Solutions to Problems from Math 135 Recitation on 4/25/15

For the problems see
http://math.rutgers.edu/~az202/teaching/.

1. Substituting in $x=0$ gives $0 / 1=0$, and we're done, since it's not indeterminate.
2. This time substituting gives $0 / 0$, so we factor and simplify:

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+x-6}=\lim _{x \rightarrow 2} \frac{x-2}{(x+3)(x-2)}=\lim _{x \rightarrow 2} \frac{1}{(x+3)}=\frac{1}{5} .
$$

3. We have a rational function as $x \rightarrow-\infty$, so we divide the top and bottom by the highest power of x, which is x^{10} in this case:

$$
\lim _{x \rightarrow-\infty} \frac{5 x^{10}+6 x+1}{9 x^{10}-42 x}=\lim _{x \rightarrow-\infty} \frac{5+6 x^{-9}+x^{-10}}{9-42 x^{-9}}=\frac{5}{9}
$$

4. Substituting gives $0 / 0$. Since there's a square root, let's multiply the top and bottom by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x-1}-1}{x^{2}-x-2} & =\lim _{x \rightarrow 2^{+}} \frac{(\sqrt{x-1}-1)(\sqrt{x-1}+1)}{\left(x^{2}-x-2\right)(\sqrt{x-1}+1)} \\
& =\lim _{x \rightarrow 2^{+}} \frac{(x-2)}{\left(x^{2}-x-2\right)(\sqrt{x-1}+1)}
\end{aligned}
$$

Substituting still gives $0 / 0$, but we can factor $x^{2}-x-2$ and cancel:

$$
\lim _{x \rightarrow 2^{+}} \frac{(x-2)}{(x-2)(x+1)(\sqrt{x-1}+1)}=\lim _{x \rightarrow 2^{+}} \frac{1}{(x+1)(\sqrt{x-1}+1)}=\frac{1}{6}
$$

5. As x gets large, e^{-x} approaches zero, and $\cos x$ oscillates between -1 and 1 (see Figure 1). So we expect the limit to be 0 . To prove this, note that $e^{-x} \cos x$ is always between $-e^{-x}$ and e^{-x}, which both approach 0 as $x \rightarrow \infty$. So by the Squeeze Theorem, the original limit is also 0 .

Figure 1: The function $y=e^{-x} \cos x$ (solid red) is squeezed between $-e^{-x}$ and e^{-x} (dashed black). Not to scale.
6. The only place where $f(x)$ might not be continuous is $x=1$. To make f continuous at 1 , we find the left/right limits and function value at 1 :

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =1+A \\
\lim _{x \rightarrow 1^{+}} f(x) & =e^{B} \\
f(1) & =3 .
\end{aligned}
$$

Next, we set all three equal to each other: $1+A=e^{B}=3$. Solving gives $A=2$ and $B=\ln 3$.
7. Using the quotient rule,

$$
\left(\frac{x+1}{\sin x}\right)^{\prime}=\frac{\sin x-(x+1) \cos x}{\sin ^{2} x}
$$

8. By the chain rule and power rule,

$$
\left(\left(x^{3}+x\right)^{10}\right)^{\prime}=10\left(x^{3}+x\right)^{9}\left(x^{3}+x\right)^{\prime}=10\left(x^{3}+x\right)^{9}\left(3 x^{2}+1\right)
$$

9. We rewrite y and use the power rule:

$$
\begin{aligned}
y & =x^{-1}+x^{-1 / 2} \\
\Longrightarrow y^{\prime} & =-x^{-2}-\frac{1}{2} x^{-3 / 2} .
\end{aligned}
$$

10. We can either simplify y first, or use the chain rule:

$$
\begin{gathered}
y=8 \ln x \Longrightarrow y^{\prime}=\frac{8}{x} \\
\text { or } \\
\left(\ln x^{8}\right)^{\prime}=\frac{8 x^{7}}{x^{8}}=\frac{8}{x} .
\end{gathered}
$$

11.

$$
\begin{aligned}
\left(\cos ^{3} x \sin \left(x^{5}\right)\right)^{\prime} & =\cos ^{3} x\left(\sin \left(x^{5}\right)\right)^{\prime}+\sin \left(x^{5}\right)\left(\cos ^{3} x\right)^{\prime} \\
& =\cos ^{3} x \cos \left(x^{5}\right)\left(x^{5}\right)^{\prime}+\sin \left(x^{5}\right) \cdot 3 \cos ^{2} x(\cos x)^{\prime} \\
& =5 x^{4} \cos ^{3} x \cos \left(x^{5}\right)-\sin \left(x^{5}\right) \cdot 3 \cos ^{2} x \sin x .
\end{aligned}
$$

12.

$$
\begin{aligned}
\left(e^{x^{2}} \sqrt{1+x^{2}}\right)^{\prime} & =e^{x^{2}}\left(\sqrt{1+x^{2}}\right)^{\prime}+\sqrt{1+x^{2}}\left(e^{x^{2}}\right)^{\prime} \\
& =e^{x^{2}} \frac{\left(1+x^{2}\right)^{\prime}}{2 \sqrt{1+x^{2}}}+\sqrt{1+x^{2}} e^{x^{2}}\left(x^{2}\right)^{\prime} \\
& =e^{x^{2}} \frac{x}{\sqrt{1+x^{2}}}+2 x e^{x^{2}} \sqrt{1+x^{2}} .
\end{aligned}
$$

13. Since both the base and exponent depend on x, this is a job for logarithmic differentiation. We take the \ln of BOTH sides and differentiate implicitly:

$$
\begin{aligned}
\ln y & =\tan x \ln (\sin x) \\
\Longrightarrow \frac{y^{\prime}}{y} & =\tan x \frac{\cos x}{\sin x}+\ln (\sin x) \sec ^{2} x=1+\ln (\sin x) \sec ^{2} x \\
\Longrightarrow y^{\prime} & =y\left(1+\ln (\sin x) \sec ^{2} x\right)=(\sin x)^{\tan x}\left(1+\ln (\sin x) \sec ^{2} x\right) .
\end{aligned}
$$

14.

Differentiate implicitly:

$$
x^{3}+x y+y^{2}=7 \Longrightarrow 3 x^{2}+x y^{\prime}+y+2 y y^{\prime}=0
$$

Plug in $(1,2)$ and solve for y^{\prime} :

$$
3+y^{\prime}+2+4 y^{\prime}=0 \Longrightarrow 5 y^{\prime}=-5 \Longrightarrow y^{\prime}=-1
$$

The tangent line has slope -1 and passes through $(1,2)$, so its equation is $y-2=-(x-1)$, or $y=-x+3$.
15. This time we just differentiate and solve for y^{\prime} :

$$
\begin{aligned}
& x^{3}+3 x^{2} y-4 y^{2}=16 \Longrightarrow 3 x^{2}+3 x^{2} y^{\prime}+6 x y-8 y y^{\prime}=0 \\
& \Longrightarrow y^{\prime}\left(3 x^{2}-8 y\right)=-3 x^{2}-6 x y \Longrightarrow y^{\prime}=\frac{-3 x^{2}-6 x y}{3 x^{2}-8 y} .
\end{aligned}
$$

16. The trick here is to simplify the left-hand side: $e^{\sin ^{2} y}\left(1+e^{\cos ^{2} y}\right)=e^{\sin ^{2} y}+$ $e^{\sin ^{2} y+\cos ^{2} y}=e^{\sin ^{2} y}+e$. So we can write the original equation as

$$
\begin{aligned}
e^{\sin ^{2} y}+e & =x y \Longrightarrow 2 \sin y \cos y e^{\sin ^{2} y} y^{\prime}=x y^{\prime}+y \\
\Longrightarrow y^{\prime} & =\frac{y}{2 \sin y \cos y e^{\sin ^{2} y}-x} .
\end{aligned}
$$

17. (a) We differentiate the formula for A with respect to t and plug in:

$$
A=x y \Longrightarrow \frac{d A}{d t}=\frac{d x}{d t} y+x \frac{d y}{d t}=2 \cdot 3+4 \cdot 3=18 .
$$

(b) By the Pythagorean Theorem,

$$
\begin{equation*}
z^{2}=x^{2}+y^{2} . \tag{1}
\end{equation*}
$$

So when $x=4$ and $y=3$, we have $z=\sqrt{16+9}=5$. Differentiating (1) gives

$$
\begin{aligned}
2 z \frac{d z}{d t} & =2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
\Longrightarrow 2 \cdot 5 \cdot \frac{d z}{d t} & =2 \cdot 4 \cdot 2+2 \cdot 3 \cdot 3 \\
\Longrightarrow \frac{d z}{d t} & =\frac{34}{10}=\frac{17}{5} .
\end{aligned}
$$

18. Let r be the radius, V be the volume, and A be the surface area. We know that $A=4 \pi r^{2}$. Differentiating with respect to t gives

$$
\begin{equation*}
\frac{d A}{d t}=8 \pi r \frac{d r}{d t}=8 \pi \frac{d r}{d t} \tag{2}
\end{equation*}
$$

Now all we need is $d r / d t$. If we differentiate the formula $V=(4 / 3) \pi r^{3}$, we get

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} \Longrightarrow \frac{d r}{d t}=\frac{d V / d t}{4 \pi r^{2}}=\frac{4 \pi}{4 \pi}=1
$$

Substituting $d r / d t=1$ back into (2) gives $d A / d t=8 \pi \mathrm{in}^{2} / \mathrm{sec}$.
19. The formula for the linearization of $f(x)$ about $x=a$ is $L(x)=f(a)+f^{\prime}(a)(x-$ $a)$. In our case, $f(x)=e^{x}$ and $a=0$, so $L(x)=e^{0}+e^{0}(x-0)=1+x$. For the second part, we plug in the specific value $x=.1$ to get $e^{.1} \approx 1.1$. (The exact value is $1.1051 \ldots$.)
20. Doing the same thing here gives $L(x)=2+\frac{1}{4}(x-4)$ and $\sqrt{4.2} \approx L(4.2)=$ $2+.2 / 4=2.05$. (The exact value is $2.0493 \ldots$)
21. First, we can simplify:

$$
(\ln 5+\ln 11-\ln 50) \sin (1.1 \pi)=\ln (5 \cdot 11 / 50) \sin (1.1 \pi)=\ln (1.1) \sin (1.1 \pi)
$$

So to rephrase the problem, we must approximate $f(1.1)$, where $f(x)=\ln x \sin (\pi x)$. Let's linearize about the point $a=1$ since that's close to 1.1. First, we have $f^{\prime}(x)=\sin (\pi x) / x+\pi \cos (\pi x) \ln x$. Thus, $f(a)=f(1)=0$ and $f^{\prime}(a)=$ $f^{\prime}(1)=0$, since $\sin \pi$ and $\ln 1$ are both zero! So $L(x)=f(a)+f^{\prime}(a)(x-a)=$ $0+0(x-1)=0$. Finally, the number we started with is $f(1.1) \approx L(1.1)=0$. A lot of work for a very simple answer! (The exact value is $-.0294 \ldots$.)

