HW #3 Math 316 Key

4 pts each, 12 pts total

5.3

1(b) Solve the system

\[x \equiv 1 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

\[M = 3 \cdot 5 \cdot 7 = 105 \]

\[n_1 = \frac{105}{3} = 35 \equiv 2 \pmod{5} \Rightarrow n_1^{-1} = 2 \]
\[n_2 = \frac{105}{5} = 21 \equiv 1 \pmod{5} \Rightarrow n_2^{-1} = 1 \]
\[n_3 = \frac{105}{7} = 15 \equiv 1 \pmod{7} \Rightarrow n_3^{-1} = 1 \]

\[x_0 = (1)(35)(2) + (2)(21)(1) + (5)(15)(1) \]

\[= 70 + 42 + 75 \]
\[= 208 \]
\[\equiv 103 \pmod{105} \]

General soln is any number of the form 105k + 103, k \in \mathbb{Z}.

6-1

4. Prove that \(\phi(m) \) is even if \(m > 2 \).

Case 1: \(m = 2^n \) for \(n > 1 \). Then \(\phi(m) = \phi(2^n) = 2^{n-1} \cdot 2 = 2^{n-1} \), which is clearly even for \(n > 1 \).

Case 2: \(m = p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k} \) where at least one of the \(p_i \neq 2 \), and \(p_i \neq p_j \) if \(i \neq j \).

We may assume \(p_i \neq 2 \).

\[\phi(m) = \phi(p_1^{a_1}) \cdot \phi\left(\frac{m}{p_1^{a_1}} \right) = \phi(p_1^{a_1}) \phi\left(\frac{m}{p_1^{a_1}} \right) = \left(p_1^{a_1} - p_1^{a_1-1} \right) \phi\left(\frac{m}{p_1^{a_1}} \right) \]

\[= p_1^{a_1-1}(p-1) \phi\left(\frac{m}{p_1^{a_1}} \right) \]. Since \(p \) is odd, \(p-1 \) is even.

\[\therefore \phi(m) \text{ is even} \]
Find all integers such that \(\phi(n) = 12 \)

\[
\begin{align*}
\phi(13) &= 12 \\
\phi(26) &= \phi(2) \phi(13) = 1 \cdot 12 = 12 \\
\phi(31) &= \phi(3) \phi(7) = 2 \cdot 6 = 12 \\
\phi(42) &= \phi(2) \phi(3) \phi(7) = 1 \cdot 2 \cdot 6 = 12 \\
\phi(58) &= \phi(4) \phi(7) = 2 \cdot 6 = 12 \\
\phi(36) &= \phi(4) \phi(9) = 2 \cdot 6 = 12
\end{align*}
\]
Let the prime factorization of n be given by $p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}$.

Then $d \mid n \Rightarrow d = p_1^{\beta_1} p_2^{\beta_2} \ldots p_k^{\beta_k}$ where $0 \leq \beta_i \leq \alpha_i$ for each $i = 1, \ldots, k$.

Thus, by the general combinatorial principle,

$$\prod_{i=1}^k d = \prod_{i=1}^k p_i^{(\alpha_i + 1)(\alpha_i + 2) \ldots (\alpha_i + \beta_i)} = \prod_{i=1}^k p_i^{\frac{\alpha_i(\alpha_i + 1)}{2}} = (\prod_{i=1}^k p_i^{\alpha_i})^{\frac{\alpha_i}{2}} = n^{\frac{\alpha}{2}}$$

(See end for an alternate proof)

6.2 #10

$\sigma(210) = \sigma(2) \sigma(3) \sigma(5) \sigma(7) = 3 \times 4 \times 6 \times 8 = 576$

$n \sigma(100) = \sigma(2^2) \sigma(5^2) = (1+2+4)(1+5+25) = 7 \times 31 = 217$

$\sigma(999) = \sigma(3^3) \sigma(37) = (1+3+9+27)(1+37) = 40 \times 38 = 1520$

6.2 #11

$d(47) = 2$ (since 47 is prime)

$d(65) = d(7) d(9) = 2 \times 3 = 6$

$d(150) = d(2) d(3) d(5^2) = 2 \times 2 \times 3 = 12$

6.3 #1

Suppose $f \cdot g$ multiplicative and $f(p^r) = g(p^r)$ for all primes p and any $r \in \mathbb{Z}_+$.

Prove $f(n) = g(n)$ for all $n \in \mathbb{Z}_+$

Let $n = p_1^{\alpha_1} \ldots p_k^{\alpha_k}$ with p_i's all distinct. $f(n) = f(p_1^{\alpha_1} \ldots p_k^{\alpha_k})$

$= f(p_1^{\alpha_1}) \ldots f(p_k^{\alpha_k}) = g(p_1^{\alpha_1}) \ldots g(p_k^{\alpha_k}) = g(p_1^{\alpha_1} \ldots p_k^{\alpha_k}) = g(n)$.
Prove that if \(f(n) = \prod_{d \mid n} f(d)^{\mu(n/d)} \) then \(g(n) = \prod_{d \mid n} f(d)^{\mu(n/d)} \).

Proof: Suppose \(f(n) = \prod_{d \mid n} g(d) \). Thus \(\log f(n) = \log \prod_{d \mid n} g(d) \)

\[
= \sum_{d \mid n} \log g(d) \text{ (by law of logs)}
\]

Thus \(\log g(n) = \sum_{d \mid n} \mu(d) \log f(n/d) \) (by Thm 6-6).

\[
= \sum_{d \mid n} \log f(n/d)^{\mu(d)} \text{ (by law of logs)}
\]

\[
= \log \prod_{d \mid n} f(n/d)^{\mu(n/d)} \text{ (by law of logs)}
\]

\[
= \log \left(\frac{n}{\prod_{d \mid n} d} \right)^{\mu(n/d)} \text{ since } \{d : d \mid n \} = \{\frac{n}{d} : \frac{n}{d} \mid n \}
\]

\[
= \log \prod_{d \mid n} f(d)^{\mu(n/d)}
\]

Thus \(g(n) = \prod_{d \mid n} f(d)^{\mu(n/d)} \).

6-2 #2 alternate proof of \(\prod_{d \mid n} d = n^{d(n)/2} \)

Case 1: Suppose \(d(n) \) is even, so \(d(n) = 2k \) for some \(k \).

Let \(d_1, d_2, \ldots, d_k \) be the \(k \) smallest positive divisors of \(n \).

Then the set of all positive divisors is \(\{d_1, d_2, \ldots, d_k, n/d_1, \ldots, n/d_k\} \) and their product is \(n^k = \prod_{d \mid n} d \).

Case 2: Suppose \(d(n) \) is odd, so \(d(n) = 2k+1 \). By 6-2 #1, \(n \) is a perfect square.

Let \(d_1, d_2, \ldots, d_k \) be the \(k \) smallest positive divisors. The set of all positive divisors is \(\{d_1, d_2, \ldots, d_k\} \cup \{\sqrt{n}\} \cup \{n/d_1, n/d_2, \ldots, n/d_k\} \).

So \(\prod_{d \mid n} d = n^k \sqrt{n} = n^{d(n)/2} \sqrt{n} = n^{d(n)/2} \).

\[\square\]