Classes of quiver cycles and quiver coefficients ANDERS S. BUCH

Let Q be a quiver with vertex set $\{1, 2, \ldots, n\}$, and let $e = (e_1, \ldots, e_n)$ be a dimension vector for Q. Set $E_i = \mathbb{C}^{e_i}$ for each i. The affine space of quiver representations $V = \bigoplus_{i \to j} \operatorname{Hom}(E_i, E_j)$ has a natural conjugation action of the group $G = \prod_{i=1}^{n} \operatorname{GL}(E_i)$. A **quiver cycle** is any G-stable closed irreducible subvariety $\Omega \subset V$. For example, any G-orbit closure is a quiver cycle. A quiver cycle Ω determines a G-equivariant cohomology class $[\Omega] \in H^*_G(V)$ and a Gequivariant Grothendieck class $[\mathcal{O}_{\Omega}] \in K_G(V)$. Notice that

$$H^*_G(V) = H^*_G(\text{point}) = \mathbb{Z}[c_{i,j}]_{1 \le i \le n \text{ and } 1 \le j \le e_i}$$

is a polynomial ring, where the variables $c_{i,1}, c_{i,2}, \ldots, c_{i,e_i}$ are the Chern classes of $\operatorname{GL}(E_i)$. The cohomology class $[\Omega] \in H^*_G(V)$ is a polynomial in these variables. The K-theory ring $K_G(V)$ can be identified with the Grothendieck ring $\operatorname{Rep}(G)$ of virtual representations of G.

The classes $[\Omega]$ and $[\mathcal{O}_{\Omega}]$ can be interpreted as formulas for degeneracy loci as follows. Let X be a non-singular variety and let \mathcal{E}_{\bullet} be a representation of Q on vector bundles over X, i.e. a collection of vector bundles \mathcal{E}_i corresponding to the vertices $i \in \{1, 2, ..., n\}$ together with vector bundle maps $\mathcal{E}_i \to \mathcal{E}_j$ corresponding to the arrows $i \to j$ of Q. Assume that $\operatorname{rank}(\mathcal{E}_i) = e_i$ for each i. For each point $x \in X$, the fiber $\mathcal{E}_{\bullet}(x)$ is representation of Q of dimension vector e. We define a degeneracy locus $\Omega(\mathcal{E}_{\bullet}) \subset X$ by

$$\Omega(\mathcal{E}_{\bullet}) = \{ x \in X \mid \mathcal{E}_{\bullet}(x) \in \Omega \}.$$

This degeneracy locus has a natural structure of subscheme of X. Examples of degeneracy loci of this type include determinantal varieties and Schubert varieties in flag manifolds GL_m/P .

Proposition. Assume that Ω is Cohen-Macaulay and that $\operatorname{codim}(\Omega(\mathcal{E}_{\bullet}); X) = \operatorname{codim}(\Omega; V)$. Assume also that X admits an ample line bundle. Then the (Chow) cohomology class $[\Omega(\mathcal{E}_{\bullet})] \in H^*(X)$ is obtained from $[\Omega] \in H^*_G(V)$ by setting $c_{i,j} = c_j(\mathcal{E}_i)$ for all i, j.

The simplest interesting example is when $Q = \{1 \rightarrow 2\}$ has two vertices and one arrow. In this case any quiver cycle is a G-orbit closure defined by

$$\Omega = \{\phi \in \operatorname{Hom}(E_1, E_2) \mid \operatorname{rank}(\phi) \le r\}$$

for some non-negative integer r. To describe the class $[\Omega]$ we need the following notation. Given an integer partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell \ge 0)$ we define the Schur polynomial

$$S_{\lambda}(E_2 - E_1) = \det \left(h_{\lambda_i + j - i} \right)_{\ell \times \ell} \in H^*_G(V)$$

where the classes h_i are determined by the identity of power series

$$\sum_{i\geq 0} h_i T^i := \frac{1 - c_{1,1}T + c_{1,2}T^2 - \dots \pm c_{1,e_1}T^{e_1}}{1 - c_{2,1}T + c_{2,2}T^2 - \dots \pm c_{2,e_2}T^{e_2}}$$

The classical Thom-Porteous formula states that $[\Omega] = S_{\lambda}(E_2 - E_1)$ in $H_G^*(V)$ for the partition $\lambda = (e_1 - r)^{e_2 - r} = (e_1 - r, \dots, e_1 - r)$ consisting of $e_2 - r$ copies of $e_1 - r$. The Grothendieck class of Ω is given by the analogous formula $[\mathcal{O}_{\Omega}] = \mathcal{G}_{\lambda}(E_2 - E_1) \in K_G(V)$ where \mathcal{G}_{λ} denotes a stable Grothendieck polynomial. This formula is proved in [5].

Let Q be a quiver without oriented cycles, and let $\Omega \subset V = \bigoplus_{i \to j} \operatorname{Hom}(E_i, E_j)$ be a quiver cycle. For each vertex i, let $M_i = \bigoplus_{j \to i} E_j$ be the sum of all vertex vector spaces mapping to E_i . For example, the quiver $Q = \{1 \rightrightarrows 2 \leftarrow 3\}$ gives $M_2 = E_1 \oplus E_1 \oplus E_3$. The length $\ell(\lambda)$ of a partition λ is the number of non-zero parts of λ , and its weight is the sum $|\lambda| = \sum \lambda_i$ of its parts.

Definition. The cohomological quiver coefficients of Ω are the unique integers $c_{\mu}(\Omega) \in \mathbb{Z}$, indexed by sequences $\mu = (\mu^1, \ldots, \mu^n)$ of partitions μ^i with $\ell(\mu^i) \leq e_i$, such that

$$[\Omega] = \sum_{\mu} c_{\mu}(\Omega) \prod_{i=1}^{n} S_{\mu^{i}}(E_{i} - M_{i}) \in H^{*}_{G}(V).$$

More generally, the K-theoretic quiver coefficients of Ω are given by

(1)
$$[\mathcal{O}_{\Omega}] = \sum_{\mu} c_{\mu}(\Omega) \prod_{i=1}^{n} \mathcal{G}_{\mu^{i}}(E_{i} - M_{i}) \in K_{G}(V).$$

Since $H^*_G(V)$ is a graded ring, it follows that the cohomological quiver coefficients of Ω are indexed by sequences μ for which $|\mu| := \sum |\mu^i| = \operatorname{codim}(\Omega; V)$. These coefficients are a subset of the K-theoretic quiver coefficients, which are defined for sequences μ with $|\mu| \ge \operatorname{codim}(\Omega; V)$. The cohomological quiver coefficients for equivirented quivers of type A were introduce in [8]. This was extended to K-theory and more general quivers in [5, 7]. Examples of quiver coefficients include the Littlewood-Richardson coefficients, Stanley coefficients, the monomial coefficients of Schubert polynomials, and the analogous K-theoretic constants [10, 11].

Conjecture. Let $\Omega \subset V$ be any quiver cycle.

(a) The cohomological quiver coefficients of Ω are non-negative, i.e. $c_{\mu}(\Omega) \geq 0$ for $|\mu| = \operatorname{codim}(\Omega; V)$.

(b) The K-theoretic coefficient $c_{\mu}(\Omega)$ is non-zero for only finitely many sequences μ , i.e. the sum (1) is finite.

(c) If Ω has rational singularities, then the K-theoretic quiver coefficients of Ω have alternating signs, i.e. $(-1)^{|\mu|-\operatorname{codim}(\Omega;V)} c_{\mu}(\Omega) \geq 0$.

This conjecture is motivated in part by Schubert calculus on flag varieties G/P. If $Y \subset G/P$ is any closed irreducible subvariety, then the cohomology class $[Y] \in H^*(G/P)$ can be uniquely written as a linear combination of Schubert classes, and the coefficients in this combination are non-negative integers. Furthermore, a result of Brion states that if Y has rational singularities, then its Grothendieck class $[\mathcal{O}_Y] \in K(G/P)$ is a linear combination of Schubert structure sheaves with alternating signs [3]. The Conjecture is known when $Q = \{1 \rightarrow 2 \rightarrow \cdots \rightarrow n\}$ is an equioriented quiver of type A. Special cases of (a) were proved Buch, Kresch, Tamvakis, and Yong [4, 10] after which the general case was proved by Knutson, Miller, and Shimozono [14]. Part (b) was proved by Buch [5], and part (c) was proved by Buch [6] and by Miller [17].

Now suppose that Q is a quiver of Dynkin type. In this case Fehér and Rimányi have given a set of linear equations that uniquely determine the cohomology class $[\Omega] \in H^*_G(V)$ [13]. These equations simply say that the restriction of $[\Omega]$ to any disjoint G-orbit in V is zero. Reineke has given an explicit resolution of the singularities of Ω [18]. Under the assumption that Ω has rational singularities, this resolution has been used to prove formulas for the K-theory class $[\mathcal{O}_{\Omega}]$, by Knutson and Shimozono [15] and by Buch [7]. The latter paper expresses the class $[\mathcal{O}_{\Omega}]$ in terms of quiver coefficients and proves part (b) of the conjecture, as well as part (c) when Q is of type A₃. All quiver cycles of Dynkin type A or D are known to have rational singularities by results of Bobiński and Zwara [1, 2] (see also [19, 16] for the case of equioriented quivers of type A).

We refer to [14, 9, 6, 12] for a different type of positivity of quiver cycle classes, which has been proved for the cohomology class of any quiver cycle of type A and for the *K*-theory class of equioriented quiver cycles of type A.

References

- [1] G. Bobiński and G. Zwara, Normality of orbit closures for Dynkin quivers of type \mathbb{A}_n , Manuscripta Math. **105** (2001), no. 1, 103–109.
- [2] _____, Schubert varieties and representations of Dynkin quivers, Colloq. Math. 94 (2002), no. 2, 285–309.
- [3] M. Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137–159.
- [4] A. S. Buch, On a conjectured formula for quiver varieties, J. Algebraic Combin. 13 (2001), no. 2, 151–172.
- [5] _____, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75–103.
- [6] _____, Alternating signs of quiver coefficients, J. Amer. Math. Soc. 18 (2005), no. 1, 217–237 (electronic).
- [7] _____, Quiver coefficients of Dynkin type, Michigan Math. J. 57 (2008), 93–120.
- [8] A. S. Buch and W. Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), no. 3, 665–687.
- [9] A. S. Buch, L. M. Fehér, and R. Rimányi, Positivity of quiver coefficients through Thom polynomials, Adv. Math. 197 (2005), no. 1, 306–320.
- [10] A. S. Buch, A. Kresch, H. Tamvakis, and A. Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125–143.
- [11] _____, Grothendieck polynomials and quiver formulas, Amer. J. Math. 127 (2005), no. 3, 551–567.
- [12] A. S. Buch and R. Rimányi, A formula for non-equioriented quiver orbits of type A, J. Algebraic Geom. 16 (2007), no. 3, 531–546.
- [13] L. Fehér and R. Rimányi, Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J. 114 (2002), no. 2, 193–213.
- [14] A. Knutson, E. Miller, and M. Shimozono, Four positive formulae for type A quiver polynomials, Invent. Math. 166 (2006), no. 2, 229–325.
- [15] A. Knutson and M. Shimozono, Kempf collapsing and quiver loci, math.AG/0608327.

- [16] V. Lakshmibai and P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices (1998), no. 12, 627–640.
- [17] E. Miller, Alternating formulas for K-theoretic quiver polynomials, Duke Math. J. 128 (2005), no. 1, 1–17.
- [18] M. Reineke, Quivers, desingularizations and canonical bases, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, 2003, pp. 325–344.
- [19] A. V. Zelevinskii, Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 199–200.