MATH 356 Homework Assignments

Fall 2006

• HW 1, Due Thursday, Sept. 21.
 – 1-1: 5
 – 1-2: 6
 – 2-1: 7
 – 3-1: 8

• HW 2, Due Thursday, Sept. 28.
 – 3-4: 2
 – 4-1: 6
 – The Pell sequence \(\{P_n\}_{n=0}^{\infty} \) is given by \(P_0 = 0, P_1 = 1 \), and
 \[
 P_{n+1} = 2P_n + P_{n-1},
 \]
 for \(n \geq 1 \).
 1. Express the generating function of \(\{P_n\}_{n=0}^{\infty} \) as a rational function.
 2. Prove that
 \[
 P_n = \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2\sqrt{2}}.
 \]

• HW 3, Due Thursday, Oct. 19.
 – 5-3: 1(b)
 – 6-1: 4, 6.
• HW 4, Due Thursday, Oct. 26.
 – 6-2: 2, 10, 11
 – 6-3: 1
 – 6-4: 11

• HW 5, Due Thursday, Nov. 2.
1. For each of the following partitions, draw the Ferrers graph and find the conjugate partition:
 (a) 5 + 3 + 2 + 1
 (b) 6 + 3 + 1
 (c) 7 + 6 + 4 + 3
2. Show that for all positive integers n, the number of partitions of n into m distinct parts equals the number of partitions of n wherein $1, 2, 3, \ldots, m$ all appear at least once as a part, and no part is greater than m. **Hint: consider the Ferrers graph.**
3. Consider the following claim: the number of partitions of n into nonmultiples of three equals the number of partitions of n where no part may appear more than twice. Prove the claim
 (a) bijectively, and
 (b) using generating functions.
4. Prove that the number of partitions of n into distinct parts congruent to 0, 2, or 3 modulo 4 equals the number of partitions of n into parts congruent to 2, 3, or 7 modulo 8. **Hint: use generating functions.**

• HW 6, due Thursday, Nov. 30.
1. (a) Prove that the generating function for partitions with exactly j parts is
 \[q^j \over (1-q)(1-q^2) \cdots (1-q^j). \]
 (b) Give a combinatorial proof of the following series-product identity of Euler:
 \[\sum_{j=0}^{\infty} {q^j \over (1-q)(1-q^2) \cdots (1-q^j)} = \prod_{k=1}^{\infty} {1 \over 1-q^k}. \]
2. The first Rogers-Ramanujan identity is given by

\[\sum_{j=0}^{\infty} \frac{q^{j^2}}{(1-q)(1-q^2) \cdots (1-q^j)} = \prod_{k=0}^{\infty} \frac{1}{(1-q^{5k+1})(1-q^{5k+4})}. \quad (1) \]

Show that (1) is equivalent to the following partition theorem:

Let \(R(n) \) denote the number of partitions of \(n \) into parts which are distinct, nonconsecutive integers. Let \(S(n) \) denote the number of partitions of \(n \) into parts congruent to 1 or 4 modulo 5. Then \(R(n) = S(n) \) for all integers \(n \).

Suggested way to proceed:

(a) Show that

\[\sum_{n=0}^{\infty} S(n)q^n = \prod_{k=0}^{\infty} \frac{1}{(1-q^{5k+1})(1-q^{5k+4})}. \]

(b) Show that

\[\frac{q^{j^2}}{(1-q)(1-q^2) \cdots (1-q^j)} \]

is the generating function for partitions of the type counted by \(R(n) \) which have exactly \(j \) parts.

(c) Use part (b) to show that

\[\sum_{n=0}^{\infty} R(n)q^n = \sum_{j=0}^{\infty} \frac{q^{j^2}}{(1-q)(1-q^2) \cdots (1-q^j)}. \]

(d) Equate the generating functions and conclude that \(R(n) = S(n) \)

Note: You are not being asked to prove (1).