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1. Introduction. Perhaps the most significant aspect of differential geometry

is that which deals with the relationship between the curvature properties of a

Riemannian manifold M and its topological structure. One of the beautiful

results in this connection is the (generalized) Gauss-Bonnet theorem which

relates the curvature of compact and oriented even-dimensional manifolds with an

important topological invariant, viz., the Euler-Poincar6 characteristic x(M) of M.

In the 2-dimensional case, the sign of the Gaussian curvature determines the sign

of x(M). Moreover, if the Gaussian curvature vanishes identically, so does #(M).

In higher dimensions, the Gauss-Bonnet formula (cf. §3) is not so simple, and

one is led to the following important

Question. Does a compact and oriented Riemannian manifold of even

dimension n = 2m whose sectional curvatures are all non-negative have non-

negative Euler-Poincare characteristic, and ij the sectional curvatures are

nonpositive is ( - l)m*(M) = 0?

H. Samelson [7] has verified this for homogeneous spaces of compact Lie

groups with the bi-invariant metric. Unfortunately, however, a proof employing

the Gauss-Bonnet formula is lacking. An examination of the Gauss-Bonnet

integrand at one point of M leads one to an extremely difficult algebraic problem

which has been resolved in dimension 4 by J. Milnor:

Theorem 1.1. A compact and oriented Riemannian manifold of dimension 4

whose sectional curvatures are non-negative or nonpositive has non-negative

Euler-Poincare characteristic. If the sectional curvatures are always positive

or always negative, the Euler-Poincare characteristic is positive.

A subsequent proof was provided by S. Chern [3], A new and perhaps clearer

version indicating some promise for the higher dimensional cases is given in §4.

This proof is not essentially different from the one given in [3]. An application

of our method yields(3)
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Theorem 1.2. In order that a 4-dimensional compact and orientable mani-

fold M carry an Einstein metric, i.e., a Riemannian metric of constant Ricci

or mean curvature R, it is necessary that its Euler-Poincare characteristic be

non-negative.

Corollary 1.2. // V is the volume of M,

VR2

equality holding if and only if M has constant curvature.

Theorem 1.2 may be improved by relaxing the restriction on the Ricci cur-

vature (cf. §5).

As a first step to the general case, it is natural to consider manifolds with

specific curvature properties. A large class of such spaces is afforded by those

complex manifolds having the Kaehler property. For this reason, the curvature

properties of Kaehler manifolds are examined. We are especially interested in

the relationship between the holomorphic and non holomorphic sectional curva-

tures. In particular, with the aid of Lemma 4.1, sharper bounds on curvature than

those given by M. Berger [1] are obtained. (The right-hand inequality in 4.2 of

[1] is incorrect as was pointed out to us by the author; see [1'].) Milnor's result

is also partially improved by restricting the hypothesis to the holomorphic sectional

curvatures. Indeed, the following theorem is proved:

Theorem 1.3. A compact Kaehler manifold of dimension 4 whose holo-

morphic sectional curvatures are non-negative or nonpositive has non-negative

Euler-Poincare characteristic. If the holomorphic sectional curvatures are

always positive or always negative, the Euler-Poincare characteristic is positive.

An upper bound for %{M) is obtained in terms of the volume and the maximum

absolute value of holomorphic curvature of M. More important, an upper bound

may be obtained in terms of curvature alone when holomorphic curvature is

strictly positive (see Theorem 10.2). The technique employed to yield this bound

also gives a known bound for the diameter of M [1 ;9].

Let M be a Kaehler manifold with almost complex structure tensor J. Let G2P

denote the Grassmann manifold of 2-dimensional subspaces of TP (the tangent

space at P e M) and consider the subset

Hn,p = W e <Jyp \ Ja — a ox Ja la}.

The plane section a is called holomorphic if Ja = a, and anti-holomorphic if

Jala, i.e., if it has a basis X, Y where X is perpendicular to both Fand JY.

Let R{a) denote the curvature transformation (cf. §2) associated with an orthonor-

mal basis of a and K(a) the sectional curvature at a e G2P.

A Kaehler manifold is said to have the property (P) if at each point of M
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there exists an orthonormal holomorphic basis {Xx} of the tangent space with

respect to which

{R0(o))2=-(K(o))2I

for all sections a = o(Xx,Xß) where Ra(a) denotes the restriction of R(o) to the

section a, and I is the identity transformation. (In other words, in the case where

K(o) # 0, Ra(o) defines a complex structure on a.)

We shall prove

Theorem 1.4. Let M be a 6-dimensional compact Kaehler manifold having

the property (P). If for all o = o(Xa,Xß), K(a) = 0, then x(M) = 0, and if

(o~)K=0, x(M) ^ 0. i/ the sectional curvatures are always positive (resp.,

negative), the Euler-Poincare characteristic is positive (resp., negative).

A similar statement is valid for manifolds of dimension 4k (see Theorem 11.1).

A Kaehler manifold possessing the property (P) for all aeH2P has constant

holomorphic curvature.

T. Frankel has conjectured that the compact Kaehler manifolds of strictly

positive curvature are topologically, and even analytically, the same as the complex

projective spaces. A. Andreotti and Frankel have already established this in

dimension 4 [10]. In dimension 6, it is not yet known whether a compact Kaehler

manifold of positive curvature is homologically complex projective space.

However, we have recently shown that the second betti number of a compact

Kaehler manifold of strictly positive curvature is 1.

2. Preliminary notions. Let M be an (n = 2)-m dimensional Riemannian mani-

fold with metric <, > and norm || || = <, >1/2. Let aeG\ P be a plane section

at PeM, and X, Ye TP two vectors spanning o. The Riemannian or sectional

curvature K(a) at a is defined by

(R(X,Y)X,Y}
K(o) =-

XA Y\\2

where R(X, Y) is the tensor of type (1,1)(associated with X and Y), called the

curvature transformation (cf. §6; R(X, Y) is the negative of the classical curvature

transformation), and || X A Y \\2 = || X \\2\\ Y\\2 - (X, Y}2. The curvature

transformation is a skew-symmetric linear endomorphism of TP. Note that K

is not a function on M but rather on \JP£mGI,p- It is continuous, and so if M

is compact, it is bounded.

Lemma 2.1. For any X,Y,Z,WeTP, the curvature transformation has

the properties:

(i) R(X,Y)= -R(Y,X),

(ii) <[R(X, Y)Z, Wy = - <[R(X, Y)W,Z},

(iii) R(X, Y)Z + R(Y,Z)X + R(Z,X)Y= 0,
(iv) <R(X, Y)Z,W) = <R(Z, W)X, Y>.
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If {XL, •■•,X„} is a basis of TP, the classical components of the curvature ten-

sor are given by

Rijki — (R(,Xi,Xj)Xk>Xi?-

The relations (i)-(iv) then correspond to the classical formulas

W   R-ljkl =   — Rjikh

(ii) Rijki = — Rijik,

(iii) ' Rijkl + Rjui + RkiJl = 0,

(iv) ' Rijki = Rkiu-

Corollary 2.1.  K(o) is a well-defined function on \^}PeMGl P.

3. The Gauss-Bonnet theorem [3]. A convenient formulation is given in terms

of orthonormal bases. Indeed, over a neighborhood of PeM, there exists a family

of orthonormal frames P,XU—,XK and differential forms col,---,co„ such that

the Riemannian metric may be written as

ds2 = Z col

The equations of structure of (M,ds2) are

dcOi = S C0j/\c0ji,  cou + coji = 0,
j

dcou= Z coik A cokj + QU
k

where the coi} are the connection forms and Qy the curvature forms. Define the

tensor field

fi= S (XiAXj)®^
u

=   E  (RCX^X^X^^XXiA^)®^ Aco,).

It is of type (2,2) and assigns to every PeM an element of tfiTp)® /^(T*)

where AP (*0 1S trie vector space over V generated by all elements of the form

V(t A"'Afj» vijeV- I* follows easily that fim has as its skew-symmetric part

(3.1) (Xt A - A X2m)® 2 sil..A1J-jl..j2mRili2jui--Ri2m-lhmj2m-U2,^i^

Let X{ A ••■ A X2m be the generator of /\"(TP) uniquely determined by the

conditions | Xx A ••• A X2m \\ = 1 and that its orientation is coherent with that

of TP. Tehn, the Euler-Poincare characteristic is given by the Gauss-Bonnet

formula

(3.2) ^-35ÄiLe
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where the integrand is the 2m-form defined by

fim= (Xt A ••• A X2m) ® 0.

4. Normalization of curvature. One of the major obstacles in the way of resolv-

ing the Question raised in §1 is the presence of terms in (3.1) involving curvature

components of the type <[R(X, Y)X,Z}, Z ^ y. By choosing a basis of the tangent

space TP which bears a special relation to the curvatures of sections in TP one is

able to simplify the components of the curvature tensor. These simplifications

are based on the following lemma.

Lemma 4.1. Let Xi,Xj,Xk be part of an orlhonormal basis of TP. If the

section (X^Xj) is a critical point of the sectional curvature function K restricted

to the submanifold of sections {(X;,Xj cos 6 + Xk sin 0)}, then the curvature

component RiJik vanishes.

Proof.  Set /(0) = K(XhXj cos 9 + Xk sin 0). Then,

/(0) = (R(Xt,Xj cos 9 + Xk sin 0) X„Xj cos 0 + Xk sin 0>

= cos29Ku + sin29Kik + sin 20 RiJik

where Ku = K(XhXf). Since the derivative at 0 = 0 off(9) is 2RiJik, the result

follows.

Corollary 4.1. 1/ M is a 4-dimensional Riemannian manifold, there exists

an orthonormal basis {Xl,X2,X3,X4} of TP such that the curvature components

Ki2i3> Ri2i4> Äi223> ^i224> #i3i4 and R1323 all vanish.

Proof. Choose the plane o{X t, X2) so that K(X x, X2) is the maximum curvature

at P. Then, choose Xi€o{XuX2) and X3 in the orthogonal complement of

o(XuX2) so that K(XUX3) is a maximum of K restricted to {(-X^cos 0

+ X2sin 0, X3 cos (p +XA sin </>)}. Applications of Lemma 4.1 with various choices

for i, j and k yield the result.

Proof of Theorem 1.1. The idea of the proof is to show that the integrand in

the Gauss-Bonnet formula is a non-negative multiple of the volume element.

For any basis, the integrand is a positive multiple of the volume element and

the sum

The terms for which (ilti2) = (jiJz) are products of two curvatures. These terms

are therefore non-negative. The terms for which (ilti2J1J2) 's a permutation

of (1,2,3,4) are squares, hence non-negative. If we choose the basis to satisfy

the conditions of Corollary 4.1, then all other terms vanish. Indeed, they are of

the form ± Rijik Rtkt,. If one of i or / is 1 or 2 and the other is not, then one of
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Ki2i3> ^i2i4) ^2i23> ^2124 must occur. If i and I are 1 and 2 in some order,

then R1314 occurs. If neither / nor / are 1 or 2, then R3i32 occurs.

For later references it is important to know explicitly what the integrand

reduces to after this choice of basis. A counting procedure yields

(4.1)  ± [K12K34 + Kl3K24 + Kl4K23 + (R1234)2 + (R1324)2 + (*i423)2>.

where co is the Riemannian volume element.

5. Mean curvature and Euler-Poincare characteristic. The same conclusion is

also Valid for 4-dimensional Einstein spaces. An independent proof is given below.

Proof of Theorem 1.2. Since the Ricci tensor RtJ is a multiple of the identity

transformation 8^, i.e., Ry= R<5iy-,

K12 + Kl3 + ^14 = ^21 + ^23 + ^24

= K3l + K32 + K34 = X41 + K42 + K43.

(The symbol R employed here is \ of the Ricci scalar curvature.) It follows that

Kl2 = K34,  Ki3 = K24,  Kl4 = K23.

Thus the terms in (3.1) which are products of two curvatures are squares. As

before, so are the terms having four distinct indices in each factor. The remaining

terms are all of the form

eijlksikljRijikRlklj = — RijikRlklj>

but since Rjk = Rijik + R,klj = 0,   + k, these terms are also squares.

Proof of Corollary 1.2. If we set x = K12 = K34, y = X13 = K24, and z = K14

= K23, the minimum of x2 + y2 + z2 subject to the restriction x + y + z = R is

found to be R2/3. We note that x2 + y2 + z2 = R2/3 only if x = y = z. The

integral can attain the lower bound of VR2/I2n2 only if the other terms all

vanish, which implies that the sectional curvature is constant.

Theorem 1.2 generalizes a result due to H. Guggenheimer [5].

Since an irreducible symmetric space is an Einstein space, its Euler-Poincare

characteristic, in the compact case, is non-negative in dimension 4. This is, of

course, true for all even dimensions [7].

The cases where curvature or mean curvature is strictly positive in Theorems 1.

1 and 1.2, respectively, are consequences of Myers' theorem which says that the

fundamental group is finite. Indeed, the hypothesis of compactness may be

weakened to completeness in these cases, since compactness is what is first estab-

lished.

In both Theorems 1.1 and 1.2, it is clear from the proof that x(M)#0 unless M

is locally flat.
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Example. Let M = S2 x S2 be the product of two 2-dimensional unit spheres

with metric tensor the sum of those for the 2-spheres: ds2 = ds\ + ds\. The

Riemannian manifold M is then an Einstein space with (constant) Ricci curvature

1. The sectional curvatures vary from 0 to 1 inclusive, and hence they are not

bounded away from 0. However, both Theorems 1.1 and 1.2 imply that x(M) > 0.

This follows from Theorem 1.1 since M is not locally flat, and from Theorem 1.2

since Ä^O. Since M does not have constant curvature, %{M) > V\Y1%2 > 1.

Corollary 1.2 therefore yields information beyond Theorem 1.1 if the manifold

carries an Einstein metric.

Theorem 1.2 may be improved by relaxing the restriction on mean curvature.

Let M be any 4-dimensional compact and orientable Riemannian manifold, R0 the

maximum mean curvature, that is, the maximum of Ru = Ki2 + K13 + Kl4 as a

function of a point of M and an orthonormal basis at that point, and r the mini-

mum mean curvature. The generalization of Theorem 1.2 will then take the form

of finding a lower bound for x{M) which is given in terms of R0, r and V. In

particular, we shall give conditions on R0 and r in order that x(M) be non-negative.

The problem reduces to that of minimizing the expression

^12^34 + ^13^24 + ^14^23

subject to the restrictions

r rg K12 + Kl3 + Kl4 = R0,  r = K2l + K23 + K24 = R0,

r^K3i+ K32 + K34 ^R0,  r = K4X + K42 + K43 = R0.

As an outline of the technique used, a substitution K12 =x — u, K13= y — v, Kl4

= z — w, K34 = x + u, K24 = y + v, K23 = z + w will reduce Ki2K34 + Kl3K24

+ Kl4K23 to normal form x2 + y2 + z2 — u2 — v2 — w2. The inequalities all

involve x + y + z, so we may replace x, y and z by their mean s = (x + y + z) / 3

without altering the validity of the inequalities but decreasing the quadratic

expression. This reduces the quadratic form to four variables s, u, v, w and the

inequalities describe a cube in this 4-space. The form is indefinite or negative

definite on this cube and all its faces, so the minimum p must occur on a corner.

We summarize the results:

1. If R0 = 2r, p = r2/3.

2. If 0 = 2r S R0, H = RoQr - Ä0)/6.

3. If r = 0 = R0, n = - (R02 - 4R0r + r2)/6.

4. If r = 2R0 S 0, p = r(3R0 - r)/6.

5. If 2R0 = r, p= Riß.

The conclusions derived are

Theorem 5.1. // M is a 4-dimensional compact and orientable Riemannian

manifold, R0 the maximum mean curvature, r the minimum mean curvature, V

the volume of M, and p = u(R0,r) as specified above, then uV/4n2 is a lower

bound for the Euler-Poincare characteristic of M.
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Corollary 5.1.  // R0 i£ 3r or 3R0 ^ r, the Euler-Poincare characteristic is

non-negative.

The case 0 < R0 ^ 3r follows from Myers' theorem.

Corollary 5.2. // k is an absolute bound for mean curvature { — kgr,R0gk),

then — k2V/4n2 is a lower bound for the Euler-Poincare characteristic.

We note that this method fails to yield an upper bound for %{M) in terms of

mean curvature. Moreover, it is not simple to extend these results to higher

dimensions.

6. Curvature and holomorphic curvature. It is well known that results on

Riemannian curvature are sometimes valid for Kaehler manifolds when the

hypothesis is restricted to holomorphic curvature alone. For example, J. L. Synge's

theorem that a complete orientable even-dimensional Riemannian manifold of

strictly positive curvature is simply connected [8] corresponds to Y.Tsukamoto's

result that a complete Kaehler manifold of strictly positive holomorphic curvature

is simply connected (cf. §10).

It suits our purposes well here to avoid complex vector spaces. Indeed, a Kaehler

manifold is considered as a Riemannian manifold admitting a self-parallel skew-

symmetric linear transformation field J such that J2 = - I. The field J is usually

called the almost complex structure tensor.

We shall require the following

Lemma 6.1. The relationship between the curvature transformation R(X, Y)

and the metric is given by

R(X,Y) = DlXY]-[Dx,DY]

where Dx denotes the operation of covariant differentiation in the direction of X,

and

2<x,Dzy> = z<x, y> - x<[Y,zy + y<z,x>

+ <y,[x,z]>- a,[y,z]>- <z,[y,x]>.

Lemma 6.2. Let M be a Kaehler manifold with almost complex structure

tensor J. Then, for any X,YsTP

(i) R(JX,JY) = R(X,Y),

(ii) K(JX,JY) = K(X, Y),
and when X,Y,JX,JY are orthonormal,

(iii) <[R(X,JX)Y,JY> = K(X, Y) + K(JX, Y).

Formula (i) is a consequence of the fact that J is parallel. Indeed, J being paral-

lel is equivalent to DX(JY)=JDXYfor all X, Y. Applying Lemma 6.1, R(X, Y){JZ)

= J{R(X,Y)Z). Since J is an isometry, <[R(X,Y)JZ,JW} = (JR(X,Y)Z,JW)
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= (R(X,Y)Z,W>, so that R(JZ,JW) = R(Z, W) now follows from (iv) of

Lemma 2.1.

Replacing Y by JY and using the skew-symmetry of R(X, Y) we get R(X,JY)

= R(Y,JX). For sectional curvature we have the corresponding relation K(X,JY)

= K(Y,JX).

A plane section is holomorphic if it has a basis {X, JX} for some X. A plane

section is anti-holomorphic if it has a basis {X, Y} where X is perpendicular to

both Yand JY. More generally, with each section we associate an acute angle 0

which measures by how much the section fails to be holomorphic. If {X, Y} is

an orthonormal basis of the section then cos 6 = | <[X, JY} |; it is readily verified

that this is independent of the choice of X and Y. The following lemma is trivial.

Lemma 6.3. // X and Y are orthonormal vectors which do not span a ho-

lomorphic section, then X and JY span an anti-holomorphic section.

The holomorphic curvature H(X) of a nonzero vector X is the curvature of the

holomorphic section o(X,JX), i.e., H(X) = K{X,JX).

In a Riemannian manifold it is well known that the curvature tensor is deter-

mined algebraically by the biquadratic curvature form B :

B(X,Y)= <[R(X,Y)X,Y}.
In fact,

6<R(X, Y)Z,W> = ~ (B(X + sZ,Y+ tW) - B(X +sW,Y+ tZ)) | s=( = 0.

Since sectional curvature K{X, Y) is the quotient of B(X, Y) and || X A T|[2, it

follows that the curvature tensor is determined algebraically by the functions K

and <,>.

If the manifold is Kaehlerian, we define the quartic holomorphic curvature

form Q:

Q(X)= <[R(X,JX)X,JXy.

That the holomorphic sectional curvatures are of fundamental importance for

Kaehler manifolds is given by

Theorem 6.1.  B is determined algebraically by Q.

Perhaps more interesting is the formula which reduces the proof to a verification:

B(X, Y) = ^2 l3Q(X +JY)+ 3ß(X — JY) — Q(X + Y)

(6-1) -Q(X-Y)-4Q(X)-4Q(Y)l

As an immediate consequence of this formula we derive

Corollary 6.1. Let Xland Ybe orthonormal vectors,and<[X,JY) = cosd>0.

Then,
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K(X, Y) = -i- [3(1 + cosd)2H(X + JY) + 3(1 - cos9)2H(X - JY)

(6 2) - H(X + Y)- H(X - Y) - H(X) - H(Y)].

Moreover, if (X,JY) = 0, then

As a consequence, we obtain a well-known result.

Corollary 6.2. // holomorphic curvature is a constant H, then curvature is

given by

In particular, if curvature is constant, the manifold is locally flat for m ^ 2.

Formulas (6.2)-(6.4) will be used in §8 to derive inequalities between curvature

and holomorphic curvature.

7. Curvature as an average. When holomorphic curvature is constant, the

anti-holomorphic curvature is also a constant A = H/4, and we may rewrite

(6.5) as

For any two orthonormal vectors X and Y such that (X,JY} > 0, we say

that the holomorphic sections generated by X cos a + Ysin a are the holomorphic

sections associated with the section spanned by the pair (X, Y), and the sections

spanned by the vectors X cos a + Ysin a, — JX sin a + JYcos a the anti-holo-

morphic sections associated with (X, Y). These 'circles' of sections depend only

on the plane of X and Y, and not on the choice of the vectors X, Y. If the manifold

has constant holomorphic curvature, then H may clearly be interpreted as the

average associated holomorphic curvature, and A as the average associated

anti-holomorphic curvature. Thus, the following result may be viewed as a gener-

alization of formula (6.5).

(6.5) K(X, Y) = ^ (1 + 3 cos20).

K(X, Y) = H-3A sin20.

Theorem 7.1. Let H(X, Y) be the average associated holomorphic curvature

and A(X, Y) the average associated anti-holomorphic curvature to the plane of

the vectors X and Y, i.e., when X and Yare orthonormal,
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H(X, Y) = — f H(X cos a + Y sin a) da,
n Jo

l r
^4(X, Y) = —    K(X cos a + Ysin a, - JX sin a + 7 Ycos a) da.

n Jo

Then,

(7.1) K(X, Y) = H(X, Y) - 3 4(X, Y) sin20.

Since H(X cos a + Ysin a) and K(X cos a + Ysin a, — JX sin a + JY cos a)

are quartic polynomials in cos a, sin a, indeed, quadratic polynomials in cos 2a,

sin 2a, their average may be obtained by averaging any four equally spaced

values:

H(X, Y) = ^ IH(X) + H(X + Y)+ H(Y) + H(X - Y)],

A(X, Y) = ^ [K(X,JY) + K(X + Y,-JX+JY)+K(Y,JX) + K(X-YJX + JY)]

= y \K{X,JY) + K(X + Y,-JX+ JY)].

8. Inequalities between holomorphic curvature and curvature. Throughout this

section assume that the metric has been normalized so that every curvature H(X)

satisfies X ̂  H{X) ^ 1. The Kaehler manifold is then said to be X-holomorphically

pinched [1]. We shall derive inequalities between the curvatures of holomorphic

and nonholomorphic sections.

To begin with, we consider anti-holomorphic curvature. By formula (6.2) with

cos 9 = 0, we obtain

Lemma 8.1.  // X,Y span an anti-holomorphic section, then

3-^zlgK{X,Y)gl^.

Similarly, by (6.3), we derive

Lemma 8.2.  // X,Y and X,JY span anti-holomorphic sections, then

X - 1 +f(X)^ K(X, Y) + K(X,JY) g

Using these bounds one can obtain bounds on mean curvature. Let Xt be any

unit vector. Choose an orthonormal basis {XhJXj}, i = 1, m. Then, the mean

curvature in the 'direction' of Xx is
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m

K&^JXJ + Z   lK{XitXt) + K(XltJX,)l
i = 2

The first term is holomorphic and the remaining ones are anti-holomorphic in

pairs. Thus, we obtain

Theorem 8.1. Let M be a X-holomorphically pinched Kaehler manifold of

complex dimension m. Then,

(i) ifm^5,

(3m + 1) A - (m - 1)           3m + 1 - (m - 1)1
r =-,    R0 =-4-

and

(ii) ifm>5,

i      im     m - 3     D           ,     m - 3
r = (m - 1)A-Ro = ^ - 1-r- A

w/iere r, R0 are lower and upper bonds, respectively for mean curvature. In

particular, for m = 2, mean curvature is non-negative if A^ 1/7. /« euery

dimension, mean curvature is positive if X — 1/2. Finally, for m = 2 and A ̂  0

(resp., A ̂  0), the Ricci scalar curvature is non-negative (resp., nonpositive).

To get an upper bound for an arbitrary sectional curvature, we eliminate the

function H(X,Y) which occurs in both formulas (6.2) and (7.1), thereby obtaining

K(X,Y) = j [(1 + cos 9)2H(X + JY) + (1 - cos 6)2H(X - JY)]

(8.1)
-sin29A(X,Y).

Using the lower bound for A(X, Y) obtained from Lemma 8.1 results in the

inequality

(8.2) K(X,Y) = i.MfjpX

This proves

Theorem 8.2. // the holomorphic sectional curvatures are non-negative,

then a maximum curvature is holomorphic.

To obtain a lower bound we apply formula (6.2) directly. Thus,

K(X, Y) =    [6(1 + cos20)A - 4].
8

Hence,

K(X,Y) = ^~^, A^O.
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To obtain a better upper bound than (8.2) when k < 0, we assume that K(X, Y)

is a maximum for all curvatures. Then, since <[X,JY} = cos 0, the derivative

at a = Oof K(Xcos a + JY sin a, Y)is - 2(<[R(X, Y)Y, JY> + cos9K(X, Y)) = 0,

and similarly with X and Y interchanged. Thus,

<R(X, Y)Y, JY> = <K(X, Y)*, JX > = - JC(X, Y) cos 0.

We use this to expand H(X + JY)(1 + cos0)2 and f7(X - JY)(1 - cos0)2. The

result is

(1 + cos 9)2H(X + JY)- (1 - cos 0)2//(X - JY)
K(X, Y)- 4^-.

Eliminating H(X - JY) between this and (8.1) yields

K(X, Y) = -j (1 + cos9)H(X + JY) - (1 - cos0),4(X, Y)

(8.3) +cos0)-(l-cos0) 3/l2 v   ' " '   v 4

= 1 - A(l -cos0)A.

From (6.1) by inserting X, JY in place of X, Ywe get

K(X,JY) sin20 = 4" [3H(X — Y) + 3J/(X + Y) - (1 + cos 9)2H(X + JY)
o

(8.4) -(1 - cos9)2H(X - JY) - H(X) - H(Y)]

^ i- [3H(AT - Y) + 3i/(A: + Y) — #(X) - H(Y)]-1 + c°s2g,

Averaging this as we did to get (7.1) we find

A(X,Y)sin20 £ —Jf(X,Y) - -j (1 + cos20)

(8.5)
^ T"T(1+cos20)-

Combining this with (8.3) gives

wV ^ ^    1 /1 m       1-COS0/A 1+COS20\
K(X,Y) g T(l + cos0)       ^20- \~2-—)

(8.6)
3 +4cos0 + 3cos20-2A

4(1 + cos 0)

As a function of cos 0 this bound is either increasing as cos 9 increases from 0 to 1,

or it has a minimum with larger values on the ends of the interval. The other

bound, 1 — 3(1 — cos0)A/4, is a decreasing function of cos 0. It follows that
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K(X, y) is bounded by either the common value when the two bounds coincide,

which occurs for cos 0=1 /^/3, or the bound from (8.6) with cos 0 = 0. The two

numbers in question are 1 —(3 —7 3)1/4 and (3 —2/1)/4, respectively. They

coincide for 1 = - (1 + N/3)/2. Hence,

k(x, y) 5S

1
4     ' 2

3 - 2X x< _ 1 + 73

It is not necessary to duplicate the above analysis to obtain lower bounds.

Indeed, we can change all signs and directions of inequalities (making the minimum

H = — 1), then rescale the result so that the minimum H is again X when X < 0.

We summarize the results as follows:

Theorem 8.3.  Let M be a X-holomorphically pinched Kaehler manifold.

Then,
31 — 2

(0 = k(x,y) = h A^O,

(3 - J3)X        1 + J3 ,
(n) k(x,y) ^ 1 -1—yi^,-f- = X = 0,

3-21     .        1 + j3
(iii) k(x,y) = -—,   1?£ - —yL-,

(iv) K(X,Y) = ^-j±,   -V3 + l = l = 0,

(v) K(x,y) = X- 3 ~^3,  l^-73 + l.

Finally, if - 1 ̂  H(Z) £ - X for all x, then

31 — 2
(vi) -i^K(x,y)=-4—.

It is suspected that the bounds in cases (ii) and (v) can be improved, with

corresponding alterations on the bounds on 1 in (iii) and (iv):

Conjecture.

(ii)' K(X,y) = 1, -i-^AgO,

(v)' K(X, Y) = X,   1 = - 2.

Further improvement by the methods employed here (consideration of the

curvature at one point) is precluded by the examples A and B below where the

curvature components Rijkl are taken with respect to an orthonormal holomorphic

basis XUX2,X3 = JXUX4 = JX2. In each of these examples lgi/(X)gl.
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B

^1212

^1213

^1214

•^1224

•^1313

^1314

^1424

RyAii,

R

2 - A

4

0

0

0

1

0

0

1

3X- 2

2X - 1

4

0

0

0

X

0

0

X

3-2X
1414

The other curvature components are determined by Lemmas 2.1 and 6.2.

For example A we have (3X - 2)/4 = K(X, Y) g 1 if - 2 g X g 1; if X g - 2,

then HK(XJ)^(2-l)/4. For example B, (2A - l)/4 g K(X, 7) g 1 if

- l/2g     1; if     - 1/2, then A g K(X, 7) g (3 - 2A)/4.
It is noteworthy that in each of these examples the mean curvature is constant,

viz., 1 + A/2 for A and A + 1/2 for B.

9. Holomorphic curvature and Euler-Poincare characteristic. The Gauss-

Bonnet integral can also be simplified by a normalization of the basis depending

on holomorphic curvature (cf. §6). Our considerations, as before, are restricted to

the 4-dimensional case. Since only orthonormal holomorphic bases are considered

we should expect fewer terms of the form RiJik, k ^ j, to vanish. Fortunately,

however, this is compensated for by virtue of the additional relations provided by

Lemma 6.2. It is for this reason that the proof of Theorem 1.3 presents no essential

difficulties. In fact, if HiXi) is taken to be the maximal holomorphic curvature,

then, by evaluating the derivative of H(Xi cos a + X2 sin a) at a = 0, it follows

that I?i3i4 = 0 (X3 = JXUX4 = JX2). By taking the second derivative, the in-

equality

(9.1) Kl2+3Kl4gK13

is obtained. By using X4 in place of X2, we get Rl2l3 = 0 and

(9.2) 3X12 + K14 g Kl3.

(If K13 = H(Xl) is a minimum rather than a maximum, the inequalities are

reversed.)
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There is still some choice possible after making H(Xt) critical, since this only

determines the plane of Xt and X3.For, Xx and X2 can be chosen in such a way

that K12 will be a maximum (or minimum) among sections having a basis of the

form {Xi cos a + X3 sin a, X2 cos ß + X4 sin ß}. Then, by differentiating

K(Xi cos a + X3 sin <x,X2) we find R12i4 = 0.

The above technique clearly extends to higher dimensions. However, the

Gauss-Bonnet integrand has so many terms, that this normalization does not

clarify the relation between curvature and the Euler-Poincare characteristic.

This is not so for dimension 4, because the integrand with respect to this normalized

basis is simply

(9.3) JL [2(K?2 + Kfo + {K12 + K14)2 + K13K24]co

where cois the volume element. This proves Theorem 1.3.

Example. Let M be a 4-dimensional compact complex manifold on which

there exist at least two closed (globally defined) holomorphic differentials

of = a(?dz', r = 1, JV, such that rank (a'-') = 2. We do not assume that M is

parallelisable. Indeed, some or all of the ar may have zeros on M. Topologically,

M may be the Cartesian product of the Riemann sphere with a 2-sphere having JV

handles. The fundamental form ^/( - 1) Sfar A ä'ofM is closed and of maximal

rank. Hence, we have a globally defined Kaehler metric g = 2 2rocr<2) är. That

this metric has nonpositive holomorphic curvature may be seen as follows. At the

pole of a system of geodesic complex coordinates (z1, z2), the components of the

curvature tensor are

\   [dzi'dzJjdzt'dz1 / ~

where

glJ.= z
r

Thus,

n   \dz> ' dz' Jdz' ' dz>/ dz'dz'

and so by Theorem 1.3, %{M) is non-negative.

Note that since the first betti number 6, ^ 4, the second b2 = 6.

As a matter of fact, S. Bochner [2] has shown that the Euler-Poincare charac-

teristic of a compact complex manifold M of complex dimension m, on which

there exists at least m closed holomorphic differentials ar= a^dz1 such

that rank (a^) is maximal at each point of M, is non-negative for m even and

nonpositive for m odd. Since the holomorphic sectional curvatures are nonpositive

we ask the following question:

d2Sa*
8zk8z'

ÖS?
8z>

= 0,
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Is the sign of the Euler-Poincare characteristic of a compact Kaehler manifold

of negative holomorphic sectional curvature given by ( — l)m?

The expression (9.3) is now used to obtain an upper bound for x(M) in terms

of volume and the bounds on holomorphic curvature. Suppose that M is A-

holomorphically pinched. Choose HiX^ to be minimum, so we may assume it is

A.Let x = H(Xl + XA) + - X4), y=H{X1 + X2) + H{Xl-X2),z=H<<X2)

= K24. Then, by (6.2)

Ki2 = Y@x-y-z - X), K14 = — (3y - x - z - X),

and so by the inequalities (9.1) and (9.2), since K12 St Kl4,

(9.4) -^r~ -y -x -2' A = z = L

The integrand, except for the factor to I An1, is

f(x,y,z) = 4- [3(x2 + y2) + z2 - 2xy - 2xz - 2yz - 2Xx - 2Xy + lOXz + A2].
o

The maximum value of / on the region determined by the inequalities (9.4) is

(9.5) -y (3A2 - 4X + 4),    X St - 1,

(9.6) y(4A2-4A+3), Xg-l.

That there are no inequalities superior to (9.4), in terms of which better bounds

for / can be obtained, is a consequence of examples A and B, §8. For, example A

yields (9.5) and B yields (9.6) as respective integrand factors.

Making use of the symmetry of (9.5) and (9.6), they may be combined to give

Theorem 9.1. Let M be a compact 4-dimensional Kaehler manifold, Lthe

maximum absolute value of holomorphic curvature, (1 — X)L the variation

{maximum minus minimum) of holomorphic curvature, and V the volume of M.

Then,

(9.7) tfM)^(3A2-4A+4)L2K

Since X St — 1, we always have

.... ,11L2F
*(M) = "8^--

Note that the bound (9.7) is achieved for the complex projective space P2 but for

M = S2 x S2 the bound is llx(M)/8. (For P2: L= 1, X = 1, K= 8?t2, whereas

for SJxS2:L=l, A = 1/2, V=16n2.)
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10. Curvature and volume. In this section, we shall assume that Mis a complete

A-holomorphically pinched Kaehler manifold with X > 0. Our goal is to obtain an

upper bound for the volume of M in terms of X and the dimension of M. The

ensuing technique also yields a well-known bound for the diameter, viz., nj-^J X.

The approach will be to obtain a bound B on the Jacobian of the exponential map.

The bound on volume is then obtained by integrating B on the interior of a

sphere of radius n/^JX in the tangent space.

The following facts about the exponential map, Jacobi fields, and second

variation of arc length are required. Let y be a geodesic starting at PeM, y

parametrized with respect to arc length, t a distance along y such that there are

no conjugate points of P between P and y(t). Let Xt be the tangent field to y and

X2 = JXl,X3>Z4 = JXi,--,X2m = JX2m_i parallel fields along y which together

with Xx form an orthonormal basis at every point of y. Covariant differentiation

with respect to Xx will be denoted by a prime, so if V= ZgjX,-, then

DXi V= V'= Hg[X,. A vector field V along y is called a Jacobi field if

V" + R(XU V)Xt = 0. The second variation of arc length along y of a vector

field X is the second derivative of the arc lengths of a one-parameter family of

curves having X as the associated transverse vector field. (For example,

y,(a) = exp^s^a),  0 ^ a ^ t.)

(a) If X is prependicular to Xlt then the first variation (defined similarly) is

zero, so the second variation determines whether the neighboring curves are

longer or shorter than y.

(b) If Vis a Jacobi field such that P~(0) = 0, then V(a) = d expPaT, where Tis a

constant vector in the tangent space TP. If TP is identified with its tangent spaces,

then T= V'(Q).

(c) The second variation of a Jacobi field V (as in (b)) is (V,V}'(t)l2.

(d) If If is a vector field along y such that W(0) = 0, and W is perpendicular to

X,,then the second variation of IF is

(e) If Kand If are as in (b) and (d), then the second variation of Wis an upper

bound for that of V, equality occurring if and only if V= W. In other words

second variation is minimized by Jacobi fields up to the first conjugate point.

(f) The conjugate points of P are the points at which expP is singular.

(g) Gauss' Lemma. If Tis perpendicular to Xt(0) in TP, then rfexpPTis

perpendicular to Xx in M.

Let Wl,---,Wk be vectors at a point of M. We denote by W= {W1,---,Wk} the

column of these vectors and by det VKthe volume of the parallelepiped they span,

so (detlf)2 = det(<Ifi,If/». Denote the Jacobian of expP at expP1y(/) by J(t).

Choose a basis 7^ = Xi(0), T2,~; Tn of TP with Tf perpendicular to Tu i > 1, and

let Vi be the Jacobi field with F,(0) = 0, F/(0) = T„ i > 1, so that Fi(a) = dexpPaT(.
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Put T= {T2,--,T„} and V= {V2,---,Vn}. Then, by (g) and because expP preserves

radial lengths

(10.1) det V(a) = a"" V(a) det T.

Letting X = {X2, ■■■,Xn), we may write V=FX where F is a nonsingular

matrix function of a of order n — 1. Hence, det V= det F since det X = 1.

Let g and /t be real-valued functions of a such that g(0) = h(0) = 0, g(t) = h(t)

= 1, but otherwise unspecified as yet. They determine a column W

= {gX2,hX3,hX4.,---,hXn} which coincides at t with the column of Jacobi

fields U = (F(0)_1K= {U2,    Un). Thus, we have

det £/(<x) = det(F(0)-'det K(a) = ^~|-

By the rule for the derivative of a determinant and the fact that U(t) = X(t) is an

orthonormal column, we have

((detl/)2)'(0 = <U2,U2Y(t) + ... + <[/„,[/„ >'(0

\ t +J(t)J-

But by (c) and (e), this is majorized by twice the sum of second variations of the

W„ that is, by (d),

n - 1 JV)

J(0

(10.2)

I \'0[(S')2+ (n-2)(Ä')2-f2Ä(X1)

However, by Lemma 8.2, we have for i odd,

K(XltXt)+K(XltXl+1)^X - 1(1

Letting/ = //(Xj), the problem of obtaining an upper bound for J'(t)/J(t) has

been reduced to the variational problem of minimizing

' \g'(«))2 + (n - 2)(/>'(a))2 - 1 (4A - l)(n - 2)(/,(a))2
o i 8

(10.3)
- /(«) [OK*))2 - -g-(«-2)(ft(a))2] da,

where /is an arbitrary function subject to the restrictions / <;/ ^ 1, and g, /i are

functions subject to the restrictions g(0) = h(0) = 0, g(t) = h(t) = 1.

The Euler equations for this problem are

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1964] THE GENERALIZED GAUSS-BONNET THEOREM 527

(10.4) g" + fg = 0,

(10.5) 8n" + (41-1 -f)h = 0.

Let G and H be the solutions of (10.4) and (10.5), respectively, such that G(0)

= H(0) = 0, G'(0) = H'(0) = 1. Then, since/ is an analytic function, so are G and

H. Their power series therefore have the form G(a) = a +      H(a) = a +

Setting g = G/G(0, h = H/H(t) and integrating (g'(a))2 da, (h'(a))2da. by parts,

the integral (10.3) reduces to

(10.3)'       g'(t)g(t) +(n- 2)h'(t)h(t) - g'(0)g(0)-(n-2)«'(0)«(0)

plus an integral which is zero due to the fact that g and h satisfy (10.4) and (10.5).

Since g(t) = h(t) = 1, g(0) = h(0) = 0 and g\t) = G'(l)/G(t), h\t) = H'(t)IH(t),
we finally have

(l0-6) ~lW-G(t)+{n~)W)-~-

Integrating both sides of this inequality from a to t, then taking the limit as

a-^Oby using the facts that G(a) (H(a))"~2/ a"'1 = 1 + ... and J(0) = 1, we

derive

that is,

G(t)(H(t))"-2
(10.7) J(t) =

tn-l

Since it follows from the Sturm comparison theorem that the solution G of

(10.4) must have another zero in the interval [0,nly/X], the inequality (10.7)

shows that J(t) must also have a zero in (0,n/^/X], Hence, there is a conjugate

point to P along y at a distance not greater than n/ yj X.

Theorem 10.1. If M is a Kaehler manifold which is complete and X-holo-

morphically pinched, X>0, then the diameter of M does not exceed n/y/X.

Corollary 10.1. A complete Kaehler manifold of strictly positive holo-

morphic curvature is compact.

The integral of the bound on J(t), given by (10.7), over the interior of the

sphere of radius nly/X about 0 in TP is thus a bound on the volume v(M) of M.

This integration is accomplished by multiplying by the volume of an (n — 1)-

sphere of radius t, viz., 2t"_1mm/(m - 1)! where m = n\2, and integrating from

0 to r. Thus
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Theorem 10.2. Let M be a complete X-holomorphically pinched Kaehler

manifold with X > 0. Then

(10.8) v(M)g
2nm r

i-l)! Jo(m-L,: J0

where r is the first zero of G beyond 0.

G(t)(H(t))"-2dt,

To realize an upper bound, consider the integral (10.3), where we note that

/ = A may be substituted for the coefficient of g2 and/ = 1 for the coefficient of h2.

The corresponding solutions of the Euler equations of G and H are

G(t) = 1 sin at,   a = N/'X,

f 1

H(t) =

sin bt,     b =
2X - 1

if X >

if X =

2 '

2 '

sinh bt,    b =
1 - 2X

ifA<y.

When X = 1, formula (10.8) reduces to an equation for the volume of complex

projective space Pm.

Even better bounds can be obtained from (10.3) by a judicious choice of gand h,

and by replacing / by X or 1 depending on whether its coefficient is negative or

positive, respectively. For example, if we take g(a) = sin ara/sin a,a = s/X and

h(a) = a//, we find that for n ^ 10 the coefficient of /(a) is always nonpositive.

The result is

< 10.2^m      r„-2. r    («-2)(3A-l) 21.

Applying Theorem 9.1, we find an upper bound for the Euler-Poincare charac-

teristic of a complete 4-dimensional A-holomorphically pinched Kaehler mani-

fold with X > 0,

,,.m . 3A2-4A + 4   C"2. I 3A-12\,
(10.9)      x(M) g       412       Jo x2 sin x exp I - -y^f-*2 ) d*.

For M = S2 x S2, this bound is approximately 3.4/(jV/). Good bounds

are obtained when X > 0.6.

Remarks, (a) A complete Kaehler manifold M of strictly positive holo-

morphic curvature is simply connected. For, if M is not simply connected, then

in every nontrivial free homotopy class of closed curves of M there would be a
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closed geodesic which is the shortest closed curve in the class. That this is impos-

sible is seen by applying (a) and (d) above to the vector W= 3XX along the

geodesic y. Indsed, its first variation is zero, and its second variation is negative.

(b) A 4-dimensional complete Kaehler manifold of strictly positive holo-

morphic curvature is compact, simply connected and has positive Euler-Poincare

characteristic bounded above by (10.9).

11. The curvature transformation. We have seen that one of the difficulties which

arises when attempting to resolve the Question raised in §1 by considerations of

(3.1) at one point is the presence of terms involving factors of the type

<[R(X, Y)X,Z}, Z^Y. However, this is only part of the problem; for, one must

still account for terms which are products of those of the form (R(X, Y)Z,W}.

Even in dimension 6 where there are 105 independent components of the curvature

tensor, and indeed (6!)2 terms to be summed in (3.1) the problem is formidable!

For these reasons one is led to consider Kaehler manifolds where one may make

essential use of the additional curvature properties provided by Lemma 6.2.

The 1/4-pinched compact Kaehler manifolds are characteristic of the complex

projective spaces [1]. If the curvatures are 0.24-pinched, W. Klingenberg proved

that the manifold has the homotopy type of complex projective space, and hence,

in particular, positive Euler-Poincare characteristic [6].

We shall take a different point of view here. Indeed, the pinching hypothesis

will be replaced by a normalization condition on the curvature transformation.

The following lemma leads to the property (P) of Theorem 1.4.

Lemma 11.1. Let {.X^,•••,X„} be a basis of TP. Then, a necessary and

sufficient condition that <[R(Xi,XJ)Xl,Xky = 0, k j, is that the curvature

transformation satisfy the relation

(11.1) (R(XhXj))2 = - (K(Xt,Xj))2I

on o(XhXj).

Proof. Set Ku = KiX^Xf) and let a,b be any real numbers. Then, for any

Z = aXi + bXjecr(Xi,XJ),

n n

R(Xi,Xj)Z = a Z  RijikXk — b Z RijkjXk
k = l k = l

and

(R(Xi,Xj))2Z = — KfjZ — aKv Z  RijkjXk — oK;j- Z P^iA
k*i k*j

+ a Z RmR(Xt,Xj)Xk- b Z RiJkJR(Xt)Xj)Xk.
k*J k*i

Applying the condition (11.1), it follows that
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(11.2) 2  RijikR(Xi,XJ)Xk —Kij S RijkJXj,

(11.2)'

Taking the inner product of (11.2) with X( and of (11.2)' with XJt we obtain

Hence, RiJ!k = 0, k^j.

Conversely, if RiJik = 0, k^j, R(X„Xj)Xt = KuXj. Thus, (£(*,,J^.))2*,

= KijRiX^X^Xj = - KfjXt, and so by linear extension {R{XhXj))2Z = - K?jZ

for any Z ea^X^Xf).

Corollary 11.1. Let {Xu---,Xn} be an orthonormal basis of TP. Then if

K(Xi,Xj)^0 is a minimum or maximum among all sectional curvatures on

planes spanned by Xt and Xj cos 0 + Xk sin 0, k # i,j, the curvature transfor-

mation R(Xi,X/) defines a complex structure on o{XhXj).

Corollary 11.2. The curvature transformation R{o)of a manifold of constant

nonzero curvature defines a complex structure on a.

Remarks, (a) A proof of the following relevant result may be found in

[4, p. 267]. Let A be a nonsingular linear transformation of the 2«-dimensional

vector space R2n with a positive definite inner product. By means of the inner

product, A may be identified with a bilinear form on R2n. If this form is skew-

symmetric, there is a unique decomposition of R2" into subspaces S,, ■■■,Sr such

that:

(i) each St is invariant by the transformation A, and for i # j, S; IS^;

(ii) restricted to S(, A2 = — afl, at > 0, and for i ^ j, a, / a}.

(b) A Kaehler manifold of constant mean curvature and of dimension > 4

does not in general have the property (P) although it does satisfy Zt^Ryft = 0

relative to an orthonormal basis.

Proof of Theorem 1.4. Let {XU—,X}, X3 + i = JXh i = 1,2,3, be an

orthonormal holomorphic basis of TP with respect to which the curvature trans-

formation satisfies the property (P). By Lemma 11.1, we need only consider those

summands in (3.1) whose factors are of the form <R(X, Y)Z,W) where X, Y,Z, W

are a part of the basis. Put Xit = JXt, i = 1,2,3, i** = i. By applying the ident-

ities (iii) of Lemma 2.1 and (i) of Lemma 6.2, Rxßy6 = 0, a,ß,y,ö = l,---,6, if either

y = a* and <5 ̂ ß* or ß = a* and S ^ y*. Hence, the only nonvanishing terms are

of the following types:

E (i?iJit)2 = o I (Rw)2 = 0.

R
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where I^^ih are index pairs: / = ij, i*j or ij*, and /* = i*j*, ij* or i*j, resp.

By Lemma 6.2 (i), we see that RIlIl,Rl2ll.RIiIi. = /C^K/jK/,. On the other

hand, by Lemma 6.2 (iii),

Consequently, since

P.p.=4-1
0IUH2J2>3J3 HJl'2J2'3j3 r '

^ulikiliiij^kililijiiiji = '

eilJl<2j'2i3J3eilVl*i2*J2'>3*J3* =  _ ^»

and

£'lil,i2'2*hh*£jljl,j2j2,j3j3* ~ eililhil*t2*'3*ejijlj3ji*jl*j3*'

the various terms in the Gauss-Bonnet integrand are either all non-negative or

all nonpositive depending on whether the sectional curvatures have the same

property. Thus, if the holomorphic and anti-holomorphic sectional curvatures

K(a) are non-negative (resp., nonpositive), /(M) ^ 0 (resp., x(M) — 0).

We now obtain a result valid for the dimensions 4k, k — 1. We shall first

require the following lemma.

Lemma 11.2. Let {X^X,.}, i= l,—,m, be an orthonormal holomorphic

basis of TP. Then, a necessary and sufficient condition that RiJklt = 0,

(' J) ^ (k,l), i <j, k< I, is that the curvature transformation have the property

(Q): || RiX„Xj)Xk ||2 = E<R(Z(,X^)Zt,Zl>2.
i

This is an immediate consequence of the fact that

R(Xi,Xj)Xk = Z RijkiXt + Z RyutXp.
i i

For,

|| R(Xt,Xj)Xk ||2 = Z (RyH)2 + I (Ryu*)2-
i i

Remark.  Property (Q) is implied by

(Q') (R(XhXj))2Xk = - I (Rijkl)2Xk.
i

For, since the curvature transformation is a skew-symmetric transformation

(R(xhXj)xk, R(xhXj)xky = - «R{x„xj))2xk,xky = Z(RW)2.

Theorem 11.1. Let M4\ fc> 1, fee a compact Kaehler manifold, whose

curvature transformation has the properties (P) and (Q), wit/i respect to the

orthonormal holomorphic basis {X„}. If for all a = o(Xa,Xp), K(o-) = 0, then

l(MAk) = 0, and if K(o) ^ 0, x(M*k) - 0. // the sectional curvatures are always

positive or always negative, the Euler-Poincare characteristic is positive.
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Proof. As before, let {Xi,Xit}, i = \ ,---,2k, be an orthonormal holomorphic

basis of TP. Again, one need only consider those summands in (3.1) whose factors

are of the form (R(X, Y)Z, W > where the vectors X, Y, Z and W are independent.

Moreover, Rxßy5 = 0, tx,ß,y,ö = 1, •••,4k, if either y = a* and 5 # ß* or ß = a*

and o^y*. Furthermore, by Lemma 11.2, Rijkl, vanishes for all i,j,k,l. The

nonvanishing terms may then be classified as before, viz.,

O ... p

and so, since

P.  .       .        P.  ■ 2= 4- 1
'IJl'"HkJ2k UJl'"'2kJ2k        T l'

^'ljlklll"misj,k 1.12, + 1J2   + I'"hkjlk^kllmj i' "ksl,isjj2 , + l}la+ l'"'2kj2k

Siljl"'hkj2kSh'jl'"' i2k*J2k*

eilil*-">2fci2k*ej'lJl*'-,J2kJ2k* = Eil""'2fcil*"""2k*8ir,V2kir"i2)c* =   + J-S

the result follows.

The above proof breaks down in dimensions 4/c + 2. For example, if k = 2, the

term R{ .2*34R3*4»25^i 23*5*^,52.4*^5*411* need not vanish on account of properties

(P) and (Q).
Remarks, (a) The curvature tensor of a manifold M of constant holomorphic

curvature 1 has the components

<R(x1.,Xi)X„Xi> = jKWa - Sjtfiu) + <Xj,JXty <X;,JX,>

- <Xj,jxky (xi,jxiy+2<:xi,jXjy <x„jx(>]

relative to an orthonormal holomorphic basis. Hence, M has the properties (P)

and (Q). Conversely, if a Kaehler manifold possesses the properties (P) (and (Q))

for all g e H2 P, the space is of constant holomorphic curvature. For, let

X, Y,JX, JYbe part of an orthonormal basis of TP. Then, H(X) - H(Y)
= <R(X + Y, JX + JY)(X + Y), JX - JY> = 0.

That a manifold with the properties (P) and (0) (at one point) need not have

constant holomorphic curvature is a consequence of either example A or B.

(That such Kaehlerian manifolds actually exist is another matter.) It is not dif-

ficult to construct such examples in higher dimensions.

(b) The Kaehlerian product of m copies of S2, with the canonical metric,

satisfies the property (P) relative to the natural holomorphic basis.

(c) Let M be a 6-dimensional compact Kaehler manifold of strictly positive

(or negative) curvature. At each point of M choose an orthonormal holomorphic

basis{Z;,JZ;}, i= 1,2,3. Consider the sectional curvatures of planes spanned by the

orthonormal vectors Xt and X2 cos 9 + Xt sin 9, as well as those of the planes
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spanned by Xt and X2 cos 9 + JXt sin 9. If K12 is a minimum for these curvatures

#i2ia=#2i2a=0foro£ = 3,l*,2*,3*.(Theholomorphic sectional curvatures are gre-

ater than or equal to Kl2.) Moreover, if K13 is a minimum for those sectional cur-

vatures on planes spanned by vectors Xl and X3 cos 0+JX3sin 0,then Pl313.=0.

Applying Lemma 6.2, we see that there are 28 vanishing curvature components.

Of the remaining 77, 15 have the form = Ku, Ky.y. = KtJ,, and 3 are of

the form Ru*jj* = K-a + Kij- The remaining 59 consist of essentially 19 distinct

components by virtue of Lemma 6.2, and among these only two have the form

RiJkl with k, I all different. These cannot be coped with by the above methods

unless further restrictions on M are imposed.

12. Holomorphic pinching and Euler-Poincare characteristic. A procedure is

now outlined by which a meaningful formula for the Gauss-Bonnet integrand

G can be found when M is a 6-dimensional compact Kaehler manifold possesing

the property (P). The formula obtained will then be used in two ways:

(1) To show that if M is A-holomorphically pinched, A ̂  2 - 22/i ~ 0.42,

then x(Nf) > 0.
(2) To show that non-negative holomorphic curvature is not sufficient to make G

non-negative. This will be accomplished by means of an example satisfying the

condition (P).

In the following, a pair of indices (a,a*) will be denoted by H or H', and a pair

(oc,ß) where ß ^ a* by A. Then, condition (P) is equivalent to: The only nonzero

curvature components are of the form RHH, RAA, RAA,.

The nonzero terms of the integrand are now classified into three groups depen-

ding on the number of pairs of type H occurring in IUI2,I3.

(a) All Ij are of the type A. Then, if we require a < ß in every pair (<x,ß), there

are 12 possibilities for Iu and once It is chosen, 4 possibilities for I2. This gives 48

possible choices for IiI2I3- For each choice of IJ2I3 we may choose JlJ2J3 in

only 2 ways, equal to IJ2I3 or 1*1*1*. The resulting product of curvature

components is the same in either case, viz., KIlKl2Kli. Due to Lemma 6.2, there

are only 4 essentially different terms, K12K16K23, K12K13K26, K13K1SK23 and

Kl5K16K26. Thus each will occur in the integrand with the factor 24-26. (The 26

accounts for the transpositions of each of the 6 pairs.)

(b) One Ij is of type //, two of type A. Hence, if = H, Jj = H also, so for

each choice of IJ2I3 there are again only two choices for J^.^, each leading

to a term KHKAKA. The Ij which is of the type H may be chosen in any of the 3

positions and there are 3 type H pairs. Once it is chosen there are 4 possibilities

for the other I's. This gives 72 terms divided among the 6 distinct possibilities

KiÄ, KiÄ, K25K213, K25K26, K36K212, K36K215, so the sum of these is

multiplied by 12-26.

(c) All Ij are of type H. Then, the J's may be any permutation of the I's, and

the 3 distinct H's may be distributed among the f's arbitrarily, giving 6 terms for
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each permutation of the J's. The identity permutation gives the term K14K25K36.

The other even permutations give the term (K12 + K15)(Kl3 + K16)(K23 + K26).

The 3 odd permutations give the 3 distinct terms K14. (K23 + K26)2,

K25(Kl3 + Kl6)2, K36(K12 + Kl5) .

Finally, from the above classification, we see that G may be expressed in the

form

G -       [4(K12/C16K23 + Ki2Kl3K26 + K13K15K23 + K15K16K26)

+ Kl4(3K223 + 2K23K26 + 3K226) + K25(3K213 + 2K13K16 + 3K2i6)

+ K36(3Kl2 + 2Kl2Ki5 + 3K25) + Kl4.K2SK36

+ 2(K12 + K15)(Kl3 + Kl6)(K23 + K26)].

The first and last terms in this expression do not involve holomorphic curvatures,

only anti-holomorphic ones, and these may be rewritten as

(xK12 + yKi5)(xKi3 + yK16)(xK26 + yK23)

+ (xKl2 + yKl5)(xKl6 + yKl3)(xK23 + yK26)

+ (xK15 + yK12)(xK13 + yK16)(xK23 + yK26)

+ (xX15 + yK12)(xK16 + yKl3)(xK16 + yK23).

Expanding, one finds that equality requires (x + y)3 = 8 and (x — y)3 = 4,

so that x = 1 + 2_1/3, y = 1 - 2_I/3. The terms in question are products of the

type xK(X,Y) + yK(X,JY). Expressing the latter in terms of holomorphic

curvatures, we obtain, by virtue of (6.2),

xK(X, Y) +yK(X,JY) = ̂  [(3x - y)(H(X + JY) + H(X - JY))

-(x-3y)(H(X + Y)+H(X-Y))-2H(X) -2H( Y)].

Thus, if X ̂  2 - 22'3 = 2y,

xK(X, Y) + yK(X,JY) ^ - 21/3y,

and so

8ti3G > 4( - 2,/3y)3 + Kl4K25K36 ^ 0.

This proves

Theorem 12.1. A X-holomorphically pinched6-dimensionalcompleteKaehler

manifold, X ̂  2 - 22/3(~ 0.42), having the property (P), has positive Euler-

Poincare characteristic.

Note that the Ricci curvature is positive definite for this value of X (cf. Theorem

8.1).

An obvious modification gives negative characteristic when holomorphic

curvatures lie between — 1 and - 2 + 22/3 •
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If resides property (P), K14 = K25 = K36 = 0, K12 = X26 = K13 = - 1,

•K15 = K23 = ^16 = 3, then a computation shows that holomorphic curvature

is non-negative and G = — 12In3. Thus:

i/ M is a compact Kaehler manifold of dimension — 6, it is not possible to

prove by using only the algebra of the curvature tensor at a point that non-

negative holomorphic curvature yields a non-negative Gauss-Bonnet integrand.

In fact, we are of the opinion that the Question (cf. §1) cannot be resolved

in this manner.

Remark. Conditions (P) and (Q) are preserved under Kaehlerian products.

In particular, products of complex projective spaces satisfy these conditions.

Added in proof, (a) The technique employed in §10 for estimating volume

may be applied to the Riemannian case thereby generalizing a result of Berger

[On the characteristic of positively-pinched Riemannian manifolds, Proc.

Nat.Acad. Sei. U.S.A. 48(1962), 1915-1917]. The improvement comes from gene-

ralizing Rauch's theorem so as to estimate directly lengths of Grassman (n — 1)-

vectors mapped by exp rather than from using Rauch's estimate of lengths of

vectors to estimate lengths of (n — l)-vectors as Berger does.

(b) Klingenberg's result (cf. §11, paragraph 1) has recently been improved

by S. Kobayashi [Topology of positively pinched Kaehler manifolds, Tohoku

Math. J. 15 (1963), 121-139] and a subsequent improvement is given in our paper

[On the topology of positively curved Kaehler manifolds, ibid. 15(1963), 359-364].
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