Problem 1. Prove that the Segre map \(s : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N \) gives an isomorphism of \(\mathbb{P}^n \times \mathbb{P}^m \) with a closed subvariety of \(\mathbb{P}^N \), where \(N = nm + n + m \).

Problem 2. Assume that the characteristics of \(k \) is not 2. If \(C = V_f \subset \mathbb{P}^2 \) is any curve defined by an irreducible homogeneous polynomial \(f \in k[x, y, z] \) of degree 2, then \(C \cong \mathbb{P}^1 \).

Problem 3. (a) Any subspace of a separated space with functions is separated.
(b) A product of separated spaces with functions is separated.

Problem 4. Let \(X \) be a pre-variety such that for each pair of points \(x, y \in X \) there is an open affine subvariety \(U \subset X \) containing both \(x \) and \(y \).
(a) Show that \(X \) is separated.
(b) Show that \(\mathbb{P}^n \) has this property.

Problem 5. Let \(\varphi : X \to Y \) be a morphism of spaces with functions and suppose \(Y = \bigcup V_i \) is an open covering such that each restriction \(\varphi : \varphi^{-1}(V_i) \to V_i \) is an isomorphism. Then \(\varphi \) is an isomorphism.

Problem 6. [Hartshorne II.2.16 and II.2.17]
Let \(X \) be any variety and \(f \in k[X] \) a regular function.
(a) If \(h \) is a regular function on \(D(f) \subset X \) then \(f^nh \) can be extended to a regular function on all of \(X \) for some \(n > 0 \). [Hint: Let \(X = U_1 \cup \cdots \cup U_m \) be an open affine cover. Start by showing that some \(f^nh \) can be extended to \(U_i \) for each \(i \).]
(b) \(k[D(f)] = k[X]_f \).
(c) Suppose \(f_1, \ldots, f_r \in k[X] \) satisfy \((f_1, \ldots, f_r) = k[X] \) and \(D(f_i) \) is affine for each \(i \). Then \(X \) is affine.
[Hint for (c): Use Problem 5.]

Problem 7. Let \(f : X \to Y \) be a continuous map of topological spaces, and let \(W \subset X \) be a subset.
(a) \(\overline{W} = X \) if and only if \(W \cap U \neq \emptyset \) for every non-empty open subset \(U \subset X \).
(b) If \(\overline{W} = X \) and \(f(X) = Y \), then \(f(W) = Y \).
(c) If \(X \) is irreducible and \(U \subset X \) is a non-empty open subset, then \(\overline{U} = X \).
(d) \(W \) is irreducible if and only if \(\overline{W} \) is irreducible. [By definition \(W \) is irreducible if, whenever \(W \subset F_1 \cup F_2 \) with \(F_i \subset X \) closed, we have \(W \subset F_i \) for some \(i \).]
(e) If \(W \) is irreducible then \(f(W) \) is irreducible.