## FORMULA SHEET FOR FINAL EXAM

## SENSITIVITY ANALYSIS

Assume that the optimal solution to a linear problem is represented by the final tableau



where  $R = B^{-1}A$ ,  $\sigma = c_B^T B^{-1}A$ , and  $\widetilde{x}_B = B^{-1}b$ .

## Changes to one coefficient of the objective function:

If  $x_{\ell}$  is not a basic variable, then  $\Delta c_{\ell} \leq \sigma_{\ell} - c_{\ell}$ . If  $x_{\ell}$  is the basic variable of row *i*, then  $-\Delta c_{\ell} R_{ij} \leq \sigma_j - c_j$ .

Changes to one entry of the resource vector:  $\widetilde{x}_B + \Delta b_\ell B^{-1} e_\ell \ge 0.$ 

## CUTTING PLANE FOR MIXED INTEGER PROGRAMS

Assume that  $x = (x_1, x_2, \dots, x_s) \in \mathbb{R}^s$  satisfies

- $a_1x_1 + a_2x_2 + \dots + a_sx_s = b$  where  $a_j, b \in \mathbb{R}$
- $x_j \ge 0$  for  $1 \le j \le s$
- $x_j \in \mathbb{Z}$  for  $j \in I$  where  $I \subset \{1, 2, \dots, s\}$  is a given subset.

Set  $g_j = \operatorname{frac}(a_j)$  and  $f = \operatorname{frac}(b)$  and

$$d_j = \begin{cases} g_j & \text{if } j \in I \text{ and } g_j \leq f \\ \frac{f}{1-f}(1-g_j) & \text{if } j \in I \text{ and } g_j > f \\ a_j & \text{if } j \notin I \text{ and } a_j \geq 0 \\ \frac{f}{1-f}(-a_j) & \text{if } j \notin I \text{ and } a_j < 0. \end{cases}$$

Then  $d_1x_1 + d_2x_2 + \dots + d_sx_s \ge f$ .