Solutions to Problems from Math 135 Recitation on 5/1/15

For the problems see
http://math.rutgers.edu/~az202/teaching/.

1. First, $f(x)$ is continuous on the closed, bounded interval $[1 / 2,2]$, so the EVT applies. Let's find the critical points:

$$
\begin{aligned}
& f^{\prime}(x)=2-2 / x^{2}=0 \\
& \quad \Longrightarrow 2 x^{2}-2=0 \Longrightarrow x=\not-1,1,
\end{aligned}
$$

where we discard -1 since it's not in $[1 / 2,2]$. If we plug the endpoints and critical points into $f(x)$, we get $f(1 / 2)=5, f(1)=4$, and $f(2)=5$. So 4 is the absolute minimum, and 5 is the absolute maximum.
2. First,

$$
f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}},
$$

so there are critical points at $x=0$ and $x= \pm 1$. This number line shows the sign of $f^{\prime}(x)$:

$$
+++(-1)+++(0)---(1)---
$$

Therefore, $f(x)$ increases on $(0,1)$ and $(1, \infty)$, and decreases on $(-\infty,-1)$ and $(-1,0)$. Further, $x=0$ is a local maximum, and $f(0)=-1$.
To find the vertical asymptotes, we set the denominator of f equal to zero. So the vertical asymptotes are $x=-1$ and $x=1$. To compute horizontal asymptotes, we find the following limits:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{2}-1}=0 \\
& \lim _{x \rightarrow-\infty} \frac{1}{x^{2}-1}=0
\end{aligned}
$$

So the horizontal asymptote is $y=0$.
Finally, we can sketch the graph; see Figure 1.

Figure 1: $f(x)=1 /\left(x^{2}-1\right)$
3. We have

$$
\begin{aligned}
& f^{\prime}(x)=-6 \frac{x}{\left(x^{2}+3\right)^{2}} \\
& f^{\prime \prime}(x)=18 \frac{x^{2}-1}{\left(x^{2}+3\right)^{3}}
\end{aligned}
$$

The "critical points" of the second derivative are -1 and 1 , and its sign chart looks like this:

$$
+++(-1)---(1)+++
$$

So f is concave up on $(-\infty,-1)$ and $(1, \infty)$, and concave down on $(-1,1)$. Because $f^{\prime \prime}$ changes sign and f is defined at $x= \pm 1$, the inflection points are
$(-1,3 / 4)$ and $(1,3 / 4)$. See Figure 2 for a graph.

Figure 2: $f(x)=3 /\left(3+x^{2}\right)$. (Red circles are inflection points.)
4. Substituting gives [0/0], and the numerator and denominator are differentiable, so L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow 0} \frac{x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{x^{\prime}}{\left(e^{x}-1\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{1}{e^{x}}=1 .
$$

5. Substituting gives [0/0], and the numerator and denominator are differentiable near $x=0$, so L'Hôpital's Rule applies:

$$
\lim _{x \rightarrow 0} \frac{\tan (3 x)}{\tan (4 x)}=\lim _{x \rightarrow 0} \frac{(\tan (3 x))^{\prime}}{(\tan (4 x))^{\prime}}=\lim _{x \rightarrow 0} \frac{3 \sec ^{2}(3 x)}{4 \sec ^{2}(4 x)}=\frac{3}{4}
$$

6. Substituting gives $\left[e^{-\infty} \ln (\infty)\right]=[0 \cdot \infty]$, which is an indeterminate form, but not yet a job for L'H. So we first re-write the limit to include a fraction:

$$
\lim _{x \rightarrow \infty} e^{-x} \ln x=\lim _{x \rightarrow \infty} \frac{\ln x}{e^{x}}=\left[\frac{\infty}{\infty}\right]
$$

Now applying L'H gives

$$
\lim _{x \rightarrow \infty} \frac{1 / x}{e^{x}}=0
$$

7. This time, the indeterminate form is

$$
\left[\frac{1}{\sin (0)}-\infty\right]=\left[\frac{1}{0}-\infty\right]=[\infty-\infty]
$$

Again, L'H does not yet apply. That $\sin (1 / x)$ is cumbersome; let's make the substitution $t=1 / x$. Then $x \rightarrow \infty \Longleftrightarrow t \rightarrow 0^{+}$. So the original limit becomes

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{\sin t}-\frac{1}{t}=\lim _{t \rightarrow 0^{+}} \frac{t-\sin t}{t \sin t}=\left[\frac{0}{0}\right],
$$

so, applying L'H,

$$
\lim _{t \rightarrow 0^{+}} \frac{1-\cos t}{t \cos t+\sin t}=\left[\frac{0}{0}\right]
$$

so let's apply L'H again:

$$
\lim _{t \rightarrow 0^{+}} \frac{\sin t}{-t \sin t+\cos t+\cos t}=0
$$

8. Let x and y be the dimensions of the rectangle, A be its area, and P be its perimeter. Then $A=x y=1$, so $y=1 / x$. Next, $P=2 x+2 y=2 x+2 / x$. Finally, x must belong to the interval $[0, \infty$) (there is no limit on how wide our rectangle can be). We have

$$
P^{\prime}(x)=2-\frac{2}{x^{2}}=2\left(\frac{x^{2}-1}{x^{2}}\right) .
$$

The critical points in $[0, \infty)$ are $x=0,1$. Further, P^{\prime} is negative when $0<x<$ 1 and positive when $x>1$. So at $x=1, P$ attains its absolute min (see Figure 3). Thus the rectangle of area 1 with minimum perimeter has dimensions 1×1; in other words, it's a square.

Figure 3: The graph of $P(x)$, showing the absolute minimum.
9. Let $D(x)=m x+b$ be the number of worms her friend buys if she prices them x cents each. Then $D(10)=1000 \Longrightarrow 10 m+b=1000$, and we also have $m=-10$. So $b=1100$, and $D(x)=-10 x+1100$. Then the total profit is $P(x)=x D=x(-10 x+1100)$. This is a parabola opening down with vertex at $x=55$, so selling worms at 55 cents each maximizes the profit.
10. Let us measure prices in thousands of dollars. Let $A(t)$ be the difference between Bob's savings and the price of the car when he is $20+t$ years old. Then $A(t)=70 e^{.04 t}-(80+3 t)$. We want to find out if $A(t)$ is ≥ 0 at some $t \in[0,10]$. So let us find the absolute maximum of $A(t)$ on this interval. Let's find the
critical points:

$$
\begin{aligned}
A^{\prime}(t)=70(.04) e^{.04 t}-3 & =0 \\
\Longrightarrow e^{.04 t} & =\frac{3}{70(.04)} \\
\Longrightarrow t & =\ln \left(\frac{3}{70(.04)}\right)\left(\frac{1}{.04}\right) \approx 1.725,
\end{aligned}
$$

which lies in $[0,10]$. Next, plugging in the critical and end points gives $f(0)=$ $-10, f(1.725) \approx-10.174$, and $f(10)=-5.572$. These are all negative! So he never has enough money to buy the car.
When $t=10$ and he is 30 years old, he is closest to having enough. When $t \approx 1.725$ and he is around 21.725 years old, he is furthest from having enough.
11. (a) By the FTC, $F^{\prime}(x)=\cos (\ln x)$.
(b) By the FTC and chain rule, $F^{\prime}(x)=\left[e^{x^{2}} \sin \left(x^{2}\right)\right]\left(x^{2}\right)^{\prime}=2 x e^{x^{2}} \sin \left(x^{2}\right)$.
12. By the FTC, $F^{\prime}(x)=\sin \left(x^{2}\right)$. Thus, $F^{\prime}(\sqrt{\pi})=\sin (\pi)=0$. Further, at $\sqrt{\pi}$ the sign of $F^{\prime}(x)$ changes from + to $-($ think of the sign change of $\sin x$ at $x=\pi)$. Therefore, there is a local maximum at $x=\sqrt{\pi}$.

