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Modern algebraic geometry is based heavily on the language of schemes, devel-
oped by Grothendieck and others in the middle of the twentieth century. However,
as a byproduct of the scheme revolution, many beautiful older results were largely
forgotten. Dolgachev attempts to mitigate this educational gap by translating ad-
vanced classical materials into the language familiar to modern algebraic geometers.
The book is enormous in scope; in this review we aim to highlight some of its more
accessible elements.

1. What is classical algebraic geometry?

To give the reader unfamiliar with classical algebraic geometry a flavor of the
subject matter, we will briefly review a few remarkable geometric constructions
which were developed in the nineteenth century.

Complex projective spaces. The favorite playground of algebraic geometry in
general and classical algebraic geometry in particular are the complex projective
spaces. The projective space CPn parametrizes lines in an (n+1)-dimensional vector
space over C. In coordinates, points of CPn are encoded by nonzero (n+ 1)-tuples
of complex numbers (x0 : x1 : . . . : xn) up to homotheties

(1.1) (x0 : x1 : . . . : xn) ∼ (λx0 : λx1 : . . . : λxn), λ ∈ C\{0}.

Complex projective space CPn contains the affine space Cn as a subset of points
with x0 6= 0 with coordinates (x1

x0
, . . . , xnx0

) which are well-defined on the set of
equivalence classes of (1.1). However, CPn is preferred to Cn because it is compact
in the usual topology. In fact, projective spaces are the simplest complex algebraic
varieties which are compact when viewed as complex manifolds. This explains why
the bulk of algebraic geometry concerns subvarieties in CPn.

Subvarieties of CPn are given by systems of homogeneous equations in coordi-
nates (x0, . . . , xn). For example, Fermat cubic and quartic curves in CP2 are given
by

(1.2) x3
0 + x3

1 + x3
2 = 0

and

(1.3) x4
0 + x4

1 + x4
2 = 0

respectively. The geometry of the solution sets of these and other equations of
small degree was studied extensively in the second half of the nineteenth and the
first half of the twentieth centuries, and is now commonly referred to as classical
algebraic geometry. Below we list a few of its most prominent results.

Triple tangents of cubics in CP2. Let F (x0, x1, x2) be a degree three homoge-
neous polynomial in three variables, so that the corresponding curve 2 E ⊂ CP2

E = {(x0 : x1 : x2) ∈ CP2, such that F (x0, x1, x2) = 0}

12010 Mathematics Subject classification. Primary: 14-02, secondary: 14-01.
2The real dimension of E is two, and as a compact Riemann surface E has the topology of the

torus S1 × S1. Algebraic geometers call E a curve to indicate its dimension over C.
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is a smooth complex manifold. Then there are exactly 9 lines in CP2 which are
triple tangent to E, that is the restriction of the polynomial F to the line has a
triple root. In the particular case of the Fermat cubic (1.2), these tritangent lines
can be found by direct calculation to be

x0 + ξx1 = 0, x1 + ξx2 = 0, x2 + ξx0 = 0

for each of the three solutions of ξ3 = 1. In general, this statement is far from
obvious. The nine triple tangency points correspond to points of order three once
E is given a Lie group structure with one of these points as the identity; this
statement is routinely covered in introductory algebraic geometry courses.

Bitangent lines of quartic curves. A (smooth) Riemann surface C given by a
degree four equation G(x0, x1, x2) = 0 in CP2 is topologically equivalent to a sphere
with three handles. It was observed by Plücker in 1839 [11] that there are exactly
28 lines in CP2 which have two tangency points with C (or a four-tangency point).
These are called bitangent lines of C. In the particular case of Fermat quartic (1.3)
a direct calculation shows that twelve of these are four-tangent lines 3

x+ ξy = 0, y + ξz = 0, z + ξx = 0

for ξ4 = −1 and sixteen more bitangent lines are

x+ ξ1y + ξ2z = 0

where ξ1 and ξ2 are all possible choices of fourth roots of 1.

In general, these 28 bitangent lines correspond to the so-called odd theta char-
acteristics of C. If one considers a double cover of CP2 ramified at C, then each of
these lines l splits up into two components, because the restriction of G to l is the
square of a degree two polynomial. These components then give all 56 holomorphic
spheres of self-intersection (−1) on a del Pezzo surface of degree 2. This is already
a fairly non-trivial statement, which only occasionally makes it into the graduate
curriculum.

Lines on a cubic surface. Let S be a smooth cubic surface, that is a smooth two-
dimensional complex manifold given by a degree three equation in the coordinates
xi on CP3. Continuing with our Fermat-type examples one can look at

(1.4) S = {(x0 : x1 : x2 : x3) ∈ CP3, such that x3
0 + x3

1 + x3
2 + x3

3 = 0}.

It has been known at least since the work of Cayley and Salmon [5] that S contains
exactly 27 lines. For the specific surface (1.4) these lines are given in the parametric
form as images of CP1 with coordinates (s : t) by

(s : ξ1s : t : ξ2t), (s : t : ξ1s : ξ2t), (s : t : ξ1t : ξ2s),

where ξ1 and ξ2 are nine independent choices of third roots of 1. Also of note are 45
planes which contain triples of these lines. We will describe some less well known
results about the cubic surfaces in the next section.

3These are also called inflection bitangent lines.
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2. Further examples.

The aforementioned basic facts of classical algebraic geometry are well known
to most if not all modern day algebraic geometers. However, there is a wealth of
other results about low-dimensional subvarieties of small degree in projective spaces
which are known only to a small sliver of specialists. We will list several such results
in this section.

Polarity construction. The cornerstone of many arguments of Dolgachev’s book
is the following polarity construction. If a degree d hypersurface X in CPn is given
by {F (x0, . . . , xn) = 0} and a = (a0 : . . . : an) is a point in CPn, then the first polar
Pa(X) of X with respect to a is given by G = 0 where

G(x0, . . . , xn) :=
d

dt
(F (x0 + ta0, . . . , xn + tan))

∣∣∣
t=0

=
∑
i

ai
∂F

∂xi
.

It is clear that G is a homogeneous polynomial of degree d−1, which is well defined
up to a multiplicative constant, so Pa(X) is well-defined. In the case when X is
a smooth conic in CP2 and a 6∈ X, the geometric meaning of Pa(X) is the line
connecting two points in X where tangent lines pass through a.

This construction can be extended to multiple points by iteration. In particular
if one repeats it d − 1 times for a ∈ X, then Pad−1(X) is the tangent hyperplane
to X at a if X is nonsingular at a. If X is singular at a, then Pad−1(X) is the
whole CPn. More generally, when one views points in CPn as hyperplanes in the
dual projective space, this construction associates to a degree d hypersurface in CPn

and a degree k hypersurface in the dual projective space a degree d−k hypersurface
in CPn (unless the corresponding derivative is zero, in which case the polar is the
whole CPn). For k = d this is simply the pairing between d-th symmetric powers
of dual vector spaces. We will use this pairing in the discussion below of plane
quartics represented by sums of five fourth powers.

Quartics as sums of fourth powers and Clebsch quartics. The space of quartic
polynomials in three variables is isomorphic to C15. It contains a three-dimensional
(non-linear) subvariety of fourth powers of linear forms. Thus, a naive count of
dimensions suggests that a generic degree four polynomial in three variables can
be written as a sum of five fourth powers of linear polynomials. However, this is
not true, as was first observed by Lüroth in 1868 [9]. We will sketch two simple
arguments below.

Suppose F = l41 + · · · + l45. The tangent space to F in the space of all quartics
that can be represented by sums of five fourth powers4 is the space of terms of
degree 1 in ε in

(2.1) (l1 + εl̂1)4 + · · ·+ (l5 + εl̂5)4

for all possible choices of l̂i. Consider the 5 points pi on the dual CP2 that cor-
respond to li. There is a conic that passes through them, and we consider the
square H of its equation. If one takes the polar pairing of H and (2.1), the fact
that H vanishes twice at pi implies that the pairing vanishes to first order in ε. As

4We are being sloppy here. More precisely, if the dimension count were to work, then a generic

F would have a finite number of decompositions into five fourth powers, and the linear term in
(2.1) gives the tangent space to the corresponding branch.
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the result, the tangent space to the space of five fourth powers of linear forms is
orthogonal to H and is not the whole space of quartics.

Another argument can be given as follows. If F =
∑5
i=1 l

4
i , then the linear span

of six second order partial derivatives of F with respect to x0, x1, x2 lies in the five-
dimensional span of l2i . However, for a generic quartic F the span of second order
partial derivatives is six-dimensional. Therefore a necessary condition for F to be
represented as a sum of five fourth powers is the vanishing of the determinant of the
coefficient matrix of the second order partial derivatives of F . This determinant is
a degree six polynomial in the coefficients of F , known as the catalecticant. Such
quartics are known as Clebsch quartics.

It is very natural to ask what is the variety of presentations of a given Clebsch
quartic into the sum of fourth powers, up to permutation and scaling of the coef-
ficients. It turns out that for a general Clebsch quartic this variety is a rational
curve.

More on cubic surfaces. Consider a smooth cubic surface S in CP3 given by

F (x0, x1, x2, x3) = 0

for a degree 3 homogeneous polynomial F . It turns out that F = 0 can always be
rewritten in the form

l1l2l3 +m1m2m3 = 0
where li and mi are linear combinations of x0, . . . , x3. This is known as the Cayley-
Salmon equation. In fact, there are 120 ways of writing S in this form, up to
rescaling and permuting the linear factors.

Note that li = mj = 0 gives 9 out of 27 lines on S. In addition, li = 0 (or
mi = 0) are the so-called tritangent planes of S, which are characterized by the
property that they intersect S at three lines. In the case of the Fermat cubic (1.4),
one can rewrite its equation as

(x0 + x1)(x0 + ξx1)(x0 + ξ2x1) + (x2 + x3)(x2 + ξx3)(x2 + ξ2x3) = 0

where ξ = e
2πi
3 .

On another note, let us further assume that the coefficients of F are chosen
generically (for example, they are algebraically independent over Q, although a
much weaker condition would suffice). Then a result going back to Sylvester [12]
states that F can be written as a sum of cubes of five linear polynomials

F = t31 + t32 + t33 + t34 + t35.

Moreover, such presentation is unique, up to permutation of the ti and scaling by
third roots of 1. Equivalently, a general cubic surface is isomorphic to a surface in
CP

4 with coordinates (z0 : z1 : z2 : z3 : z4) given by the equations
4∑
i=0

aiz
3
i =

4∑
i=0

zi = 0,

where ai are determined uniquely up to permutation and common scaling.
Dolgachev also describes in great detail various degenerations of cubic surfaces.

There are 21 different classes of cubic surfaces with isolated singularities. For
example, the maximum number of singular points is 4, which is the case for the so-
called Cayley surface x0x1x2 +x0x1x3 +x0x2x3 +x1x2x3 = 0. Dolgachev devotes a
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whole chapter in the book to the study of cubic surfaces, and the above statements
constitute just a tiny portion of the book’s material.

3. Comments.

Dolgachev’s book is meant to attract attention to the vast knowledge base in
algebraic geometry that preceded the by now standard axiomatic approach of
Grothendieck and others. As the scheme-theoretic approach to algebraic geom-
etry began to dominate, the old material became neglected, with relatively few
experts in classical algebraic geometry still practicing the art.

It is worth pointing out that even though modern topics, such as the minimal
model program, mirror symmetry, geometry of moduli spaces of curves, and various
flavors of non-commutative algebraic geometry, are the face of the field, there is still
considerable amount of work being done on classical objects. Often, new techniques
are used to attack old problems, as was the case with the classification of Fano
varieties of dimension three due to Iskovskikh and Mori-Mukai, see [8, 10]. While
that result is very much in the spirit of classical algebraic geometry, minimal model
program techniques were essential to the argument. In a more recent example,
the study of moduli spaces of cubic surfaces has been reinvigorated by the work of
Allcock, Carlsson, Toledo and others, see [1, 2]. Cremona groups, first considered in
1863 in [6], still remain an active research topic, see for example [4]. So it is fair to
say that classical algebraic geometry was never completely forgotten. It has been,
however, neglected. Dolgachev’s book goes a long way in bringing many beautiful
old results back into the limelight.

Dolgachev’s book is aimed at algebraic geometers of all levels; however it is
not meant to serve as an introduction to algebraic geometry.5 Familiarity with
Hartshorne’s book [7] is preferred, as concepts such as projective spaces, invertible
sheaves, sheaf cohomology, etc. are used freely. Dolgachev does not attempt to
reconstruct the original proofs; rather, the focus of the book is on bringing the old
results out of obscure library corners and making them accessible to the current
generation of algebraic geometers. This modernization is crucial because it is very
difficult to read the original texts of the 19th and early 20th century due to natural
terminology drift and differing underlying common knowledge assumptions. Some
of the results are given as exercises; there are also extensive historical notes at the
end of each chapter.

Dolgachev’s book is a labor of love, with the author producing a remarkable in-
depth review of his favorite subject. This one-of-a-kind book is likely to be widely
used as a reference whenever classical results are used or quoted.

Acknowledgements. The reviewer thanks Erika Shor for multiple useful com-
ments on the first version of the review.
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