Problems from Math 135 Recitation on 4/25/15

These problems cover material from chapters 2 and 3. Harder problems are marked with *. For solutions see http://math.rutgers.edu/~az202/teaching/.

Finding limits without L'Hôpital:

1.	$\lim_{x \to 0} \frac{x^2}{e^{3x} - 3x}$
2.	$\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6}$
3.	$\lim_{x \to -\infty} \frac{5x^{10} + 6x + 1}{9x^{10} - 42x}$
4. *	$\lim_{x \to 2^+} \frac{\sqrt{x-1} - 1}{x^2 - x - 2}$
5. *	$\lim_{x \to \infty} e^{-x} \cos x$

Continuity:

6. * Find A and B to make the following function continuous everywhere:

$$f(x) = \begin{cases} x + A & x < 1 \\ 3 & x = 1 \\ e^{Bx} & x > 1 \end{cases}.$$

Finding y' using differentiation rules:

7.

$$y = \frac{x+1}{\sin x}$$

8.

$$y = (x^3 + x)^{10}$$

9. $y = 1/x + 1/\sqrt{x}$ 10. $y = \ln x^{8}$ 11. $y = \cos^{3} x \sin(x^{5})$ 12. $y = e^{x^{2}}\sqrt{1 + x^{2}}$

13. *

$$y = (\sin x)^{\tan x}.$$

Implicit differentiation:

14. Find the tangent line at (1, 2) to

$$x^3 + xy + y^2 = 7.$$

15. Find y':

16. * Find y':

$$x^{3} + 3x^{2}y - 4y^{2} = 16.$$
$$e^{\sin^{2} y}(1 + e^{\cos^{2} y}) = xy.$$

Related rates:

- 17. A rectangle has dimensions x and y, diagonal z, and area A. The dimensions are changing with rates dx/dt = 2 and dy/dt = 3. At the instant x = 4 and y = 3 what are (a) dA/dt and (b) dz/dt?
- 18. * The volume of a sphere increases at 4π in³/sec. At what rate is the surface area changing when the radius is 1 inch?

Linear approximation:

- 19. Find the linearization of $f(x) = e^x$ about x = 0. Use this to approximate e^{1} .
- 20. Find the linearization of $f(x) = \sqrt{x}$ about x = 4. Use this to approximate $\sqrt{4.2}$.
- 21. * Use linearization to approximate $(\ln 5 + \ln 11 \ln 50) \sin(1.1\pi)$. Hint: use the formula $f(x) \approx f(a) + f'(a)(x a)$, with the appropriate choices of f, a, and x.