J⊂I

E(D◦J ;u, v)
∏
j∈J

uv − 1
(uv)aj+1 − 1

(it is assumed
∏
j∈J to be 1, if J = ∅). We call Est(X;u, v) the stringy E-function

of X. If Est(X;u, v) is a polynomial, define the stringy Hodge numbers the same
way as Definition 2.1 does.

It is not obvious at all that the above definition is independent of the choice of
the resolution. The original proof of Batyrev uses a motivic integration over the
spaces of arcs to relate the E-functions obtained via different resolutions. Since the
work of D. Abramovich, K. Karu, K. Matsuki, J. W lodarsczyk [AKaMW], it is now
possible to check the independence from the resolution by looking at the case of a
single blowup with a smooth center compatible with the normal crossing condition.

Lemma 2.4. Let X be a disjoint union of strata Xi, which are locally closed in
Zariski topology, and let ρ be a resolution as in Definition 2.3. For each Xi consider

Est(Xi ⊆ X;u, v) :=
∑
J⊂I

E(D◦J ∩ ρ−1(Xi);u, v)
∏
j∈J

uv − 1
(uv)aj+1 − 1

.
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Then this E-function is independent of the choice of the resolution Y . The E-
function of X decomposes as

Est(X;u, v) =
∑
i

Est(Xi ⊆ X;u, v).

Proof. Each resolution of X induces a resolution of the complement of X̄i. This
shows that for each Xi the sum∑

j,Xj⊆X̄i

Est(Xj ⊆ X;u, v)

is independent from the choice of the resolution and is thus well-defined. Then one
uses the induction on dimension of Xi. The last statement is clear. �

Remark 2.5. It is a delicate question what data are really necessary to calculate
Est(Xi ⊆ X;u, v). It is clear that the knowledge of a Zariski open set of X contain-
ing Xi is enough. However, it is not clear whether it is enough to know an analytic
neighborhood of Xi.

We will use the above lemma to show that the string-theoretic Hodge numbers
and the stringy Hodge numbers coincide in a wide class of examples.

Proposition 2.6. Let X =
⋃
iXi be a stratified algebraic variety with at worst

Gorenstein toroidal singularities as in Definition 2.1. Assume in addition that for
each i there is a desingularization Y of X so that its restriction to the preimage of
Xi is a locally trivial fibration in Zariski topology. Moreover, for a point x ∈ Xi the
preimage in Y of an analytic neighborhood of x is complex-analytically isomorphic to
a preimage of a neighborhood of {0} in Uσi under some resolution of singularities of
Uσi , times a complex disc, so that the isomorphism is compatible with the resolution
morphisms. Then

EBD
st (X;u, v) = Est(X;u, v).

Proof. Since E-polynomials are multiplicative for Zariski locally trivial fibrations
(see [DKh]), the above assumptions on the singularities show that

Est(Xi ⊆ X;u, v) = E(Xi;u, v)Est({0} ⊆ Uσi ;u, v).

We have also used here the fact that since the fibers are projective, the analytic
isomorphism implies the algebraic one, by GAGA. By the second statement of
Lemma 2.4, it is enough to show that

Est({0} ⊆ Uσi ;u, v) = S(σi, uv).

This result follows from the proof of [B3], Theorem 4.3 where the products∏
j∈J

uv − 1
(uv)aj+1 − 1

are interpreted as a geometric series and then as sums of tdeg(n) over points n of
σi. �

Corollary 2.7. String-theoretic and stringy Hodge numbers coincide for nonde-
generate hypersurfaces (complete intersections) in Gorenstein toric varieties.

Proof. Indeed, in this case, the toric desingularizations of the ambient toric variety
induce the desingularizations with the required properties. �



6 LEV A. BORISOV AND ANVAR R. MAVLYUTOV

We will keep this corollary in mind and from now on will silently transfer all the
results on string-theoretic Hodge numbers of hypersurfaces and complete intersec-
tions in toric varieties in [BBo], [BDa] to their stringy counterparts.

Remark 2.8. An example of the variety where string-theoretic and stringy Hodge
numbers differ is provided by the quotient of C2 × E by the finite group of order
six generated by

r1 : (x, y; z) 7→ (xe2πi/3, ye−2πi/3; z), r2 : (x, y; z) 7→ (y, x; z + p)

where (x, y) are coordinates on C2, z is the uniformizing coordinate on the elliptic
curve E and p is a point of order two on E. In its natural stratification, the quotient
has a stratum of A2 singularities, so that going around a loop in the stratum results
in the non-trivial automorphism of the singularity.

Remark 2.9. We expect that the stringy Hodge numbers of algebraic varieties
with abelian quotient singularities coincide with the dimensions of their orbifold
cohomology, [ChR]. This is not going to be true for the string-theoretic Hodge
numbers. Also, the latter numbers are not preserved by the partial crepant res-
olutions as required by physics, see the above example. As a result, we believe
that the stringy Hodge numbers are the truly interesting invariant, and that the
string-theoretic numbers is a now obsolete first attempt to define them.

3. Mirror symmetry construction of Batyrev

In this section, we review the mirror symmetry construction from [B2]. We
can describe it starting with a semiample nondegenerate (transversal to the torus
orbits) anticanonical hypersurface X in a complete simplicial toric variety PΣ. Such
a hypersurface is Calabi-Yau. The semiampleness property produces a contraction
map, the unique properties of which are characterized by the following statement.

Proposition 3.1. [M1] Let PΣ be a complete toric variety with a big and nef divisor
class [X] ∈ Ad−1(PΣ). Then, there exists a unique complete toric variety PΣX with
a toric birational map π : PΣ −→ PΣX , such that Σ is a subdivision of ΣX , π∗[X] is
ample and π∗π∗[X] = [X]. Moreover, if X =

∑
ρ aρDρ is torus-invariant, then ΣX

is the normal fan of the associated polytope

∆X = {m ∈M : 〈m, eρ〉 ≥ −aρ for all ρ} ⊂MR.

Remark 3.2. Our notation is a standard one taken from [BC, C2]: M is a lattice of
rank d; N = Hom(M,Z) is the dual lattice; MR and NR are the R-scalar extensions
of M and N ; Σ is a finite rational polyhedral fan in NR; PΣ is a d-dimensional
toric variety associated with Σ; Σ(k) is the set of all k-dimensional cones in Σ; eρ
is the minimal integral generator of the 1-dimensional cone ρ ∈ Σ corresponding to
a torus invariant irreducible divisor Dρ.

Applying Proposition 3.1 to the semiample Calabi-Yau hypersurface, we get
that the push-forward π∗[X] is anticanonical and ample, whence, by Lemma 3.5.2
in [CKat], the toric variety PΣX is Fano, associated with the polytope ∆ ⊂ MR of
the anticanonical divisor

∑
ρDρ on PΣ. Then, [M1, Proposition 2.4] shows that

the image Y := π(X) is an ample nondegenerate hypersurface in PΣX = P∆. The
fact that P∆ is Fano means by Proposition 3.5.5 in [CKat] that the polytope ∆ is
reflexive, i.e., its dual

∆∗ = {n ∈ NR : 〈m,n〉 ≥ −1 for m ∈ ∆}
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has all its vertices at lattice points in N , and the only lattice point in the interior of
∆∗ is the origin 0. Now, consider the toric variety P∆∗ associated to the polytope ∆∗

(the minimal integral generators of its fan are precisely the vertices of ∆). Theorem
4.1.9 in [B2] says that an anticanonical nondegenerate hypersurface Y ∗ ⊂ P∆∗ is a
Calabi-Yau variety with canonical singularities. The Calabi-Yau hypersurface Y ∗

is expected to be a mirror of Y . In particular, they pass the topological mirror
symmetry test for the stringy Hodge numbers:

hp,qst (Y ) = hd−1−p,q
st (Y ∗), 0 ≤ p, q ≤ d− 1,

by [BBo, Theorem 4.15]. Moreover, all crepant partial resolutions X of Y have the
same stringy Hodge numbers:

hp,qst (X) = hp,qst (Y ).

Physicists predict that such resolutions of Calabi-Yau varieties have indistinguish-
able physical theories. Hence, all crepant partial resolutions of Y may be called the
mirrors of crepant partial resolutions of Y ∗. To connect this to the classical for-
mulation of mirror symmetry, one needs to note that if there exist crepant smooth
resolutions X and X∗ of Y and Y ∗, respectively, then

hp,q(X) = hd−1−p,q(X∗), 0 ≤ p, q ≤ d− 1,

since the stringy Hodge numbers coincide with the usual ones for smooth Calabi-Yau
varieties. The equality of Hodge numbers is expected to extend to an isomorphism
(mirror map) of the corresponding Hodge spaces, which is compatible with the
chiral ring products of A and B models (see [CKat] for more details).

4. String cohomology construction for Calabi-Yau hypersurfaces

In this section, we show how the description of cohomology of semiample hyper-
surfaces in [M3] leads to a construction of the string cohomology space of Calabi-Yau
hypersurfaces. We first review the building blocks participating in the description
of the cohomology in [M3], and then explain how these building blocks should in-
terchange under mirror symmetry for a pair of smooth Calabi-Yau hypersurfaces in
Batyrev’s mirror symmetry construction. Mirror symmetry and the fact that the
dimension of the string cohomology is the same for all partial crepant resolutions
of ample Calabi-Yau hypersurfaces leads us to a conjectural description of string
cohomology for all semiample Calabi-Yau hypersurfaces. In the next three sections,
we will prove that this space has the dimension prescribed by [BDa].

The cohomology of a semiample nondegenerate hypersurface X in a complete
simplicial toric variety PΣ splits into the toric and residue parts:

H∗(X) = H∗toric(X)⊕H∗res(X),

where the first part is the image of the cohomology of the ambient space, while
the second is the residue map image of the cohomology of the complement to the
hypersurface. By [M2, Theorem 5.1],

H∗toric(X) ∼= H∗(PΣ)/Ann(X) (1)

where Ann(X) is the annihilator of the class [X] ∈ H2(PΣ). The cohomology of
PΣ is isomorphic to

C[Dρ : ρ ∈ Σ(1)]/(P (Σ) + SR(Σ)),
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where

P (Σ) =
〈 ∑
ρ∈Σ(1)

〈m, eρ〉Dρ : m ∈M
〉

is the ideal of linear relations among the divisors, and

SR(Σ) =
〈
Dρ1 · · ·Dρk : {eρ1 , . . . , eρk} 6⊂ σ for all σ ∈ Σ

〉
is the Stanley-Reisner ideal. Hence, H∗toric(X) is isomorphic to the bigraded ring

T (X)∗,∗ := C[Dρ : ρ ∈ Σ(1)]/I,

where I = (P (Σ) + SR(Σ)) : [X] is the ideal quotient, and Dρ have the degree
(1, 1).

The following modules over the ring T (X) have appeared in the description of
cohomology of semiample hypersurfaces:

Definition 4.1. Given a big and nef class [X] ∈ Ad−1(PΣ) and σ ∈ ΣX , let

Uσ(X) =
〈 ∏
ρ⊂γ∈Σ

Dρ : intγ ⊂ intσ
〉

be the bigraded ideal in C[Dρ : ρ ∈ Σ(1)], where Dρ have the degree (1,1). Define
the bigraded space

T σ(X)∗,∗ = Uσ(X)∗,∗/Iσ,

where

Iσ = {u ∈ Uσ(X)∗,∗ : uvXd−dimσ ∈ (P (Σ)+SR(Σ)) for v ∈ Uσ(X)dimσ−∗,dimσ−∗}.

Next, recall from [C1] that any toric variety PΣ has a homogeneous coordinate
ring

S(PΣ) = C[xρ : ρ ∈ Σ(1)]

with variables xρ corresponding to the irreducible torus invariant divisors Dρ. This
ring is graded by the Chow group Ad−1(PΣ), assigning [

∑
ρ aρDρ] to deg(

∏
ρ x

aρ
ρ ).

For a Weil divisor D on PΣ, there is an isomorphism H0(PΣ, OPΣ(D)) ∼= S(PΣ)α,
where α = [D] ∈ Ad−1(PΣ). If D is torus invariant, the monomials in S(PΣ)α
correspond to the lattice points of the associated polyhedron ∆D.

In [BC], the following rings have been used to describe the residue part of coho-
mology of ample hypersurfaces in complete simplicial toric varieties:

Definition 4.2. [BC] Given f ∈ S(PΣ)β , set J0(f) := 〈xρ∂f/∂xρ : ρ ∈ Σ(1)〉
and J1(f) := J0(f) : x1 · · ·xn. Then define the rings R0(f) = S(PΣ)/J0(f) and
R1(f) = S(PΣ)/J1(f), which are graded by the Chow group Ad−1(PΣ).

In [M3, Definition 6.5], similar rings were introduced to describe the residue part
of cohomology of semiample hypersurfaces:

Definition 4.3. [M3] Given f ∈ S(PΣ)β of big and nef degree β = [D] ∈ Ad−1(PΣ)
and σ ∈ ΣD, let Jσ0 (f) be the ideal in S(PΣ) generated by xρ∂f/∂xρ, ρ ∈ Σ(1) and
all xρ′ such that ρ′ ⊂ σ, and let Jσ1 (f) be the ideal quotient Jσ0 (f) : (

∏
ρ6⊂σ xρ).

Then we get the quotient rings Rσ0 (f) = S(PΣ)/Jσ0 (f) and Rσ1 (f) = S(PΣ)/Jσ1 (f)
graded by the Chow group Ad−1(PΣ).

As a special case of [M3, Theorem 2.11], we have:
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Theorem 4.4. Let X be an anticanonical semiample nondegenerate hypersurface
defined by f ∈ Sβ in a complete simplicial toric variety PΣ. Then there is a natural
isomorphism⊕

p,q

Hp,q(X) ∼=
⊕
p,q

T (X)p,q ⊕
( ⊕
σ∈ΣX

T σ(X)s,s ⊗Rσ1 (f)(q−s)β+βσ1

)
,

where s = (p+ q − d+ dimσ + 1)/2 and βσ1 = deg(
∏
ρk⊂σ xk).

By the next statement, we can immediately see that all the building blocks
Rσ1 (f)(q−s)β+βσ1

of the cohomology of partial resolutions in Theorem 4.4 are inde-
pendent of the resolution and intrinsic to an ample Calabi-Yau hypersurface:

Proposition 4.5. [M3] Let X be a big and nef nondegenerate hypersurface defined
by f ∈ Sβ in a complete toric variety PΣ with the associated contraction map
π : PΣ −→ PΣX . If fσ ∈ S(V (σ))βσ denotes the polynomial defining the hypersurface
π(X)∩V (σ) in the toric variety V (σ) ⊂ PΣX corresponding to σ ∈ ΣX , then, there
is a natural isomorphism induced by the pull-back:

Hd(σ)−∗,∗−1Hd(σ)−1(π(X) ∩ Tσ) ∼= R1(fσ)∗βσ−βσ0
∼=Rσ1 (f)∗β−β0+βσ1

,

where d(σ) = d − dimσ, Tσ ⊂ V (σ) is the maximal torus, and β0 and βσ0 denote
the anticanonical degrees on PΣ and V (σ), respectively.

Given a mirror pair (X,X∗) of smooth Calabi-Yau hypersurfaces in Batyrev’s
construction, we expect that, for a pair of cones σ and σ∗ over the dual faces of the
reflexive polytopes ∆∗ and ∆, T σ(X)s,s with s = (p+q−d+dimσ+1)/2, in Hp,q(X)
interchanges, by the mirror map (the isomorphism which maps the quantum coho-
mology of one Calabi-Yau hypersurface to the B-model chiral ring of the other one),
with Rσ

∗

1 (g)(p+q−dimσ∗)β∗/2+βσ
∗

1
in Hd−1−p,q(X∗) (note that dimσ∗ = d−dimσ+1),

where g ∈ S(PΣ∗)β∗ determines X∗. For the 0-dimensional cones σ and σ∗, the
interchange goes between the polynomial part R1(g)∗β∗ of one smooth Calabi-Yau
hypersurface and the toric part of the cohomology of the other one. This corre-
spondence was already confirmed by the construction of the generalized monomial-
divisor mirror map in [M3]. On the other hand, one can deduce that the dimensions
of these spaces coincide for the pair of 3-dimensional smooth Calabi-Yau hypersur-
faces, by using Remark 5.3 in [M1]. The correspondence between the toric and
polynomial parts was discussed in [CKat].

Now, let us turn our attention to a mirror pair of semiample singular Calabi-Yau
hypersurfaces Y and Y ∗. We know that their string cohomology should have the
same dimension as the usual cohomology of possible crepant smooth resolutions
X and X∗, respectively. Moreover, the A-model and B-model chiral rings on the
string cohomology should be isomorphic for X and X∗, respectively. We also know
that the polynomial g represents the complex structure of the hypersurface Y ∗ and
its resolution X∗, and, by mirror symmetry, g should correspond to the complex-
ified Kähler class of the mirror Calabi-Yau hypersurface. Therefore, based on the
mirror correspondence of smooth Calabi-Yau hypersurfaces, we make the following
prediction for the small quantum ring presentation on the string cohomology space:

QHp,q
st (Y ) ∼=

⊕
(σ,σ∗)

R1(ωσ∗)(p+q−dimσ∗+2)βσ∗/2−βσ∗0
⊗R1(fσ)(q−p+d−dimσ+1)βσ/2−βσ0 ,

(2)

where the sum is by all pairs of the cones σ and σ∗ (including 0-dimensional cones)
over the dual faces of the reflexive polytopes, and where ωσ∗ ∈ S(V (σ∗))βσ∗ is a
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formal restriction of ω ∈ S(P∆∗)β∗ , which should be related to the complexified
Kähler class of the mirror (we will discuss this in Section 9). This construction can
be rewritten in simpler terms, which will help us to give a conjectural description
of the usual string cohomology space for all semiample Calabi-Yau hypersurfaces.

First, recall Batyrev’s presentation of the toric variety P∆ for an arbitrary poly-
tope ∆ inM (see [B1], [C2]). Consider the Gorenstein coneK over ∆×{1} ⊂M⊕Z.
Let S∆ be the subring of C[t0, t±1

1 , . . . , t±1
d ] spanned over C by all monomials of the

form tk0t
m = tk0t

m1
1 · · · tmdd where k ≥ 0 and m ∈ k∆. This ring is graded by the

assignment deg(tk0t
m) = k. Since the vector (m, k) ∈ K if and only if m ∈ k∆, the

ring S∆ is isomorphic to the semigroup algebra C[K]. The toric variety P∆ can be
represented as

Proj(S∆) = Proj(C[K]).

The ring S∆ has a nice connection to the homogeneous coordinate ring S(P∆) =
C[xρ : ρ ∈ Σ∆(1)] of the toric variety P∆, corresponding to a fan Σ∆. If β ∈
Ad−1(P∆) is the class of the ample divisor

∑
ρ∈Σ∆(1) bρDρ giving rise to the polytope

∆, then there is a natural isomorphism of graded rings

C[K] ∼= S∆
∼=
∞⊕
k=0

S(P∆)kβ , (3)

sending (m, k) ∈ C[K]k to tk0t
m and

∏
ρ x

kbρ+〈m,eρ〉
ρ , where eρ is the minimal integral

generator of the ray ρ. Now, given f ∈ S(P∆)β , we get the ring R1(f). The poly-
nomial f =

∑
m∈∆ f(m)xbρ+〈m,eρ〉

ρ , where f(m) are the coefficients, corresponds by
the isomorphisms (3) to

∑
m∈∆ f(m)t0tm ∈ (S∆)1 and

∑
m∈∆ f(m)[m, 1] ∈ C[K]1

(the brackets [ ] are used to distinguish the lattice points from the vectors over C),
which we also denote by f . By the proof of [BC, Theorem 11.5], we have that

(S(P∆)/J0(f))kβ ∼= (S∆/〈ti∂f/∂ti : i = 0, . . . , d〉)k ∼= R0(f,K)k,

where R0(f,K) is the quotient of C[K] by the ideal generated by all “logarithmic
derivatives” of f : ∑

m∈∆

((m, 1) · n)f(m)[m, 1]

for n ∈ N ⊕ Z. The isomorphisms (3) induce the bijections

S(P∆)kβ−β0

∏
ρ
xρ

−−−−→ 〈
∏
ρ

xρ〉kβ ∼= (I(1)
∆ )k ∼= C[K◦]k

(β0 = deg(
∏
ρ xρ)), where I(1)

∆ ⊂ S∆ is the ideal spanned by all monomials tk0t
m

such that m is in the interior of k∆, and C[K◦] ⊂ C[K] is the ideal spanned by all
lattice points in the relative interior of K. Since the space R1(f)kβ−β0 is isomorphic
to the image of 〈

∏
ρ xρ〉kβ in (S(P∆)/J0(f))kβ ,

R1(f)kβ−β0
∼= R1(f,K)k,

where R1(f,K) is the image of C[K◦] in the graded ring R0(f,K).
The above discussion applies well to all faces Γ in ∆. In particular, if the toric

variety V (σ) ⊂ P∆ corresponds to Γ, and βσ ∈ Ad−dimσ−1(V (σ)) is the restriction
of the ample class β, then

S(V (σ))∗βσ ∼= C[C],
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where C is the Gorenstein cone over the polytope Γ×{1}. This induces an isomor-
phism

R1(fσ)∗βσ−βσ0
∼= R1(fC , C),

where fC =
∑
m∈Γ f(m)[m, 1] in C[C]1 is the projection of f to the cone C.

Now, we can restate our conjecture (2) in terms of Gorenstein cones:⊕
p,q

QHp,q
st (Y ) ∼=

⊕
p,q

(C,C∗)

R1(ωC∗ , C∗)(p+q−d+dimC∗+1)/2 ⊗R1(fC , C)(q−p+dimC)/2,

where the sum is by all dual faces of the reflexive Gorenstein cones K and K∗. This
formula is already supported by Theorem 8.2 in [BDa], which for ample Calabi-Yau
hypersurfaces in weighted projective spaces gives a corresponding decomposition of
the stringy Hodge numbers (see Remark 5.2 in the next section). A generalization
of [BDa, Theorem 8.2] will be proved in Section 7, justifying the above conjecture
in the case of ample Calabi-Yau hypersurfaces in Fano toric varieties.

It is known that the string cohomology, which should be the limit of the quan-
tum cohomology ring, of smooth Calabi-Yau hypersurfaces should be the same as
the usual cohomology. We also know the property that the quantum cohomol-
ogy spaces should be isomorphic for the ample Calabi-Yau hypersurface Y and its
crepant resolution X. Therefore, it makes sense to compare the above description
of QHp,q

st (Y ) with the description of the cohomology of semiample Calabi-Yau hy-
persurfaces X in Theorem 4.4. We can see that the right components in the tensor
products coincide, by Proposition 4.5 and the definition of R1(fC , C). On the other
hand, the left components in QHp,q

st (Y ) for the ample Calabi-Yau hypersurface Y
do not depend on a resolution, while the left components T σ(X) in Hp,q(X) for
the resolution X depend on the Stanley-Reisner ideal SR(Σ). This hints us to the
following definitions:

Definition 4.6. Let C be a Gorenstein cone in a lattice L, subdivided by a fan Σ,
and let C[C] and C[C◦], where C◦ is the relative interior of C, be the semigroup
rings. Define “deformed” ring structures C[C]Σ and C[C]Σ on C[C] and C[C◦],
respectively, by the rule: [m1][m2] = [m1 +m2] if m1,m2 ⊂ σ ∈ Σ, and [m1][m2] =
0, otherwise.

Given g =
∑
m∈C,degm=1 g(m)[m], where g(m) are the coefficients, let

R0(g, C)Σ = C[C]Σ/Z · C[C]Σ

be the graded ring over the graded module

R0(g, C◦)Σ = C[C◦]Σ/Z · C[C◦]Σ,

where Z = {
∑
m∈C,degm=1(m·n)g(m)[m] : n ∈ Hom(L,Z)}. Then define R1(g, C)Σ

as the image of the natural homomorphism R0(g, C◦)Σ −→ R0(g, C)Σ.

Remark 4.7. In the above definition, note that if Σ is a trivial subdivision, we
recover the spaces R0(g, C) and R1(g, C) introduced earlier. Also, we should men-
tion that the Stanley-Reisner ring of the fan Σ can be naturally embedded into the
“deformed” ring C[C]Σ, and this map is an isomorphism when the fan Σ is smooth.

Here is our conjecture about the string cohomology space of semiample Calabi-
Yau hypersurfaces in a complete toric variety.
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Conjecture 4.8. Let X ⊂ PΣ be a semiample anticanonical nondegenerate hyper-
surface defined by f ∈ H0(PΣ,OPΣ(X)) ∼= C[K]1, and let ω be a generic element
in C[K∗]1, where K∗ is the reflexive Gorenstein cone dual to the cone K over the
reflexive polytope ∆ associated to X. Then there is a natural isomorphism:

Hp,q
st (X) ∼=

⊕
C⊆K

R1(ωC∗ , C∗)Σ
(p+q−d+dimC∗+1)/2 ⊗R1(fC , C)(q−p+dimC)/2,

where C∗ ⊆ K∗ is a face dual to C, and where fC , ωC∗ denote the projections of
f and ω to the respective cones C and C∗. (Here, the superscript Σ denotes the
subdivision of K∗ induced by the fan Σ.)

Since the dimension of the string cohomology for all crepant partial resolutions
should remain the same and should coincide with the dimension of the quantum
string cohomology space, we expect that

dimR1(ωC∗ , C∗)Σ = dimR1(ωC∗ , C∗) , (4)

which will be shown in Section 6 for a projective subdivision Σ. Conjecture 4.8 will
be confirmed by the corresponding decomposition of the stringy Hodge numbers
in Section 7. Moreover, in Section 9, we will derive the Chen-Ruan orbifold coho-
mology as a special case of Conjecture 4.8 for ample Calabi-Yau hypersurfaces in
complete simplicial toric varieties.

5. Hodge-Deligne numbers of affine hypersurfaces

Here, we compute the dimensions of the spaces R1(g, C) from the previous sec-
tion. It follows from Proposition 4.5 that these dimensions are exactly the Hodge-
Deligne numbers of the minimal weight space on the middle cohomology of a hyper-
surface in a torus. An explicit formula in [DKh] and [BDa] for the E-polynomial of
a nondegenerate affine hypersurface whose Newton polyhedra is a simplex leads us
to the answer for the graded dimension of R1(g, C) when C is a simplicial Goren-
stein cone. However, it was very difficult to compute the Hodge-Deligne numbers of
an arbitrary nondegenerate affine hypersurface. This was a major technical prob-
lem in the proof of mirror symmetry of the stringy Hodge numbers for Calabi-Yau
complete intersections in [BBo]. Here, we will present a simple formula for the
Hodge-Deligne numbers of a nondegenerate affine hypersurface.

Before we start computing gr.dim.R1(g, C), let us note that for a nondegenerate
g ∈ C[C]1 (i.e., the corresponding hypersurface in Proj(C[C]) is nondegenerate):

gr.dim.R0(g, C) = S(C, t),

where the polynomial S is the same as in Definition 2.1 of the stringy Hodge
numbers. This was shown in [B1, Theorem 4.8 and 2.11] (see also [Bo1]).

When the cone C is simplicial, we already know the formula for the graded
dimension of R1(g, C):

Proposition 5.1. Let C be a simplicial Gorenstein cone, and let g ∈ C[C]1 be
nondegenerate. Then

gr.dim.R1(g, C) = S̃(C, t)

where S̃(C, t) =
∑
C1⊆C S(C1, t)(−1)dimC−dimC1 .
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Proof. The polynomial S̃(C, t) was introduced with a slightly different notation
in [BDa, Definition 8.1] for a lattice simplex. One can check that S̃(C, t) in this
proposition is equivalent to the one in [BDa, Corollary 6.6]. From the previous
section and [B1, Proposition 9.2], we know that

R1(g, C) ∼= GrFWdimZgH
dimZg (Zg),

where Zg is the nondegenerate affine hypersurface determined by g in the maximal
torus of Proj(C[C]). By [BDa, Proposition 8.3],

E(Zg;u, v) =
(uv − 1)dimC−1 + (−1)dimC

uv
+ (−1)dimC

∑
C1⊆C

dimC1>1

udimC1

uv
S̃(C1, u

−1v).

Now, note that the coefficients ep,q(Zg) at the monomials upvq with p+ q = dimZg
are related to the Hodge-Deligne numbers by the calculations in [DKh]:

ep,q(Zg) = (−1)dimChp,q(HdimZg (Zg)) + (−1)pδpqC
p
dimC−1,

where δpq is the Kronecker symbol and CpdimC−1 is the binomial coefficient. Com-
paring this with the above formula for E(Zg;u, v), we deduce the result. �

Remark 5.2. By the above proposition, we can see that [BDa, Theorem 8.2] gives
a decomposition of the stringy Hodge numbers of ample Calabi-Yau hypersurfaces
in weighted projective spaces in correspondence with Conjecture 4.8.

Next, we generalize the polynomials S̃(C, t) from Proposition 5.1 to nonsimplicial
Gorenstein cones in such a way that they would count the graded dimension of
R1(g, C).

Definition 5.3. Let C be a Gorenstein cone in a lattice L. Then set

S̃(C, t) :=
∑
C1⊆C

S(C1, t)(−1)dimC−dimC1G([C1, C], t),

where G is a polynomial (from Definition 11.1 in the Appendix) for the partially
ordered set [C1, C] of the faces of C that contain C1.

Remark 5.4. It is not hard to show that the polynomial S̃(C, t) satisfies the du-
ality

S̃(C, t) = tdimC S̃(C, t−1)

based on the duality properties of S and the definition of G-polynomials. However,
the next result and Proposition 4.5 imply this fact.

Proposition 5.5. Let C be a Gorenstein cone, and let g ∈ C[C]1 be nondegenerate.
Then

gr.dim.R1(g, C) = S̃(C, t).

Proof. As in the proof of Proposition 5.1, we consider a nondegenerate affine hy-
persurface Zg determined by g in the maximal torus of Proj(C[C]). Then [BBo,
Theorem 3.18] together with the definition of S gives

E(Zg;u, v) =
(uv − 1)dimC−1

uv
+

(−1)dimC

uv

∑
C2⊆C

B([C2, C]∗;u, v)S(C2, vu
−1)udimC2 ,
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where the polynomials B are from Definition 11.3. We use Lemma 11.4 and Defi-
nition 5.3 to rewrite this as

E(Zg;u, v) =
(uv − 1)dimC−1

uv
+

(−1)dimC

uv
×

×
∑

C2⊆C1⊆C

udimC2S(C2, u
−1v)G([C2, C1], u−1v)(−u)dimC1−dimC2G([C1, C]∗, uv)

=
(uv − 1)dimC−1

uv
+

(−1)dimC

uv

∑
C1⊆C

udimC1 S̃(C1, u
−1v)G([C1, C]∗, uv).

The definition of G-polynomials assures that the degree of udimC1G([C1, C]∗, uv)
is at most dimC with the equality only when C1 = C. Therefore, the graded
dimension of R1(g, C) can be read off the same way as in the proof of Proposition 5.1
from the coefficients at total degree dimC − 2 in the above sum. �

6. “Deformed” rings and modules

While this section may serve as an invitation to a new theory of “deformed”
rings and modules, the goal here is to prove the equality (4), by showing that the
graded dimension formula of Proposition 5.5 holds for the spaces R1(g, C)Σ from
Definition 4.6. To prove the formula we use the recent work of Bressler and Lunts
(see [BreL], and also [BaBrFK]). This requires us to first study Cohen-Macaulay
modules over the deformed semigroup rings C[C]Σ.

First, we want to generalize the nondegeneracy notion:

Definition 6.1. Let C be a Gorenstein cone in a lattice L, subdivided by a fan Σ.
Given g =

∑
m∈C,degm=1 g(m)[m], get

gj =
∑

m∈C,degm=1

(m · nj)g(m)[m], for j = 1, . . . ,dimC

where {n1, . . . , ndimC} ⊂ Hom(L,Z) descends to a basis of Hom(L,Z)/C⊥. The
element g is called Σ-regular (nondegenerate) if {g1, . . . , gdimC} forms a regular
sequence in the deformed semigroup ring C[C]Σ.

Remark 6.2. When Σ is a trivial subdivision, [B1, Theorem 4.8] shows that the
above definition is consistent with the previous notion of nondegeneracy correspond-
ing to the transversality of a hypersurface to torus orbits.

Theorem 6.3. (i) The ring C[C]Σ and its module C[C◦]Σ are Cohen-Macaulay.
(ii) A generic element g ∈ C[C]1 is Σ-regular. Moreover, for a generic g the
sequence {g1, . . . , gdimC} from Definition 6.1 is C[C◦]Σ-regular.
(iii) If g ∈ C[C]1 is Σ-regular, then the sequence {g1, . . . , gdimC} is C[C◦]Σ-regular.

Proof. Part (ii) follows from the proofs of Propositions 3.1 and 3.2 in [Bo1]. The
reader should notice that the proofs use degenerations defined by projective sim-
plicial subdivisions, and any fan admits such a subdivision.

Then, part (ii) implies (i), by the definition of Cohen-Macaulay, while part (iii)
follows from (i) and Proposition 21.9 in [E]. �

As a corollary of Theorem 6.3, we get the following simple description of Σ-
regular elements:
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Lemma 6.4. An element g ∈ C[C]1 is Σ-regular, if and only if its restriction to
all maximum-dimensional cones C ′ ∈ Σ(dimC) is nondegenerate in C[C ′].

Proof. Since C[C]Σ is Cohen-Macaulay, the regularity of a sequence is equivalent
to the quotient by the sequence having a finite dimension, by [Mat, Theorem 17.4].

One can check that C[C]Σ is filtered by the modules Rk defined as the span of
[m] such that the minimum cone that contains m has dimension at least k. The k-
th graded quotient of this filtration is the direct sum of C[C◦1 ] by all k-dimensional
cones C1 of Σ. If g is nondegenerate for every cone of maximum dimension, then
its projection to any cone C1 is nondegenerate, and Theorem 6.3 shows that it is
nondegenerate for each C[C◦1 ]. Then by decreasing induction on k one shows that
Rk/{g1, . . . , gdimC}Rk is finite-dimensional.

In the other direction, it is easy to see that for every C ′ ∈ Σ the C[C]Σ-module
C[C ′] is a quotient of C[C]Σ, which gives a surjection

C[C]Σ/{g1, . . . , gdimC}C[C]Σ −→ C[C ′]/{g1|C′ , . . . , gdimC |C′}C[C ′] −→ 0.

�

The above lemma implies that the property of Σ-regularity is preserved by the
restrictions:

Lemma 6.5. Let C be a Gorenstein cone in a lattice L, subdivided by a fan Σ. If
g ∈ C[C]1 is Σ-regular, then g ∈ C[C1]1 is Σ-regular for all faces C1 ⊆ C.

Proof. Let g ∈ C[C]1 be Σ-regular. By Lemma 6.4, the restriction gC′ is nondegen-
erate in C[C ′] for all C ′ ∈ Σ(dimC). Since the property of nondegeneracy associated
with a hypersurface is preserved by the restrictions, gC′1 is nondegenerate in C[C ′1]
for all C ′1 ∈ Σ(dimC1) contained in C1. Applying Lemma 6.4 again, we deduce the
result. �

The next result generalizes [B1, Proposition 9.4] and [Bo1, Proposition 3.6].

Proposition 6.6. Let g ∈ C[C]1 be Σ-regular, then R0(g, C)Σ and R0(g, C◦)Σ

have graded dimensions S(C, t) and tkS(C, t−1), respectively, and there exists a
nondegenerate pairing

〈 , 〉 : R0(g, C)Σ
k ×R0(g, C◦)Σ

dimC−k → R0(g, C◦)Σ
dimC

∼= C,

induced by the multiplicative R0(g, C)Σ-module structure.

Proof. It is easy to see that the above statement is equivalent to saying that C[C◦]Σ

is the canonical module for C[C]Σ. When Σ consists of the faces of C only, this is
well-known (cf. [D]). To deal with the general case, we will heavily use the results
of [E], Chapter 21.

We denote A = C[C]Σ. For every cone C1 of Σ the vector spaces C[C1] and
C[C◦1 ] are equipped with the natural A-module structures. By Proposition 21.10 of
[E], modified for the graded case, we get

ExtiA(C[C1], wA)∼=
{
C[C◦1 ], i = codim(C1)
0, i 6= codim(C1)

where wA is the canonical module of A.
Consider now the complex F of A-modules

0 −→ F 0 −→ F 1 −→ · · · −→ F d −→ 0
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where
Fn =

⊕
C1∈Σ,codim(C1)=n

C[C1]

and the differential is a sum of the restriction maps with signs according to the
orientations. The nontrivial cohomology of F is located at F 0 and equals C[C◦]Σ.
Indeed, by looking at each graded piece separately, we see that the cohomology
occurs only at F 0, and then the kernel of the map to F 1 is easy to describe. We can
now use the complex F and the description of ExtiA(C[C1], wA) to try to calculate
HomA(C[C◦]Σ, wA). The resulting spectral sequence degenerates immediately, and
we conclude that HomA(C[C◦]Σ, wA) has a filtration such that the associated graded
module is naturally isomorphic to ⊕

C1∈Σ

C[C◦1 ].

By duality of maximal Cohen-Macaulay modules (see [E]), it suffices to show
that HomA(C[C◦]Σ, wA)∼=A, but the above filtration only establishes that it has
the correct graded pieces, so extra arguments are required. Let C ′ be a cone of Σ
of maximum dimension. We observe that F contains a subcomplex F ′ such that

F ′n =
⊕
C1⊆C′

C[C1].

Similar to the case of F , the cohomology of F ′ occurs only at F ′0 and equals C[C ′◦].
By snake lemma, the cohomology of F/F ′ also occurs at the zeroth spot and equals
C[C◦]Σ/C[C ′◦]. By looking at the spectral sequences again, we see that

Ext>0(C[C◦]Σ/C[C ′◦], wA) = 0

and we have a grading preserving surjection

HomA(C[C◦]Σ, wA) −→ HomA(C[C ′◦], wA) −→ 0.

Since HomA(C[C ′], wA)∼=C[C ′◦], duality of maximal Cohen-Macaulay modules over
A shows that

HomA(C[C ′◦], wA)∼=C[C ′]
so for every m ∈ C ′ the element [m] of A does not annihilate the degree zero element
of HomA(C[C◦]Σ, wA). By looking at all C ′ together, this shows that

HomA(C[C◦]Σ, wA)∼=A

which finishes the proof. �

Proposition 6.7. Let g ∈ C[C]1 be Σ-regular, then the pairing 〈 , 〉 induces a
symmetric nondegenerate pairing { , } on R1(g, C)Σ, defined by

{x, y} = 〈x, y′〉

where y′ is an element of R0(g, C◦)Σ that maps to y.

Proof. The nondegeneracy of the pairing { , } follows from that of 〈 , 〉. The
pairing is symmetric, because it comes from the commutative product on C[C◦]Σ.
�

Theorem 6.8. Let C be a Gorenstein cone subdivided by a projective fan Σ. If
g ∈ C[C]1 is Σ-regular, then the graded dimension of R1(g, C)Σ is S̃(C, t).
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Proof. We will use the description of Bressler and Lunts [BreL] of locally free flabby
sheaves on the finite ringed topological space associated to the cone C. We recall
here the basic definitions. Consider the set P of all faces of the cone C. It is
equipped with the topology in which open sets are subfans, i.e. the sets of faces
closed under the operation of taking a face. Bressler and Lunts define a sheaf A
of graded commutative rings on P whose sections over each open set is the ring of
continuous piecewise polynomial functions on the union of all strata of this set. The
grading of linear functions will be set to 1, contrary to the convention of [BreL].

They further restrict their attention to the sheaves F of A-modules on P that
satisfy the following conditions.
• For every face C1 of C, sections of F over the open set that corresponds to the
union of all faces of C1 is a free module over the ring of polynomial functions on
C1.
• F is flabby, i.e. all restriction maps are surjective.

We will use the following crucial result.

Theorem 6.9. [BreL] Every sheaf F that satisfies the above two properties is iso-
morphic to a direct sum of indecomposable graded sheaves LC1t

i, where C1 is a face
of C and ti indicates a shift in grading. For each indecomposable sheaf LC1 the
space of global sections Γ(P,LC1) is a module over the polynomial functions on C
of the graded rank G([C1, C]∗, t) where [C1, C] denotes the Eulerian subposet of P
that consists of all faces of C that contain C1.

Now let us define a sheaf B(g) on P whose sections over the open subset I ∈ P
are C[∩i∈ICi]Σ. It is clearly a flabby sheaf, which can be given a grading by deg( ).
Moreover, B(g) can be given a structure of a sheaf of A modules as follows. Every
linear function ϕ on a face C1 defines a logarithmic derivative

∂ϕg :=
∑

m∈C1,degm=1

φ(m)g(m)[m]

of g, which is an element of the degree 1 in C[C1]Σ. Then the action of ϕ is given by
the multiplication by ∂ϕg, and this action is extended to all polynomial functions on
the cone C1. Similar construction clearly applies to continuous piecewise polynomial
functions for any open set of P .

Proposition 6.6 assures that B(g) satisfies the second condition of Bressler and
Lunts, and can therefore be decomposed into a direct sum of LC1t

i for various C1

and i. The definition of R1(g, C)Σ implies that its graded dimension is equal to the
graded rank of the stalk of B(g) at the point C ∈ P . Since the graded rank of B is
S(C, t), we conclude that

S(C, t) =
∑
C1⊆C

gr.dim.R1(gC1 , C1)ΣG([C1, C]∗, t).

To finish the proof of Theorem 6.8, it remains to apply Lemma 11.2. �

7. Decomposition of stringy Hodge numbers for hypersurfaces

In this section, we prove a generalization of [BDa, Theorem 8.2] for all Calabi-
Yau hypersurfaces, which gives a decomposition of the stringy Hodge numbers of
the hypersurfaces. First, we recall a formula for the stringy Hodge numbers of
Calabi-Yau hypersurfaces obtained in [BBo]. Then using a bit of combinatorics, we
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rewrite this formula precisely to the form of [BDa, Theorem 8.2] with S̃ defined in
the previous section.

The stringy Hodge numbers of a Calabi-Yau complete intersection have been
calculated in [BBo] in terms of the numbers of integer points inside multiples of
various faces of the reflexive polytopes ∆ and ∆∗ as well as some polynomial in-
variants of partially ordered sets. A special case of the main result in [BBo] is the
following description of the stringy E-polynomials of Calabi-Yau hypersurfaces.

Theorem 7.1. [BBo] Let K ⊂ M ⊕ Z be the Gorenstein cone over a reflexive
polytope ∆ ⊂ M . For every (m,n) ∈ (K,K∗) with m · n = 0 denote by x(m) the
minimum face of K that contains m and by x∗(n) the dual of the minimum face of
K∗ that contains n. Also, set A(m,n)(u, v) be

(−1)dim(x∗(n))

uv
(v − u)dim(x(m))(uv − 1)d+1−dim(x∗(n))B([x(m), x∗(n)]∗;u, v)

where the function B is defined in Definition 11.3 in the Appendix. Then

Est(Y ;u, v) =
∑

(m,n)∈(K,K∗),m·n=0

(u
v

)degm

A(m,n)(u, v)
(

1
uv

)degn

for an ample nondegenerate Calabi-Yau hypersurface Y in P∆ = Proj(C[K]).

The mirror duality Est(Y ;u, v) = (−u)d−1Est(Y ∗;u−1, v) was proved in [BBo] as
the immediate corollary of the above formula and the duality property B(P ;u, v) =
(−u)rkPB(P ∗;u−1, v). It was not noticed there that Lemma 11.2 allows one to
rewrite the B-polynomials in terms of G-polynomials, which we will now use to
give a formula for the Est(Y ;u, v), explicitly obeying the mirror duality. The next
result is a generalization of Theorem 8.2 in [BDa] with S̃ from Definition 5.3.

Theorem 7.2. Let Y be an ample nondegenerate Calabi-Yau hypersurface in P∆ =
Proj(C[K]). Then

Est(Y ;u, v) =
∑
C⊆K

(uv)−1(−u)dimC S̃(C, u−1v)S̃(C∗, uv).

Proof. First, observe that the formula for Est(Y ;u, v) from Theorem 7.1 can be
written as∑
m,n,C1,C2

(−1)dimC∗2

uv
(v−u)dim(C1)B([C2, C

∗
1 ];u, v)(uv−1)dimC2

(u
v

)degm
(

1
uv

)degn

where the sum is taken over all pairs of cones C1 ⊆ K,C2 ⊆ K∗ that satisfy
C1 ·C2 = 0 and all m and n in the relative interiors of C1 and C2, respectively. We
use the standard duality result (see Definition 2.1)∑

n∈int(C)

t−deg(n) = (t− 1)−dimCS(C, t)

to rewrite the above formula as
1
uv

∑
C1·C2=0

(−1)dim(C∗2 )udimC1B([C2, C
∗
1 ];u, v)S(C1, u

−1v)S(C2, uv).

Then apply Lemma 11.4 to get

Est(Y ;u, v) =
1
uv

∑
C∈K

∑
C1⊆C,C2⊆C∗

(−1)dim(C∗2 )udimC1 ×
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× G([C1, C], u−1v)(−u)dimC∗1−dimC∗G([C2, C
∗], uv)S(C1, u

−1v)S(C2, uv).

It remains to use Definition 5.3. �

8. String cohomology construction via intersection cohomology

Here, we construct the string cohomology space for Q-Gorenstein toroidal vari-
eties, satisfying the assumption of Proposition 2.6. The motivation for this con-
struction comes from the conjectural description of the string cohomology space for
ample Calabi-Yau hypersurfaces and a look at the formula in [BDa, Theorem 6.10]
for the stringy E-polynomial of a Gorenstein variety with abelian quotient singular-
ities. This immediately leads to a decomposition of the string cohomology space as
a direct sum of tensor products of the usual cohomology of a closure of a strata with
the spaces R1(g, C) from Proposition 5.1. Then the property that the intersection
cohomology of an orbifold is naturally isomorphic to the usual cohomology leads us
to the construction of the string cohomology space for Q-Gorenstein toroidal vari-
eties. We show that this space has the dimension prescribed by Definition 2.1 for
Gorenstein complete toric varieties and the nondegenerate complete intersections
in them.

Conjectural Definition 8.1. Let X =
⋃
i∈I Xi be a Gorenstein complete variety

with quotient abelian singularities, satisfying the assumption of Proposition 2.6.
The stringy Hodge spaces of X are naturally isomorphic to

Hp,q
st (X) ∼=

⊕
i∈I
k≥0

Hp−k,q−k(Xi)⊗R1(ωσi , σi)k,

where σi is the Gorenstein simplicial cone of the singularity along the strata Xi,
and ωσi ∈ C[σi]1 are nondegenerate such that, for σj ⊂ σi, ωσi maps to ωσj by the
natural projection C[σi] −→ C[σj ].

Remark 8.2. Since Xi is a compact orbifold, the coefficient ep,q(Xi) at the mono-
mial upvq in the polynomial E(Xi;u, v) is equal to (−1)p+qhp,q(Xi), by Remark 2.2.
Therefore, Proposition 5.1 shows that the above decomposition of Hp,q

st (X) is in cor-
respondence with [BDa, Theorem 6.10], and the dimensions hp,qst (X) coincide with
those from Definition 2.3.

Since we expect that the usual cohomology must be replaced in Definition 8.1
by the intersection cohomology for Gorenstein toroidal varieties, the next result is
a natural generalization of Theorem 6.10 in [BDa].

Theorem 8.3. Let X =
⋃
i∈I Xi be a Gorenstein complete toric variety or a non-

degenerate complete intersection of Cartier hypersurfaces in the toric variety, where
the stratification is induced by the torus orbits. Then

Est(X;u, v) =
∑
i∈I

Eint(Xi;u, v) · S̃(σi, uv),

where σi is the Gorenstein cone of the singularity along the strata Xi.

Proof. Similarly to Corollary 3.17 in [BBo], we have

Eint(Xi;u, v) =
∑

Xj⊆Xi

E(Xi;u, v) ·G([σi ⊆ σj ]∗, uv).
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Hence, we get∑
i∈I

Eint(Xi;u, v) · S̃(σi, uv) =
∑
i∈I

∑
Xj⊆Xi

E(Xj ;u, v)G([σi ⊆ σj ]∗, uv)S̃(σi, uv)

=
∑
j∈I

E(Xj ;u, v)
( ∑
σi⊆σj

G([σi ⊆ σj ]∗, uv)S̃(σi, uv)
)

=
∑
j∈I

E(Xj ;u, v)S(σj , uv),

where at the last step we have used the formula for S̃ and Lemma 11.2. �

Based on the above theorem, we propose the following conjectural description of
the stringy Hodge spaces for Q-Gorenstein toroidal varieties.

Conjectural Definition 8.4. Let X =
⋃
i∈I Xi be a Q-Gorenstein d-dimensional

complete toroidal variety, satisfying the assumption of Proposition 2.6. The stringy
Hodge spaces of X are defined by:

Hp,q
st (X) :=

⊕
i∈I
k≥0

Hp−k,q−k
int (Xi)⊗R1(ωσi , σi)k,

where σi is the Gorenstein cone of the singularity along the strata Xi, and ωσi ∈
C[σi]1 are nondegenerate such that, for σj ⊂ σi, ωσi maps to ωσj by the natural
projection C[σi] −→ C[σj ]. Here, p, q are rational numbers from [0, d], and we assume
that Hp−k,q−k

int (Xi) = 0 if p− k or q − k is not a non-negative integer.

Remark 8.5. Toric varieties and nondegenerate complete intersections of Cartier
hypersurfaces have the stratification induced by the torus orbits which satisfies the
assumptions in the above definition.

9. String cohomology vs. Chen-Ruan orbifold cohomology

Our next goal is to compare the two descriptions of string cohomology for Calabi-
Yau hypersurfaces to the Chen-Ruan orbifold cohomology. Using the work of [P],
we will show that in the case of ample orbifold Calabi-Yau hypersurfaces the three
descriptions coincide. We refer the reader to [ChR] for the orbifold cohomology
theory and only use [P] in order to describe the orbifold cohomology for complete
simplicial toric varieties and Calabi-Yau hypersurfaces in Fano simplicial toric va-
rieties.

From Theorem 1 in [P, Section 4] and the definition of the orbifold Dolbeault
cohomology space we deduce:

Proposition 9.1. Let PΣ be a d-dimensional complete simplicial toric variety.
Then the orbifold Dolbeault cohomology space of PΣ is

Hp,q
orb(PΣ;C) ∼=

⊕
σ∈Σ
l∈Q

Hp−l,q−l(V (σ))⊗
⊕

t∈T (σ)l

Ct,

where T (σ)l = {
∑
ρ⊂σ aρ[eρ] ∈ N : aρ ∈ (0, 1),

∑
ρ⊂σ aρ = l} (when σ = 0, set

l = 0 and T (σ)l = C), and V (σ) is the closure of the torus orbit corresponding to
σ ∈ Σ. Here, p and q are rational numbers in [0, d], and Hp−l,q−l(V (σ)) = 0 if p− l
or q − l is not integral. (The elements of ⊕0 6=σ∈Σ,lT (σ)l correspond to the twisted
sectors.)
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In order to compare this result to the description in Definition 8.4, we need to
specify the ωσi for the toric variety PΣ. The stratification of PΣ is given by the torus
orbits: PΣ = ∪σ∈ΣTσ. The singularity of the variety PΣ along the strata Tσ is given
by the cone σ, so we need to specify a nondegenerate ωσ ∈ C[σ]1 for each σ ∈ Σ. If
ωσ =

∑
ρ⊂σ ωρ[eρ] with ωρ 6= 0, then one can deduce that ωσ is nondegenerate using

Remark 6.2 and the fact that the nondegeneracy of a hypersurface in a complete
simplicial toric variety (in this case, it corresponds to a simplex) is equivalent to the
nonvanishing of the logarithmic derivatives simultaneously. So, picking any nonzero
coefficients ωρ for each ρ ∈ Σ(1) gives a nondegenerate ωσ ∈ C[σ]1 satisfying the
condition of Definition 8.4. For such ωσ, note that the set Z = {

∑
ρ⊂σ(eρ ·m)ωρeρ :

m ∈ Hom(N,Z)} is a linear span of eρ for ρ ⊂ σ. Hence,

R0(ωσ, σ)l = (C[σ]/Z · C[σ])l ∼=
⊕

t∈T̃ (σ)l

Ct,

where T̃ (σ)l = {
∑
ρ⊂σ aρeρ ∈ N : aρ ∈ [0, 1),

∑
ρ⊂σ aρ = l}, and

R1(ωσ, σ)l ∼=
⊕

t∈T (σ)l

Ct.

This shows that the orbifold Dolbeault cohomology for complete simplicial toric
varieties can be obtained as a special case of the description of string cohomology
in Definition 8.4.

We will now explain how the parameter ω should be related to the complexified
Kähler class. We do not have the definition of the ”orbifold” Kähler cone even for
simplicial toric varieties. However, we know the Kähler classes in H2(PΣ,R).

Proposition 9.2. Let PΣ be a projective simplicial toric variety, then H2(PΣ,R) ∼=
PL(Σ)/MR, where PL(Σ) is the set of Σ-piecewise linear functions ϕ : NR −→ R,
which are linear on each σ ∈ Σ. The Kähler cone K(Σ) ⊂ H2(PΣ,R) of PΣ consists
of the classes of the upper strictly convex Σ-piecewise linear functions.

One may call K(Σ) the “untwisted” part of the orbifold Kähler cone. So, we can
introduce the untwisted complexified Kähler space of the complete simplicial toric
variety:

Kuntwist
C

(PΣ) = {ω ∈ H2(PΣ,C) : Im(ω) ∈ K(Σ)}/imH2(PΣ,Z).

Its elements may be called the untwisted complexified Kähler classes. We can find
a generic enough ω ∈ Kuntwist

C
(PΣ) represented by a complex valued Σ-piecewise

linear function ϕω : NC −→ C such that ϕω(eρ) 6= 0 for ρ ∈ Σ(1). Setting ωρ =
exp(ϕω(eρ)) produces our previous parameters ωσ for σ ∈ Σ. This is how we believe
ωσ should relate to the complexified Kähler classes, up to perhaps some instanton
corrections.

We next turn our attention to the case of an ample Calabi-Yau hypersurface Y in
a complete simplicial toric variety PΣ. Section 4.2 in [P] works with a generic non-
degenerate anticanonical hypersurface. However, one can avoid the use of Bertini’s
theorem and state the result without “generic”. It is shown that the nondegenerate
anticanonical hypersurface X is a suborbifold of PΣ, the twisted sectors of Y are
obtained by intersecting with the closures of the torus orbits and the degree shifting
numbers are the same as for the toric variety PΣ. Therefore, we conclude:
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Proposition 9.3. Let Y ⊂ PΣ be an ample Calabi-Yau hypersurface in a complete
simplicial toric variety. Then

Hp,q
orb(Y ;C) ∼=

⊕
σ∈Σ
l∈Z

Hp−l,q−l(Y ∩ V (σ))⊗
⊕

t∈T (σ)l

Ct,

where T (σ)l = {
∑
ρ⊂σ aρ[eρ] ∈ N : aρ ∈ (0, 1),

∑
ρ⊂σ aρ = l} (when σ = 0, set

l = 0 and T (σ)l = C).

As in the case of the toric variety, we pick ωσ =
∑
ρ⊂σ ωρeρ with ωρ 6= 0. Then,

by the above proposition,

Hp,q
st (Y ) ∼= Hp,q

orb(Y ;C).

We now want to show that the description in Proposition 9.3 is equivalent to the
one in Conjecture 4.8. First, note that the proper faces C∗ of the Gorenstein cone
K∗ in Conjecture 4.8 one to one correspond to the cones σ ∈ Σ. Moreover, the
rings C[C∗] ∼= C[σ] are isomorphic in this correspondence. If we take ω ∈ C[K∗]Σ1
to be [0, 1] +

∑
ρ∈Σ(1) ωρ[eρ, 1], then ω is Σ-regular and

R1(C∗, ωC∗)l ∼= R1(ωσ, σ)l ∼= ⊕t∈T (σ)lCt.

On the other hand, the Hodge component Hp−l,q−l(Y ∩V (σ)) decomposes into the
direct sum

Hp−l,q−l
toric (Y ∩ V (σ))⊕Hp−l,q−l

res (Y ∩ V (σ))

of the toric and residue parts. Since Y ∩ V (σ) is an ample hypersurface, from [BC,
Theorem 11.8] and Section 4 it follows that

Hp−l,q−l
res (Y ∩ V (σ)) ∼= R1(fC , C)q−l+1,

where C ⊂ K is the face dual to C∗ which corresponds to σ, p+ q − 2l = dimY ∩
V (σ) = d − dimσ − 1 = d − dimC∗ − 1. If p + q − 2l 6= d − dimC∗ − 1, then
Hp−l,q−l

res (Y ∩ V (σ)) = 0. Hence, we get⊕
σ∈Σ
l∈Z

Hp−l,q−l
res (Y ∩ V (σ))⊗

⊕
t∈T (σ)l

Ct ∼=
⊕

0 6=C⊆K

R1(ωC∗ , C∗)Σ
a ⊗R1(fC , C)b,

where a = (p + q − d + dimC∗ + 1)/2 and b = (q − p + dimC)/2. We are left to
show that ⊕

σ∈Σ
l∈Z

Hp−l,p−l
toric (Y ∩ V (σ))⊗

⊕
t∈T (σ)l

Ct ∼= R1(ω,K∗)Σ
p+1. (5)

Notice that the dimensions of the spaces on both sides coincide, so it suffices to
construct a surjective map between them. This will follow from the following propo-
sition.

Proposition 9.4. Let PΣ = Proj(C[K]) be the Gorenstein Fano simplicial toric
variety, where K as above. Then there is a natural isomorphism:

Hp,p
st (PΣ) ∼=

⊕
σ∈Σ
l∈Z

Hp−l,p−l(V (σ))⊗
⊕

t∈T (σ)l

Ct ∼= R0(ω,K∗)Σ
p ,

where ω = [0, 1] +
∑
ρ∈Σ(1) ωρ[eρ, 1] with ωρ 6= 0.
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Proof. First, observe that the dimensions of the spaces in the isomorphisms coincide
by our definition of string cohomology, Proposition 6.6 and [BDa, Theorem 7.2].
So, it suffices to construct a surjective map between them.

We know the cohomology ring of the toric variety:

H∗(V (σ)) ∼= C[Dρ : ρ ∈ Σ(1), ρ+ σ ∈ Σ(dimσ + 1)]/(P (V (σ)) + SR(V (σ))),

where

SR(V (σ)) =
〈
Dρ1 · · ·Dρk : {eρ1 , . . . , eρk} 6⊂ τ for all σ ⊂ τ ∈ Σ(dimσ + 1)

〉
is the Stanley-Reisner ideal, and

P (V (σ)) =
〈 ∑
ρ∈Σ(1),ρ+σ∈Σ(dimσ+1)

〈m, eρ〉Dρ : m ∈M ∩ σ⊥
〉
.

Define the maps from Hp−l,p−l(V (σ))⊗
⊕

t∈T (σ)l
Ct to R0(ω,K∗)Σ by sending

Dρ1 · · ·Dρp−l ⊗ t to ωρ1 [eρ1 ] · · ·ωρp−l [eρp−l ] · t ∈ C[N ]Σ. One can easily see that
these maps are well defined. To finish the proof we need to show that the images
cover R0(ω,K∗)Σ. Every lattice point [n] in the boundary of K∗ lies in the relative
interior of a face C ⊂ K∗, and can be written as a linear combination of the minimal
integral generators of C:

[n] =
∑

[eρ,1]∈C

(aρ + bρ)[eρ, 1],

where aρ ∈ (0, 1) and bρ are nonnegative integers. Let C ′ ⊆ C be the cone spanned
by those [eρ, 1] for which aρ 6= 0. The lattice point

∑
[eρ,1]∈C′(aρ)[eρ, 1] projects to

one of the elements t from T (σ)l for some l and σ corresponding to C ′. Using the
relations

∑
ρ∈Σ(1) ωρ〈m, eρ〉[eρ, 1] in the ring R0(ω,K∗)Σ, we get that

[n] =
∑

[eρ,1]∈C′
(aρ)[eρ, 1] +

∑
ρ+σ∈Σ(dimσ+1)

b′ρ[eρ, 1],

which comes from Hp−l,p−l(V (σ))⊗Ct for an appropriate p. The surjectivity now
follows from the fact that the boundary points of K∗ generate the ring C[K∗]Σ/〈ω〉.
�

The isomorphism (5) follows from the above proposition and the presentation:

H∗toric(Y ∩ V (σ)) ∼= H∗(V (σ))/Ann([Y ∩ V (σ)])

(see (1)). Indeed, the map constructed in the proof of Proposition 9.4 produces a
well defined map between the right hand side in (5) and R0(ω,K∗)Σ/Ann([0, 1])
because the annihilator of [Y ∩V (σ)] maps to the annihilator of [0, 1]. On the other
hand,

(R0(ω,K∗)Σ/Ann([0, 1]))p ∼= R1(ω,K∗)Σ
p+1,

which is induced by the multiplication by [0, 1] in R0(ω,K∗)Σ.

Conjecture 9.5. We expect that the product structure on H∗st(PΣ) is given by
the ring structure R0(ω,K∗)Σ. Also, the ring structure on R1(ω,K∗)Σ

∗+1 induced
from R0(ω,K∗)Σ/Ann([0, 1]) should give a subring of H∗st(Y ) for a generic ω in
Conjecture 4.8. Moreover,⊕

p,q

R1(ωC∗ , C∗)Σ
(p+q−d+dimC∗+1)/2 ⊗R1(fC , C)(q−p+dimC)/2,
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should be the module over the ring R0(ω,K∗)Σ/Ann([0, 1]):

a · (b⊗ c) = āb⊗ c,

for a ∈ R0(ω,K∗)Σ/Ann([0, 1]) and (b ⊗ c) from a component of the above di-
rect sum, where ā is the image of a induced by the projection R0(ω,K∗)Σ −→
R0(ωC∗ , C∗)Σ.

We can also say about the product structure on the B-model chiral ring. The
space R1(f,K) ∼= R0(f,K)/Ann([0, 1]) in Conjecture 4.8, which lies in the middle
cohomology ⊕p+q=d−1H

p,q
st (Y ), should be a subring of the B-model chiral ring, and⊕

p,q

R1(ωC∗ , C∗)Σ
(p+q−d+dimC∗+1)/2 ⊗R1(fC , C)(q−p+dimC)/2,

should be the module over the ring R1(f,K), similarly to the above description in
the previous paragraph.

These ring structures are consistent with the products on the usual cohomology
and the B-model chiral ring H∗(X,

∧∗
TX) of the smooth semiample Calabi-Yau

hypersurfaces X in [M3, Theorem 2.11(a,b)] and [M2, Theorem 7.3(i,ii)].

10. Description of string cohomology inspired by vertex algebras

Here we will give yet another description of the string cohomology spaces of
Calabi-Yau hypersurfaces. It will appear as cohomology of a certain complex,
which was inspired by the vertex algebra approach to Mirror Symmetry.

We will state the result first in the non-deformed case, and it will be clear what
needs to be done in general. Let K and K∗ be dual reflexive cones of dimension
d + 1 in the lattices M and N respectively. We consider the subspace C[L] of
C[K] ⊗ C[K∗] as the span of the monomials [m,n] with m · n = 0. We also pick
non-degenerate elements of degree one f =

∑
m fm[m] and g =

∑
n gn[n] in C[K]

and C[K∗] respectively.
Consider the space

V = Λ∗(NC)⊗ C[L].

Lemma 10.1. The space V is equipped with a differential D given by

D :=
∑
m

fmym⊗ (πL ◦ [m]) +
∑
n

gn(∧n)⊗ (πL ◦ [n])

where [m] and [n] means multiplication by the corresponding monomials in C[K]⊗
C[K∗] and πL denotes the natural projection to C[L].

Proof. It is straightforward to check that D2 = 0. �

Theorem 10.2. Cohomology H of V with respect to D is naturally isomorphic to⊕
C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗)

where C∗
C

denotes the vector subspace of NC generated by C∗.

Proof. First observe that V contains a subspace⊕
C⊆K

Λ∗NC ⊗ (C[C◦]⊗ C[C∗◦])
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which is invariant under D. It is easy to calculate the cohomology of this subspace
under D, because the action commutes with the decomposition ⊕C . For each C,
the cohomology of D on Λ∗NC ⊗ (C[C◦]⊗ C[C∗◦]) is naturally isomorphic to

ΛdimC∗C∗
C
⊗R0(f, C◦)⊗R0(g, C∗◦),

because Λ∗NC ⊗ (C[C◦] ⊗ C[C∗◦]) is a tensor product of the Koszul complex for
C[C◦] and the dual of the Koszul complex for C[C∗◦]. As a result, we have a map

α : H1 → H, H1 :=
⊕
C⊆K

ΛdimC∗C∗
C
⊗R0(f, C◦)⊗R0(g, C∗◦).

Next, we observe that V embeds naturally into the space⊕
C⊆K

Λ∗NC ⊗ (C[C]⊗ C[C∗])

as the subspace of the elements compatible with the restriction maps. This defines
a map

β : H →
⊕
C⊆K

ΛdimC∗C∗
C
⊗R0(f, C)⊗R0(g, C∗) =: H2.

We observe that the composition β◦α is precisely the map induced by embeddings
C◦ ⊆ C and C∗◦ ⊆ C∗, so its image in H2 is⊕

C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗).

As a result, what we need to show is that α is surjective and β is injective. We
can not do this directly, instead, we will use spectral sequences associated to two
natural filtrations on V .

First, consider the filtration

V = V 0 ⊃ V 1 ⊃ . . . ⊃ V d+1 ⊃ V d+2 = 0

where V p is defined as Λ∗NC tensored with the span of all monomials [m,n] for
which the smallest face of K that contains m has dimension at least p. It is easy
to see that the spectral sequence of this filtration starts with

H3 :=
⊕
C⊆K

ΛdimC∗C∗
C
⊗R0(f, C◦)⊗R0(g, C∗).

Analogously, we have a spectral sequence from

H4 :=
⊕
C⊆K

ΛdimC∗C∗
C
⊗R0(f, C)⊗R0(g, C∗◦)

to H, which gives us the following diagram.

H3

↗ ⇓ ↘
H1 → H → H2

↘ ⇑ ↗
H4

We remark that the spectral sequences mean that H is a subquotient of both
H3 and H4, i.e. there are subspaces I+

3 and I−3 of H3 such that H ' I+
3 /I

−
3 , and



26 LEV A. BORISOV AND ANVAR R. MAVLYUTOV

similarly for H4. Moreover, the above diagram induces commutative diagrams

0 0
↓ ↑
I−3 H1 → H → H2

↓ ↘ ↑ ↗
I+
3 I+

4

↗ ↓ ↘ ↑
H1 → H → H2 I−4

↓ ↑
0 0

with exact vertical lines. Indeed, the filtration V ∗ induces a filtration on the sub-
space of V ⊕

C⊆K

Λ∗ ⊗ C[C◦]⊗ C[C∗◦].

The resulting spectral sequence degenerates immediately, and the functoriality of
spectral sequences assures that there are maps from H1 as above. Similarly, the
space ⊕

C⊆K

Λ∗ ⊗ C[C]⊗ C[C∗]

has a natural filtration by the dimension of C that induces the filtration on V .
Functoriality then gives the maps to H4.

We immediately get

Im(β) ⊆ Im(H3 → H2) ∩ Im(H4 → H2)

which implies that

Im(β) = Im(β ◦ α) =
⊕
C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗).

Analogously, Ker(α) = Ker(β ◦ α), which shows that⊕
C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗)

is a direct summand of H.
The fact that

Ker(α) ⊇ Ker(H1 → H4)

=
⊕
C⊆K

ΛdimC∗C∗
C
⊗Ker(R0(f, C◦)→ R0(f, C))⊗R0(g, C∗◦)

implies that I−3 contains the image of this space under H1 → H3, which is equal to⊕
C⊆K

ΛdimC∗C∗
C
⊗Ker(R0(f, C◦)→ R0(f, C))⊗R1(g, C∗).

Similarly, I+
3 is contained in the preimage of⊕

C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗)

under H3 → H2, which is⊕
C⊆K

ΛdimC∗C∗
C
⊗R0(f, C◦)⊗R1(g, C∗).
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As a result,
H =

⊕
C⊆K

ΛdimC∗C∗
C
⊗R1(f, C)⊗R1(g, C∗).

�

Remark 10.3. If one replaces C[K∗] by C[K∗]Σ in the definition of C[L], then the
statement and the proof of Theorem 10.2 remain intact. In addition, one can make
a similar statement after replacing Λ∗NC by Λ∗MC and switching contraction and
exterior multiplication in the definition of D. It is easy to see that the resulting
complex is basically identical, though various gradings are switched. This should
correspond to a switch between A and B models.

We will now briefly outline the connection between Theorem 10.2 and the vertex
algebra approach to mirror symmetry, developed in [Bo2] and further explored in
[MaS]. The vertex algebra that corresponds to the N=2 superconformal field theory
is expected to be the cohomology of a lattice vertex algebra FockM⊕N , built out
of M ⊕N , by a certain differential Df,g that depends on the defining equations f
and g of a mirror pair. The space Λ∗(NC)⊗C[L] corresponds to a certain subspace
of FockM⊕N such that the restriction of Df,g to this subspace coincides with the
differential D of Theorem 10.2. We can not yet show that this is precisely the chiral
ring of the vertex algebra, so the connection to vertex algebras needs to be explored
further.

11. Appendix. G-polynomials

A finite graded partially ordered set is called Eulerian if every its nontrivial
interval contains equal numbers of elements of even and odd rank. We often consider
the poset of faces of the Gorenstein cone K over a reflexive polytope ∆ with respect
to inclusions. This is an Eulerian poset with the grading given by the dimension of
the face. The minimum and maximum elements of a poset are commonly denoted
by 0̂ and 1̂.

Definition 11.1. [S1] Let P = [0̂, 1̂] be an Eulerian poset of rank d. Define two
polynomials G(P, t), H(P, t) ∈ Z[t] by the following recursive rules:

G(P, t) = H(P, t) = 1 if d = 0;

H(P, t) =
∑

0̂<x≤1̂

(t− 1)ρ(x)−1G([x, 1̂], t) (d > 0),

G(P, t) = τ<d/2 ((1− t)H(P, t)) (d > 0),

where τ<r denotes the truncation operator Z[t]→ Z[t] which is defined by

τ<r

(∑
i

ait
i

)
=
∑
i<r

ait
i.

The following lemma will be extremely useful.

Lemma 11.2. For every Eulerian poset P = [0̂, 1̂] of positive rank there holds∑
0̂≤x≤1̂

(−1)rk[0̂,x]G([0̂, x]∗, t)G([x, 1̂], t) =
∑

0̂≤x≤1̂

G([0̂, x], t)G([x, 1̂]∗, t)(−1)rk[x,1̂] = 0
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where ()∗ denotes the dual poset. In other words, G( , t) and (−1)rkG( ∗, t) are
inverses of each other in the algebra of functions on the posets with the convolution
product.

Proof. See Corollary 8.3 of [S2]. �
The following polynomial invariants of Eulerian posets have been introduced in

[BBo].

Definition 11.3. Let P be an Eulerian poset of rank d. Define the polynomial
B(P ;u, v) ∈ Z[u, v] by the following recursive rules:

B(P ;u, v) = 1 if d = 0,∑
0̂≤x≤1̂

B([0̂, x];u, v)ud−ρ(x)G([x, 1̂], u−1v) = G(P, uv).

Lemma 11.4. Let P = [0̂, 1̂] be an Eulerian poset. Then

B(P ;u, v) =
∑

0̂≤x≤1̂

G([x, 1̂]∗, u−1v)(−u)rk1̂−rkxG([0̂, x], uv).

Proof. Indeed, one can sum the recursive formulas for B([0̂, y]) for all 0̂ ≤ y ≤ 1̂
multiplied by G([y, 1̂]∗, u−1v)(−u)rk1̂−rky and use Lemma 11.2. �
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