Puzzles for Projections from 3-step flag varieties

Guangzhou 2017

Anders Buch (Rutgers University)

Schubert varieties in 3-step flag manifold

 $X = \mathsf{Fl}(a_1, a_2, a_3; n) = \{(A_1 \subset A_2 \subset A_3 \subset \mathbb{C}^n) \mid \dim(A_k) = a_k\}$

Def: A Schubert string for X is a permutation of $0^{a_1}1^{a_2-a_1}2^{a_3-a_2}3^{n-a_3}$.

Schubert varieties in 3-step flag manifold

$$X=\mathsf{Fl}(a_1,a_2,a_3;n)=\{(A_1\subset A_2\subset A_3\subset \mathbb{C}^n)\mid \mathsf{dim}(A_k)=a_k\}$$

Def: A Schubert string for X is a permutation of $0^{a_1}1^{a_2-a_1}2^{a_3-a_2}3^{n-a_3}$.

 \mathbb{C}^n has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ Schubert string for X. **Def:** $A^u = (A_1^u \subset A_2^u \subset A_3^u) \in X$ by $A_k^u = \text{Span}_{\mathbb{C}}\{e_i : u_i < k\}$.

Example: X = Fl(1, 3, 4; 6) $A^{130123} = (\mathbb{C}e_3 \subset \mathbb{C}e_1 \oplus \mathbb{C}e_3 \oplus \mathbb{C}e_4 \subset \mathbb{C}e_1 \oplus \mathbb{C}e_3 \oplus \mathbb{C}e_4 \oplus \mathbb{C}e_5)$

Schubert varieties in 3-step flag manifold

$$X=\mathsf{Fl}(a_1,a_2,a_3;n)=\{(A_1\subset A_2\subset A_3\subset \mathbb{C}^n)\mid \mathsf{dim}(A_k)=a_k\}$$

Def: A Schubert string for X is a permutation of $0^{a_1}1^{a_2-a_1}2^{a_3-a_2}3^{n-a_3}$.

 \mathbb{C}^n has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ Schubert string for X. **Def:** $A^u = (A_1^u \subset A_2^u \subset A_3^u) \in X$ by $A_k^u = \text{Span}_{\mathbb{C}}\{e_i : u_i < k\}$.

Example:
$$X = Fl(1, 3, 4; 6)$$

 $A^{130123} = (\mathbb{C}e_3 \subset \mathbb{C}e_1 \oplus \mathbb{C}e_3 \oplus \mathbb{C}e_4 \subset \mathbb{C}e_1 \oplus \mathbb{C}e_3 \oplus \mathbb{C}e_4 \oplus \mathbb{C}e_5)$

 $\mathbf{B}^+ \subset \operatorname{GL}(\mathbb{C}^n)$ upper triangular ; $\mathbf{B}^- \subset \operatorname{GL}(\mathbb{C}^n)$ lower triangular. Schubert varieties: $X_u = \overline{\mathbf{B}^+ \cdot A^u}$; $X^u = \overline{\mathbf{B}^- \cdot A^u} \subset X$

 $\dim(X_u) = \operatorname{codim}(X^u, X) = \ell(u) = \#\{i < j \mid u_i > u_j\}$

 $\pi: X = Fl(a_1, a_2, a_3; n) \longrightarrow Y = Gr(a_2, n) ; \quad \pi(A_1 \subset A_2 \subset A_3) = A_2$ Simple labels for X: 0, 1, 2, 3 Simple labels for Y: 01, 23 Merged !!

 $\pi: X = Fl(a_1, a_2, a_3; n) \longrightarrow Y = Gr(a_2, n) ; \quad \pi(A_1 \subset A_2 \subset A_3) = A_2$ Simple labels for X: 0, 1, 2, 3 Simple labels for Y: 01, 23 Merged !!

Schubert string for Y: $w = (w_1, \dots, w_n), w_i \in \{01, 23\}, a_2 = \#01$

Def: $V^w = \text{Span}\{e_i \mid w_i = 01\} \in Y$

Note: $\pi(A^u) = A_2^u = V^w$ where $w_i = \mathbf{01} \Leftrightarrow u_i \in \{\mathbf{0}, \mathbf{1}\}$

 $\pi: X = Fl(a_1, a_2, a_3; n) \longrightarrow Y = Gr(a_2, n) ; \quad \pi(A_1 \subset A_2 \subset A_3) = A_2$ Simple labels for X: 0, 1, 2, 3 Simple labels for Y: 01, 23 Merged !!

Schubert string for Y: $w = (w_1, ..., w_n), w_i \in \{01, 23\}, a_2 = \# 01$ **Def:** $V^w = \text{Span}\{e_i \mid w_i = 01\} \in Y$ Note: $\pi(A^u) = A_2^u = V^w$ where $w_i = 01 \Leftrightarrow u_i \in \{0, 1\}$ Schubert varieties: $Y_w = \overline{\mathbf{B}^+ \cdot V^w}$; $Y^w = \overline{\mathbf{B}^- \cdot V^w} \subset Y$

Translation to Young diagrams for Y = Gr(3, 8):

 $\pi: X = Fl(a_1, a_2, a_3; n) \longrightarrow Y = Gr(a_2, n) ; \quad \pi(A_1 \subset A_2 \subset A_3) = A_2$ Simple labels for X: 0, 1, 2, 3 Simple labels for Y: 01, 23 Merged !! Schubert string for Y: $w = (w_1, \dots, w_n), w_i \in \{01, 23\}, a_2 = \#01$

W

Def: $V^w = \text{Span}\{e_i \mid w_i = 01\} \in Y$ Note: $\pi(A^u) = A_2^u = V^w$ where $w_i = 01 \Leftrightarrow u_i \in \{0, 1\}$ Schubert varieties: $Y_w = \overline{\mathbf{B}^+ \cdot V^w}$; $Y^w = \overline{\mathbf{B}^- \cdot V^w} \subset Y$ Goal: $\int_X [X^u] \cdot [X^v] \cdot \pi^*[Y^w] = \#$ **Product with pullback:**

$$[X^{u}] \cdot \pi^{*}[Y^{w}] = \sum_{v} \left(\int_{X} [X^{u}] \cdot [X_{v}] \cdot \pi^{*}[Y^{w}] \right) [X^{v}] \quad \text{in } H^{*}(X; \mathbb{Z})$$

Pushforward of product:

$$\pi_*([X^u] \cdot [X^v]) = \sum_w \left(\int_X [X^u] \cdot [X^v] \cdot \pi^*[Y_w] \right) [Y^w] \quad \text{in } H^*(Y; \mathbb{Z})$$

Simple puzzle pieces:

Composed puzzle pieces:

Definition of composed pieces:

$$(a, b) \quad \iff \quad b \text{ and } are edges \quad AND \quad \max(a) < \min(b)$$

$$AND \quad a \text{ and } b \text{ are not merged}$$

Theorem:
$$\int_X [X^u] \cdot [X^v] \cdot \pi^* [Y^w] = \#$$

Example: π : $X = Fl(1,2,3;5) \longrightarrow Gr(2,5) = Y$

$$\pi_*([X^{10323}] \cdot [X^{10332}]) = ?$$

Quantum cohomology

Gromow-Witten invariants of Y = Gr(m, n):

$$\langle Y^{u}, Y^{v}, Y_{w} \rangle_{d} = \#$$
 rational curves $C \subset Y$ of degree d
meeting Y^{u} , $g.Y^{v}$, and Y_{w}
where $g \in GL_{n}$ is a fixed general element

 $\langle Y^{u}, Y^{v}, Y_{w} \rangle_{d} = 0$ if infinitely many curves exist.

Small quantum cohomology ring

$$\begin{aligned} & QH(Y) = H^*(Y;\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q] \\ & [Y^u] \star [Y^v] = \sum_w \langle Y^u, Y^v, Y_w \rangle_d \, q^d \, [Y^w] \end{aligned}$$

Quantum = classical

$$X = Fl(m - d, m, m + d; n) \xrightarrow{\pi} Y = Gr(m, n)$$

$$\downarrow^{\phi}$$

$$Z = Fl(m - d, m + d; n)$$

Theorem (B-Kresch-Tamvakis)

$$\begin{array}{ll} \langle Y^{u}, Y^{v}, Y_{w} \rangle_{d} &= \# \phi \pi^{-1}(Y^{u}) \cap \phi \pi^{-1}(g, Y^{v}) \cap \phi \pi^{-1}(Y_{w}) \\ C &\longleftrightarrow & \left(\operatorname{Ker}(C), \operatorname{Span}(C) \right) := \left(\bigcap_{V \in C} V, \sum_{V \in C} V \right) \in Z \end{array}$$

Quantum = classical

$$X = Fl(m - d, m, m + d; n) \xrightarrow{\pi} Y = Gr(m, n)$$

$$\downarrow^{\phi}$$

$$Z = Fl(m - d, m + d; n)$$

Theorem (B-Kresch-Tamvakis)

$$\begin{array}{rcl} \langle Y^{u}, Y^{v}, Y_{w} \rangle_{d} & = & \# \ \phi \pi^{-1}(Y^{u}) \cap \phi \pi^{-1}(g.Y^{v}) \cap \phi \pi^{-1}(Y_{w}) \\ \\ C & \longleftrightarrow & \left(\operatorname{Ker}(C), \operatorname{Span}(C) \right) := \left(\bigcap_{V \in C} V, \ \sum_{V \in C} V \right) \in Z \end{array}$$

Theorem (B-Mihalcea) Equivariant generalization:

$$\langle Y^{u}, Y^{v}, Y_{w} \rangle_{d}^{T} = \int_{Z}^{T} \phi_{*} \pi^{*} [Y^{u}] \cdot \phi_{*} \pi^{*} [Y^{v}] \cdot \phi_{*} \pi^{*} [Y_{w}]$$

$$= \int_{X}^{T} \phi^{*} \phi_{*} \pi^{*} [Y^{u}] \cdot \phi^{*} \phi_{*} \pi^{*} [Y^{v}] \cdot \pi^{*} [Y_{w}]$$

Example

$$Z = \mathsf{FI}(1,3;5) \quad \xleftarrow{\phi} \quad X = \mathsf{FI}(1,2,3;5) \quad \xrightarrow{\pi} \quad Y = \mathsf{Gr}(2,5)$$

Compute coefficient of q^1 in quantum product $[Y^{\square}] \star [Y^{\square}] \in QH(Y)$

Quantum = classical implies:

$$([Y^{\square}] \star [Y^{\square}])_{1} = \pi_{*} \left(\phi^{*} \phi_{*} \pi^{*} [Y^{\square}] \cdot \phi^{*} \phi_{*} \pi^{*} [Y^{\square}] \right)$$

$$= \pi_{*} \left([X^{10323}] \cdot [X^{10332}] \right) = [Y^{\square}] + [Y^{\square}]$$

Example

$$Z = \mathsf{FI}(1,3;5) \quad \xleftarrow{\phi} \quad X = \mathsf{FI}(1,2,3;5) \quad \xrightarrow{\pi} \quad Y = \mathsf{Gr}(2,5)$$

Compute coefficient of q^1 in quantum product $[Y^{\square}] \star [Y^{\square}] \in QH(Y)$

Quantum = classical implies:

$$([Y^{\square}] \star [Y^{\square}])_{1} = \pi_{*} \left(\phi^{*} \phi_{*} \pi^{*} [Y^{\square}] \cdot \phi^{*} \phi_{*} \pi^{*} [Y^{\square}] \right)$$

$$= \pi_{*} \left([X^{10323}] \cdot [X^{10332}] \right) = [Y^{\square}] + [Y^{\square}]$$

Projection to 2-step flag manifold

 $\pi: \mathsf{Fl}(a_1, a_2, a_3; n) \rightarrow \mathsf{Fl}(a_1, a_3; n)$

Simple puzzle pieces:

 $\underbrace{ \bigwedge_{0}^{\wedge} \quad \bigwedge_{12}^{\wedge} \quad \bigwedge_{12}^{\wedge} \quad \bigwedge_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge} \quad \times_{3}^{\wedge}$

Composed puzzle pieces:

Simple labels:

Composed labels:

Rule: (a, b) can be a label only if max(a) < min(b) OR max(a) = min(b) AND repetition separated by 3 parentheses.

Puzzle formula for projections

Let $\pi: X \to Y$ be a projection of partial flag manifolds. Assume X has at most 3 steps, Y has at most 2 steps.

Theorem:
$$\int_X [X^u] \cdot [X^v] \cdot \pi^* [Y^w] = \# u$$

Puzzle formula for projections

Let $\pi : X \to Y$ be a projection of partial flag manifolds. Assume X has at most 3 steps, Y has at most 2 steps.

Theorem:
$$\int_X [X^u] \cdot [X^v] \cdot \pi^* [Y^w] = \#$$

Known cases:

Puzzle rule for $H^*(Gr(m, n))$ (Knutson, Tao, Woodward)Puzzle rule for $H^*_T(Gr(m, n))$ (Knutson, Tao)

Puzzle rule for $H^*(Fl(a, b; n))$ (conjectured by Knutson, proof in [B-Kresch-Purbhoo-Tamvakis], different positive formula by Coskun.)

Conjecture (Knutson, Buch) / **Theorem** (Knutson - Zinn-Justin) Formula holds for $X = Y = Fl(a_1, a_2, a_3; n)$.

Resolutions of temporary puzzle piece

- **Def:** Two gashes are **equivalent** if one can be propagated to the other.
- **Def:** A gash is **opposite** to $a_{\mathbf{b}} \iff$ it is equivalent to $b_{\mathbf{a}}$.

Resolutions of temporary puzzle piece

- **Def:** Two gashes are **equivalent** if one can be propagated to the other. **Def:** A gash is **opposite** to $\frac{1}{2}$ \iff it is equivalent to $\frac{1}{2}$.
- **Def:** A **resolution** of a temporary piece is a puzzle piece that creates two opposite gashes on replacement.

Resolutions of temporary puzzle piece

- **Def:** Two gashes are **equivalent** if one can be propagated to the other. **Def:** A gash is **opposite** to $\frac{1}{2}$ \iff it is equivalent to $\frac{1}{2}$.
- **Def:** A **resolution** of a temporary piece is a puzzle piece that creates two opposite gashes on replacement.

Fact: Each temporary piece has exactly 3 resolutions.

Note: Every gash is either a left gash or a right gash.

Component of the mutation graph

Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

Def: A **resolution** of a scab is a symmetric rhombus that creates two opposite gashes on replacement, with left gash in left side, right gash in right side.

Borel construction for puzzle pieces

Def: A scab is a small rhombus consisting of two distinct puzzle pieces.

Def: A **resolution** of a scab is a symmetric rhombus that creates two opposite gashes on replacement, with left gash in left side, right gash in right side.

Fact: Any scab has at most one resolution.

Def: A resolution of a scab is also called an equivariant puzzle piece.

All puzzle pieces for π : Fl $(a_1, a_2, a_3; n) \rightarrow Gr(a_2, n)$

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ max torus of diagonal matrices. $\Lambda = H_T^*(\text{pt}; \mathbb{Z}) = \mathbb{Z}[y_1, y_2, \dots, y_n]$; $y_i = -c_1(\mathbb{C}e_i)$ $H_T^*(X; \mathbb{Z}) = \bigoplus_u \Lambda[X^u]$ is a Λ -algebra.

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n) \text{ max torus of diagonal matrices.}$ $\Lambda = H_T^*(\text{pt}; \mathbb{Z}) = \mathbb{Z}[y_1, y_2, \dots, y_n] ; \quad y_i = -c_1(\mathbb{C}e_i)$ $H_T^*(X; \mathbb{Z}) = \bigoplus_u \Lambda[X^u] \text{ is a } \Lambda\text{-algebra.}$ $[X^u] \cdot [X^v] = \sum_w C_{u,v}^w [X^w] ; \quad C_{u,v}^w = \int_X^T [X^u] \cdot [X^v] \cdot [X_w] \in \Lambda$ where $\int_X^T : H_T^*(X; \mathbb{Z}) \to \Lambda \text{ is pushforward along } X \to \{\text{pt}\}.$ Theorem (Graham): $C_{u,v}^w \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ max torus of diagonal matrices. $\Lambda = H^*_{\mathcal{T}}(\mathsf{pt}; \mathbb{Z}) = \mathbb{Z}[y_1, y_2, \dots, y_n] \quad ; \quad y_i = -c_1(\mathbb{C}e_i)$ $H^*_T(X;\mathbb{Z}) = \bigoplus \Lambda[X^u]$ is a Λ -algebra. $[X^{u}] \cdot [X^{v}] = \sum C_{u,v}^{w} [X^{w}] \quad ; \quad C_{u,v}^{w} = \int_{v}^{t} [X^{u}] \cdot [X^{v}] \cdot [X_{w}] \in \Lambda$ where $\int_{X}^{T} : H_{T}^{*}(X;\mathbb{Z}) \to \Lambda$ is pushforward along $X \to \{pt\}$. **Theorem (Graham)**: $C_{u,v}^{w} \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$ **Def:** weight(\diamondsuit) = $y_i - y_i$ where i < j are defined by

Equivariant puzzle formula

Let $\pi: X \to Y$ be a projection of partial flag manifolds.

Assume X has at most 3 steps, Y has at most 2 steps.

Let $\alpha, \beta \in H^*_T(X)$ and $\gamma \in H^*_T(Y)$ be Schubert classes, such that one of α, β, γ is **B**⁺-stable, the other two are **B**⁻-stable.

Consider puzzles with all equivariant pieces pointing to \mathbf{B}^+ -stable side:

Theorem: If all scabs pointing to B⁺-stable side have resolutions, then

$$\int_{X}^{T} \alpha \cdot \beta \cdot \pi^{*}(\gamma) = \sum_{P} \prod_{\boldsymbol{\diamond} \in P} \operatorname{weight}(\boldsymbol{\diamond})$$

Example $\pi: X = Fl(1, 2, 3; 4) \longrightarrow Y = Fl(1, 3; 4)$

 $[X^{2013}] \cdot \pi^* [Y^{12-0-3-12}] = ?$

Example $\pi: X = Fl(1, 2, 3; 4) \longrightarrow Y = Fl(1, 3; 4)$

 $[X^{2013}] \cdot \pi^* [Y^{12-0-3-12}] = ?$

Example $\pi: X = Fl(1, 2, 3; 4) \longrightarrow Y = Fl(1, 3; 4)$

 $[X^{2013}] \cdot \pi^* [Y^{12 - 0 - 3 - 12}] =$

+ $(y_2 - y_1)[X^{2031}]$ + $(y_2 - y_1)[X^{3012}]$

Results: Formula for $[X^u] \cdot \pi^*[Y^v]$ in $H^*_T(X;\mathbb{Z})$ for every $\pi: X \to Y$

Formula for $\pi_*([X^u] \cdot [X^v])$ in $H^*_T(Y; \mathbb{Z})$ for every $\pi : X \to Y$ except $\pi : Fl(a_1, a_2, a_3; n) \to Fl(a_1, a_3; n)$

Results: Formula for $[X^u] \cdot \pi^*[Y^v]$ in $H^*_T(X; \mathbb{Z})$ for every $\pi : X \to Y$ Formula for $\pi_*([X^u] \cdot [X^v])$ in $H^*_T(Y; \mathbb{Z})$ for every $\pi : X \to Y$ except $\pi : \operatorname{Fl}(a_1, a_2, a_3; n) \to \operatorname{Fl}(a_1, a_3; n)$ Reason: The scab

Results: Formula for $[X^{u}] \cdot \pi^{*}[Y^{v}]$ in $H^{*}_{T}(X;\mathbb{Z})$ for every $\pi: X \to Y$ Formula for $\pi_{*}([X^{u}] \cdot [X^{v}])$ in $H^{*}_{T}(Y;\mathbb{Z})$ for every $\pi: X \to Y$ except $\pi: \operatorname{Fl}(a_{1}, a_{2}, a_{3}; n) \to \operatorname{Fl}(a_{1}, a_{3}; n)$ Reason: The scab $\xrightarrow{\gamma}$ has no resolution!

Example:
$$\pi$$
 : Fl $(a_1, a_2, a_3; n) \rightarrow$ Fl $(a_1, a_2; n)$

The scab \checkmark_{c}^{H} has no resolution \Rightarrow No formula for $\pi^{*}(\gamma) \cdot \alpha$:

Formula for $[X^u] \cdot \pi^*[Y^v]$ in $H^*_T(X;\mathbb{Z})$ for every $\pi: X \to Y$ **Results:** Formula for $\pi_*([X^u] \cdot [X^v])$ in $H^*_{\mathcal{T}}(Y; \mathbb{Z})$ for every $\pi: X \to Y$ except π : Fl($a_1, a_2, a_3; n$) \rightarrow Fl($a_1, a_3; n$) Reason: The scab $\begin{pmatrix} 4 \\ 3 \\ W \\ 8 \end{pmatrix}$ has no resolution!

Example: π : Fl($a_1, a_2, a_3; n$) \rightarrow Fl($a_1, a_2; n$)

 \Rightarrow No formula for $\pi^*(\gamma) \cdot \alpha$:

The scab \bigwedge_{c} has no resolution All scabs \bigvee_{c} have resolutions \Rightarrow Obtain formula for $\beta \cdot \pi^*(\gamma)$: $\mathbf{B}^{+} \alpha /$ $\beta \mathbf{B}^-$

Projection to a point $\pi: Fl(n) \to {pt}$

$$\int_{X}^{T} [X^{u}] \cdot [X^{v}] \cdot \pi^{*}[\text{pt}] = \begin{cases} [X^{uv^{-1}w_{0}}]_{w_{0}} & \text{if } \ell(uv^{-1}w_{0}) = \ell(u) - \ell(v^{-1}w_{0}) \\ 0 & \text{otherwise.} \end{cases}$$
Puzzle pieces: for $1 \le a \le n$
Equivariant pieces: for $1 \le a < b \le n$

Projection to a point $\pi: Fl(n) \to {pt}$

$$\int_{X}^{T} [X^{u}] \cdot [X^{v}] \cdot \pi^{*}[\text{pt}] = \begin{cases} [X^{uv^{-1}w_{0}}]_{w_{0}} & \text{if } \ell(uv^{-1}w_{0}) = \ell(u) - \ell(v^{-1}w_{0}) \\ 0 & \text{otherwise.} \end{cases}$$

Puzzle pieces: $p \in \mathbb{N}$ for $1 \leq a \leq n$

Equivariant pieces: for $1 \le a < b \le n$

Puzzle formula specializes to **pipe dream formula** for double Schubert polynomials Billey-Jockusch-Stanley Billey-Bergeron Fomin-Kirillov **Highlights from proof** X = G/P; Fix $T \subset B \subset P \subset G$

Weyl groups

$$W = N_G(T)/T$$
; $W_P = N_P(T)/T$

 $W^P \subset W$ subset of minimal representatives for cosets in W/W_P

Schubert varieties

$$X_u = \overline{Bu.P}$$
, $X^u = \overline{B^- u.P}$ for $u \in W$.
dim $(X_u) = \operatorname{codim}(X^u, X) = \ell(u)$ whenever $u \in W^P$.

Schubert structure constants

$$C_{u,v}^{w} = \int_{X}^{T} [X^{u}] \cdot [X^{v}] \cdot [X_{w}] \in \Lambda = H_{T}^{*}(\text{pt}; \mathbb{Z})$$
$$[X^{u}] \cdot [X^{v}] = \sum_{w} C_{u,v}^{w} [X^{w}] \text{ in } H_{T}^{*}(X; \mathbb{Z})$$

Chevalley formula

Let $D \in H^2_T(X; R)$, R commutative ring.

Write $u \to u'$ for covering relation in W^P : $u' = us_\alpha$ and $\ell(u') = \ell(u) + 1$

Define
$$(D, \frac{u'}{u}) := "(D, \alpha^{\vee})" = \int_{C_{\alpha}}^{T} D \in H_{T}^{*}(\operatorname{pt}; R)$$

where $C_{\alpha} \subset X$ is the *T*-stable curve through 1.*P* and s_{α} .*P*

Chevalley:
$$D \cdot [X^u] = D_u [X^u] + \sum_{u \to u'} (D, \frac{u'}{u}) [X^{u'}]$$
 in $H^*_T(X; R)$

Molev-Sagan equations

Lemma: If
$$\eta \in R$$
 satisfies $\eta^2 + \eta + 1 = 0$, then
 $(-\eta^2 D_u - \eta D_v - D_w)C^w_{u,v} =$
 $\eta^2 \sum_{u \to u'} (D, \frac{u'}{u})C^w_{u',v} + \eta \sum_{v \to v'} (D, \frac{v'}{v})C^w_{u,v'} + \sum_{w' \to w} (D, \frac{w}{w'})C^{w'}_{u,v}$

Proof: Expand and integrate

 $\eta^{2} \left(D \cdot [X^{u}] \right) [X^{v}] [X_{w}] + \eta [X^{u}] \left(D \cdot [X^{v}] \right) [X_{w}] + [X^{u}] [X^{v}] \left(D \cdot [X_{w}] \right) = 0$

Molev-Sagan equations

Lemma: If
$$\eta \in R$$
 satisfies $\eta^2 + \eta + 1 = 0$, then
 $(-\eta^2 D_u - \eta D_v - D_w)C^w_{u,v} =$
 $\eta^2 \sum_{u \to u'} (D, \frac{u'}{u})C^w_{u',v} + \eta \sum_{v \to v'} (D, \frac{v'}{v})C^w_{u,v'} + \sum_{w' \to w} (D, \frac{w}{w'})C^{w'}_{u,v}$

Proof: Expand and integrate

 $\eta^{2} (D \cdot [X^{u}]) [X^{v}] [X_{w}] + \eta [X^{u}] (D \cdot [X^{v}]) [X_{w}] + [X^{u}] (X^{v}] (D \cdot [X_{w}]) = 0$

Application:

Take
$$R = \mathbb{C}[\delta_{\beta} \mid \beta \in \Delta - \Delta_{P}]$$
, $D = \sum_{\beta \in \Delta - \Delta_{P}} \delta_{\beta}[X^{s_{\beta}}]$, $\eta = \exp(\frac{2\pi i}{3})$

Note: $(-\eta^2 D_u - \eta D_v - D_w) = 0 \iff u = v = w$

Molev-Sagan recursion for $\pi: X = G/P \longrightarrow Y = G/Q$ Want to compute $C_{u,v}^w$ for which $u \in W^Q$ or $v \in W^Q$ or $w \in W^{Q,\max}$ Use $D' = \sum_{\beta \in \Delta - \Delta_Q} \delta_\beta[X^{s_\beta}]$ divisor pulled back from Y !!

$$(-\eta^2 D'_{u} - \eta D'_{v} - D'_{w}) C^{w}_{u,v} = \eta^2 \sum_{u \to u'} (D', \frac{u'}{u}) C^{w}_{u',v} + \eta \sum_{v \to v'} (D', \frac{v'}{v}) C^{w}_{u,v'} + \sum_{w' \to w} (D', \frac{w}{w'}) C^{w'}_{u,v}$$

Recursion involves only $C_{u',v'}^{w'}$ with $u' \in W^Q$ or $v' \in W^Q$ or $w' \in W^{Q,\max}$.

Molev-Sagan recursion for $\pi: X = G/P \longrightarrow Y = G/Q$ Want to compute $C_{u,v}^w$ for which $u \in W^Q$ or $v \in W^Q$ or $w \in W^{Q,\max}$ Use $D' = \sum_{\beta \in \Delta - \Delta_Q} \delta_\beta[X^{s_\beta}]$ divisor pulled back from Y !!

$$(-\eta^2 D'_{u} - \eta D'_{v} - D'_{w}) C^{w}_{u,v} = \eta^2 \sum_{u \to u'} (D', \frac{u'}{u}) C^{w}_{u',v} + \eta \sum_{v \to v'} (D', \frac{v'}{v}) C^{w}_{u,v'} + \sum_{w' \to w} (D', \frac{w}{w'}) C^{w'}_{u,v}$$

Recursion involves only $C_{u',v'}^{w'}$ with $u' \in W^Q$ or $v' \in W^Q$ or $w' \in W^{Q,\max}$.

But:
$$(-\eta^2 D'_u - \eta D'_v - D'_w) = 0 \iff u^Q = v^Q = w^Q \in W^Q$$

Here $u = u^Q u_Q$ is parabolic factorization: $u^Q \in W^Q$ and $u_Q \in W_Q$

Molev-Sagan recursion for $\pi: X = G/P \longrightarrow Y = G/Q$ Want to compute $C_{u,v}^w$ for which $u \in W^Q$ or $v \in W^Q$ or $w \in W^{Q,\max}$ Use $D' = \sum_{\beta \in \Delta - \Delta_Q} \delta_\beta[X^{s_\beta}]$ divisor pulled back from Y !!

$$(-\eta^2 D'_{u} - \eta D'_{v} - D'_{w}) C^{w}_{u,v} = \eta^2 \sum_{u \to u'} (D', \frac{u'}{u}) C^{w}_{u',v} + \eta \sum_{v \to v'} (D', \frac{v'}{v}) C^{w}_{u,v'} + \sum_{w' \to w} (D', \frac{w}{w'}) C^{w'}_{u,v}$$

Recursion involves only $C_{u',v'}^{w'}$ with $u' \in W^Q$ or $v' \in W^Q$ or $w' \in W^{Q,\max}$.

But:
$$(-\eta^2 D'_u - \eta D'_v - D'_w) = 0 \iff u^Q = v^Q = w^Q \in W^Q$$

Here $u = u^Q u_Q$ is parabolic factorization: $u^Q \in W^Q$ and $u_Q \in W_Q$

Theorem: Let $u, v, w \in W^P$ satisfy $u^Q = v^Q = w^Q = \kappa \in W^Q$. Then $C_{u,v}^w(X) = C_{\kappa,\kappa}^\kappa(Y) \kappa(C_{u_Q,v_Q}^{w_Q}(F))$ where $F = \pi^{-1}(1.Q) = Q/P$.

Example $\pi: X = Fl(2,4,6;7) \longrightarrow Y = Gr(4,7)$

$$F = \pi^{-1}(\text{pt}) = \text{Gr}(2,4) \times \text{Gr}(2,3)$$

u = 1301220, v = 1201320, w = 01-23-01-01-23-23-01 $u_Q = 1010322$, $v_Q = 1010232$, $w_Q = 01-01-01-01-23-23-23$

 $C_{u,v}^{w}(X) = C_{w,w}^{w}(Y)\kappa(C_{u_{Q},v_{Q}}^{w_{Q}}(F)) = C_{w,w}^{w}(Y)\kappa(C_{1010,1010}^{01-01-01})\kappa(C_{322,322}^{23-23})$

where $\kappa = 1347256 \in S_7$

U

 0×0

 $C_{1010,1010}^{01-01-01}$

