Problems from Math 135 Recitation on 4/25/15

These problems cover material from chapters 2 and 3. Harder problems are marked with *. For solutions see http://math.rutgers.edu/~az202/teaching/.

Finding limits without L'Hôpital:
1.

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{e^{3 x}-3 x}
$$

2.

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+x-6}
$$

3.

$$
\lim _{x \rightarrow-\infty} \frac{5 x^{10}+6 x+1}{9 x^{10}-42 x}
$$

4. *

$$
\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x-1}-1}{x^{2}-x-2}
$$

5. *

$$
\lim _{x \rightarrow \infty} e^{-x} \cos x
$$

Continuity:

6. * Find A and B to make the following function continuous everywhere:

$$
f(x)= \begin{cases}x+A & x<1 \\ 3 & x=1 \\ e^{B x} & x>1\end{cases}
$$

Finding y^{\prime} using differentiation rules:
7.

$$
y=\frac{x+1}{\sin x}
$$

8.

$$
y=\left(x^{3}+x\right)^{10}
$$

9.

$$
y=1 / x+1 / \sqrt{x}
$$

10.

$$
y=\ln x^{8}
$$

11.

$$
y=\cos ^{3} x \sin \left(x^{5}\right)
$$

12.

$$
y=e^{x^{2}} \sqrt{1+x^{2}}
$$

13. *

$$
y=(\sin x)^{\tan x}
$$

Implicit differentiation:
14. Find the tangent line at $(1,2)$ to

$$
x^{3}+x y+y^{2}=7 .
$$

15. Find y^{\prime} :

$$
x^{3}+3 x^{2} y-4 y^{2}=16
$$

16. * Find y^{\prime} :

$$
e^{\sin ^{2} y}\left(1+e^{\cos ^{2} y}\right)=x y
$$

Related rates:

17. A rectangle has dimensions x and y, diagonal z, and area A. The dimensions are changing with rates $d x / d t=2$ and $d y / d t=3$. At the instant $x=4$ and $y=3$ what are (a) $d A / d t$ and (b) $d z / d t$?
18. * The volume of a sphere increases at $4 \pi \mathrm{in}^{3} / \mathrm{sec}$. At what rate is the surface area changing when the radius is 1 inch?
Linear approximation:
19. Find the linearization of $f(x)=e^{x}$ about $x=0$. Use this to approximate e^{-1}.
20. Find the linearization of $f(x)=\sqrt{x}$ about $x=4$. Use this to approximate $\sqrt{4.2}$.
21. * Use linearization to approximate $(\ln 5+\ln 11-\ln 50) \sin (1.1 \pi)$. Hint: use the formula $f(x) \approx f(a)+f^{\prime}(a)(x-a)$, with the appropriate choices of f, a, and x.
