
ALGEBRA BOOT CAMP NOTES
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1. Sylow’s theorems and product groups

Theorem 1.1 (Sylow I). Let G be a finite group, p a prime number, and k ∈ N.
If pk divides |G|, then G contains a subgroup of order pk.

Definition 1.2. A subgroup G′ ≤ G is called a Sylow p-subgroup if |G′| = pm,
where pm is the largest power of the prime p that divides |G|.

It follows from Theorem 1.1 that every finite group G contains a Sylow p-
subgroup for every prime p.

Theorem 1.3 (Sylow II). Let G be a finite group and p a prime number.

(1) Any two Sylow p-subgroups of G are conjugate.

(2) The number of Sylow p-subgroups divides the index of any Sylow p-subgroup and
is congruent to 1 modulo p.

(3) Any subgroup of order pk is contained in a Sylow p-subgroup.

Application 1.4. Prove that a group of order 150 is not simple.

Proof. Let G be a group of order 150 = 2 · 3 · 52. Let S be the set of Sylow 5-
subgroups in G and n5 = |S|. It follows from Theorem 1.3(2) that n5 ≡ 1 (mod 5)
and n5|6. This implies that n5 = 1 or n5 = 6.

Assume first that n5 = 1. Then there is a unique Sylow 5-subgroup H ≤ G. For
g ∈ G, gHg−1 is also a Sylow 5-subgroup, so gHg−1 = H. It follows that H is
a normal subgroup of G. Since |H| = 25, G contains a non-trivial proper normal
subgroup, so G is not simple.

Assume next that n5 = 6. Any element g ∈ G defines a bijective map ρ(g) :
S → S given by ρ(g)(H) = gHg−1. Notice that ρ(g1g2)(H) = ρ(g1)ρ(g2)(H) for
all g1, g2 ∈ G. If we identify the symmetric group S6 with the set of bijective maps
S → S, then ρ is a group homomorphism ρ : G → S6. Let N be the kernel of
ρ. Then N / G is a normal subgroup. It follows from Theorem 1.3(1) that N is a
proper subgroup of G. Since |G| = 150 does not divide |S6| = 6! = 720, it follows
from Lagrange’s Theorem that G is not isomorphic to a subgroup of S6, so N is
not the trivial subgroup of G. We deduce that N is a non-trivial proper normal
subgroup of G, so again G is not simple. �

Exercise 1.5. Prove that a group of order 108 is not simple.

Given two groups H and K, the Cartesian product H ×K is again a group with
operation (h1, k1) · (h2, k2) = (h1h2, k1k2).

The commutator of two elements h, k ∈ G is defined by [h, k] = hkh−1k−1. If H
and K are subgroups of G, then [H,K] denotes the commutator subgroup, defined
as the subgroup of G generated by all commutators [h, k] with h ∈ H and k ∈ K.
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Theorem 1.6. Let H and K be subgroups of a group G and let m : H ×K → G
be the multiplicative map defined by m(h, k) = hk.

(1) m is injective if and only if H ∩K = {1}.
(2) m is a group homomorphism if and only if all elements of H commute with all
elements of K.

(3) If H is a normal subgroup of G, then HK is a subgroup of G and [H,K] ≤ H.

(4) m is an isomorphism of groups if and only if H ∩K = {1}, HK = G, and both
H and K are normal subgroups of G.

Exercise 1.7. Prove Theorem 1.6.

Assume that N / G is a normal subgroup. Then each element g ∈ G defines
a group automorphism ρ(g) : N → N given by ρ(g)(n) = gng−1. In fact, since
ρ(g1g2) = ρ(g1)ρ(g2) for g1, g2 ∈ G, ρ : G → Aut(N) is a group homomorphism
from G to the automorphism group of N . Notice that Aut(N) is typically much
smaller than the group of all permutations of the elements of N .

Exercise 1.8. We have Aut(Z/nZ) = (Z/nZ)×, that is, the automorphism group
of the cyclic group (Z/nZ,+) is the group of units in the commutative ring Z/nZ.

Exercise 1.9. Let G be a group of order 2015.
(a) Prove that G contains normal subgroups of orders 13, 31, and 155.
(b) Prove that G is isomorphic to a product of two groups of orders 13 and 155.

2. Polynomial rings

Let F be a field, and let F[x] denote the ring of polynomials in one variable with
coefficients in F.

Theorem 2.1. F[x] is an Euclidean domain, that is, given f(x), g(x) ∈ F[x] where
g(x) 6= 0, there exist q(x), r(x) ∈ F[x] such that f(x) = q(x)g(x) + r(x) and the
degree of r(x) is smaller than the degree of g(x).

The zero polynomial has negative degree by convention, so r(x) = 0 is allowed
in Theorem 2.1.

Theorem 2.2. F[x] is a principal ideal domain (PID).

Proof. Given any non-zero ideal I ⊂ F[x], let g(x) ∈ I be a non-zero element with
the smallest possible degree. Then I = 〈g(x)〉. In fact, if f(x) ∈ I is any element,
we may write f(x) = q(x)g(x) + r(x) as in Theorem 2.1. Since r(x) ∈ I has degree
smaller than the degree of g(x), it follows that r(x) = 0, so f(x) ∈ 〈g(x)〉. �

Exercise 2.3. Find ideals of Z[x] and of F[x, y] that are not principal.

Exercise 2.4. Let R be a commutative ring. Then R[x] is a principal ideal domain
if and only if R is a field.

Theorem 2.5. Let f(x) ∈ F[x] be a polynomial of degree n. Then f(x) has at most
n distinct roots in F.

Proof. Given a root a ∈ F of f(x), use Theorem 2.1 to write f(x) = (x−a)q(x)+r,
where q(x) ∈ F[x] and r is a polynomial of degree at most 0, that is r ∈ F. Since
r = f(a) = 0, we obtain f(x) = (x − a)q(x). Since the roots of f(x) consist of a
and the roots of q(x), the result follows by induction on the degree of f(x). �
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Exercise 2.6. Let F be a field with p elements and let a1, a2, . . . , ap−1 be the all
the non-zero elements of F. Then a1a2 · · · ap−1 = −1.

Exercise 2.7. Prove that the field F is finite if and only if the multiplicative group
F× of non-zero elements in F is cyclic.

Exercise 2.8. Let F be a finite field of order q, with q odd. Show that the equation
x2 + 1 = 0 has a solution in F if and only if q ≡ 1 (mod 4).

3. Generalized Eigenspaces

Let F be a field. Given a vector space V over F, let End(V ) denote the set
of all linear endomorphisms φ : V → V . Then End(V ) is ring with operations
defined by (φ + ψ)(v) = φ(v) + ψ(v) and (φψ)(v) = φ(ψ(v)) for φ, ψ ∈ End(V )
and v ∈ V . End(V ) is also an F-vector space with scalar multiplication given by
(aφ)(v) = aφ(v) for a ∈ F. Let 1V ∈ End(V ) denote the identity function on V .
Given a scalar a ∈ F we will occasionally denote the endomorphism a 1V ∈ End(V )
simply by a.

Let V be an F-vector space of finite dimension and fix an endomorphism φ ∈
End(V ). Relative to a basis {v1, v2, . . . , vn} of V , φ is represented by the n × n
matrix A = (aij) with entries defined by φ(vj) =

∑n
i=1 aijvi. If {v′1, v′2, . . . , v′n}

is a different basis of V , then the matrix representing φ relative to this basis is
A′ = PAP−1, where the entries of P = (pij) are defined by vj =

∑n
i=1 pijv

′
i. It

follows that det(A′) = det(A).

Definition 3.1. We set det(φ) = det(A) where A is any matrix representing φ.

Definition 3.2. The characteristic polynomial χφ(x) ∈ F[x] of φ is defined by
χφ(x) = det(x 1V − φ).

The polynomial χφ(x) is monic and has degree equal to the dimension of V .

Definition 3.3. Let φ ∈ End(V ) and let λ ∈ F. We say that λ is an eigenvalue
for φ if there exists a non-zero vector v ∈ V such that φ(v) = λv. In this case v is
called an eigenvector with eigenvalue λ.

Let λ ∈ F be any scalar. Then the subspace Ker(φ− λ) = {v ∈ V | φ(v) = λv}
is called the eigenspace of φ with respect to λ. A larger generalized eigenspace is
defined by

Vλ = Vλ(φ) = {v ∈ V | (φ− λ)N (v) = 0 for some N ∈ N} =
⋃
N∈N

Ker((φ− λ)N ) .

Exercise 3.4. We have Vλ(φ) = Ker((φ− λ)dimV ).

Any polynomial f(x) = amx
m + · · · + a1x + a0 in F[x] can be applied to φ ∈

End(V ) to obtain a new endomorphism

f(φ) = amφ
m + · · ·+ a1φ+ a01V .

Notice that since End(V ) is a vector space of dimension n = (dimV )2, it follows that
{1V , φ, φ2, . . . , φn} is a linearly dependent subset of End(V ). It follows that there
exists a non-zero polynomial f(x) ∈ F[x] such that f(φ) = 0 in End(V ). (We will see
in Exercise 4.11 that in fact χφ(φ) = 0.) Notice that I = {f(x) ∈ F[x] | f(φ) = 0}
is an ideal in F[x], so by Theorem 2.2 it is generated by a unique monic polynomial
p(x) called the minimal polynomial of φ.
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Exercise 3.5. The following are equivalent.
(1) λ is an eigenvalue of φ.
(2) χφ(λ) = 0.
(3) p(λ) = 0 where p(x) is the minimal polynomial of φ.
(4) Ker(φ− λ) 6= 0.
(5) Vλ(φ) 6= 0.

Assume now that the minimal polynomial p(x) of φ : V → V can be written as
a product of linear factors,

p(x) =

r∏
i=1

(x− λi)mi ,

where λ1, . . . , λr ∈ F are the (distinct) eigenvalues of φ and m1, . . . ,mr are positive
integers. For example, this holds if the field F is algebraically closed. The following
theorem demonstrates the utility of generalized eigenspaces.

Theorem 3.6. Assume that the minimal polynomial of φ is a product of linear
factors in F[x]. Then we have V = Vλ1

(φ)⊕ · · · ⊕ Vλr
(φ).

Proof. For 1 ≤ i ≤ r we define the polynomial

pi(x) =
∏
j 6=i

(x− λj)mj =
p(x)

(x− λi)mi
.

Using that F[x] is a PID, it follows that 〈p1, p2, . . . , pr〉 = 〈1〉 is the unit ideal in F[x].
We may therefore choose q1, q2, . . . , qr ∈ F[x] such that q1p1 + q2p2 + · · ·+ qrpr = 1.
Set φi = qi(φ)pi(φ) ∈ End(V ). Then we have φ1 + φ2 + · · · + φr = 1V . For i 6= j
we have φiφj = 0, this follows because p(x) divides pi(x)pj(x). Notice also that
φi = 1V φi = φ2i for each i. These identities imply that V = φ1(V )⊕ · · · ⊕ φr(V ).

It remains to show that Vλi
= φi(V ) for each i. One inclusion holds because

φi(V ) ⊂ Ker((φ− λi)mi) ⊂ Vλi
. For any v ∈ V , define the ideal Ann(v) = {f(x) ∈

F[x] | f(φ)(v) = 0} in F[x]. Then (x − λj)mj ∈ Ann(φj(v)) for every j. Assume
that v ∈ Vλi

. Then we also have (x−λi)N ∈ Ann(v) ⊂ Ann(φj(v)) for some N ∈ N.
It follows that for j 6= i we have Ann(φj(v)) = 〈1〉, and therefore φj(v) = 0. We
deduce that v = 1V (v) = φ1(v) + · · ·+ φr(v) = φi(v) ∈ φi(V ), as required. �

Exercise 3.7. Let V be any F-vector space and let φ1, . . . , φr ∈ End(V ) satisfy
φiφj = δijφi and φ1 + · · ·+ φr = 1V . Then V = φ1(V )⊕ · · · ⊕ φr(V ).

The endomorphism φ : V → V is diagonalizable if V has a basis consisting of
eigenvectors of φ.

Exercise 3.8. Assume that F is algebraically closed. Then the endomorphism
φ : V → V is diagonalizable if and only if Ker(φ− λ) = Vλ(φ) for each λ ∈ F.

Exercise 3.9. Let φ, ψ ∈ End(V ) be commuting diagonalizable endomorphisms.
Then V has a basis {v1, . . . , vn} such that each vector vi is an eigenvector of both
φ and ψ.

4. Jordan canonical form

As in Section 3 we let V be an F-vector space of finite dimension and fix an
endomorphism φ ∈ End(V ).
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Definition 4.1. An indecomposable Jordan set for φ with eigenvalue λ ∈ F is a
set of non-zero vectors {v1, v2, . . . , vk} in V such that φ(v1) = λv1 and φ(vj) =
λvj + vj−1 for 2 ≤ j ≤ k. A Jordan basis for φ is a basis of V that is a disjoint
union of indecomposable Jordan sets for φ.

Exercise 4.2. Let Pn(C) ⊂ C[x] be the vector subspace of polynomials of degree
at most n, and let d

dx : Pn(C)→ Pn(C) be the linear endomorphism that sends any

polynomial to its derivative. Find a Jordan basis for d
dx .

Exercise 4.3. Any indecomposable Jordan set is linearly independent.

Exercise 4.4. Assume that φ has an indecomposable Jordan basis {v1, . . . , vk}.
Then the matrix of φ relative to this basis is the k × k Jordan block

Jλ,k =



λ 1 0 · · · 0 0
0 λ 1 0 0

0 0 λ
. . .

...
...

...
. . . 1 0

0 0 · · · 0 λ 1
0 0 · · · 0 0 λ


.

Exercise 4.5. The matrix of φ relative to any Jordan basis is a block matrix of
the form 

Jλ1,k1 0 . . . 0
0 Jλ2,k2 0
...

. . .

0 0 Jλ`,k`

 .
Exercise 4.6. A subset B ⊂ V is a Jordan basis for φ if and only if it is a Jordan
basis for φ− λ, for any λ ∈ F.

Theorem 4.7. Assume that the minimal polynomial of φ is a product of linear
factors in F[x]. Then φ has a Jordan basis.

Proof. It follows from Theorem 3.6 that V = Vλ1 ⊕ · · · ⊕ Vλr . Since φ(Vλi) ⊂ Vλi ,
it is enough to show that each restricted endomorphism φ : Vλi → Vλi has a Jordan
basis. We may therefore assume that φ has a unique eigenvalue λ. By replacing φ
with φ− λ and using Exercise 4.6, we may further assume that λ = 0.

Since 0 is an eigenvalue of φ, it follows that φ(V ) is a proper subspace of V , so by
induction on dim(V ) there exists a Jordan basis for the restricted endomorphism
φ : φ(V )→ φ(V ). In other words, φ(V ) has a basis of the form

{ v1, φ(v1), . . . , φk1−1(v1) , v2, φ(v2), . . . , φk2−1(v2) , . . . , v`, φ(v`), . . . , φ
k`−1(v`) }

such that φki(vi) = 0 for each i. Choose u1, . . . , u` ∈ V such that vi = φ(ui) for each
i, and choose w1, . . . , wm ∈ V such that {φk1−1(v1), . . . , φk`−1(v`), w1, . . . , wm} is
a basis for Ker(φ). We claim that

{ u1, φ(u1), . . . , φk1(u1) , . . . , u`, φ(u`), . . . , φ
k`(u`) , w1, . . . , wm }

is a basis for V , and hence a Jordan basis for φ. By applying φ to any vanish-
ing linear combination of this set of vectors, we deduce that the set is linearly
independent. On the other hand, the number of vectors is

(k1 + · · ·+ k`) + (`+m) = dimφ(V ) + dim Ker(φ) = dim(V ) .
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This completes the proof (which we learned from Mark Wildon’s notes [4]). �

Corollary 4.8. Let A be any square matrix with entries in an algebraically closed
field F. Then there exists an invertible matrix P with entries in F such that P−1AP
is a Jordan block matrix as in Exercise 4.5.

The matrix P−1AP is called the Jordan normal form of A. Notice that the
columns of P form a Jordan basis for the linear map represented by A.

Exercise 4.9. Let λ be an eigenvalue of φ : V → V and set pd = dim Ker((φ−λ)d)
for d ≥ 0. Then the number of Jordan blocks Jλ,k in any Jordan normal form of φ
is equal to 2pk−pk−1−pk+1. It follows that the Jordan normal form of any matrix
is unique up to permutation of the Jordan blocks.

Exercise 4.10. Find the Jordan normal form of each of the complex matrices

 2 2 3
1 3 3
−1 −2 −2

 ,


1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 ,


1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

 .
In addition, find Jordan bases for the associated linear maps Cn → Cn.

Exercise 4.11 (Cayley-Hamilton Theorem). Use Theorem 4.7 to prove that any
endomorphism φ : V → V of a finite dimensional vector space satisfies χφ(φ) = 0.
You may use that any field is a subfield of an algebraically closed field. Can you
also deduce that χφ(φ) = 0 if φ is a square matrix with entries in an arbitrary
commutative ring?

Exercise 4.12. Explain how to find the minimal polynomial of an endomorphism
φ : V → V if a Jordan basis for φ is known.

Exercise 4.13. Assume that φ : V → V satisfies φk = φ for some k ≥ 2. If F = C
then φ is diagonalizable. However, φ may fail to be diagonalizable if F = R or F
has positive characteristic.

Exercise 4.14. Let φ, ψ ∈ End(V ) satisfy φψ − ψφ = ψ. If F has characteristic
zero, then ψ is not invertible. If F has positive characteristic, then find an example
where ψ is invertible.

Exercise 4.15. Let ρ : Z/mZ → GLn(C) be a group homomorphism, where
GLn(C) is the group of invertible n × n matrices with complex entries. Show
that with respect to some basis of Cn, every element of ρ(Z/mZ) is a diagonal
matrix with m-th roots of unity on its diagonal.

Given an endomorphism φ : V → V of a complex vector space V ∼= Cn, we define
a new endomorphism eφ = exp(φ) ∈ End(V ) by

eφ = 1V + φ+
1

2
φ2 +

1

6
φ3 + · · · =

∑
k≥0

1

k!
φk .

The following can be proved with analytic methods.

Theorem 4.16. If φ, ψ ∈ End(V ) satisfy φψ = ψφ, then eφeψ = eψeφ = eφ+ψ.
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Exercise 4.17. Compute exp(Jλ,k) and find the Jordan normal form of exp(Jλ,k).

The algebraic multiplicity of an eigenvalue λ of φ : V → V is defined as the
multiplicity of λ as a root of the characteristic polynomial χφ(x). The geometric
multiplicity of λ is the dimension of the eigenspace Ker(φ− λ).

Exercise 4.18. The algebraic multiplicity of λ is equal to dimVλ(φ).

Exercise 4.19. Explain how to find the algebraic and geometric multiplicities of
the eigenvalues of the endomorphism φ : V → V if a Jordan basis for φ is known.

Exercise 4.20. Let φ : V → V be an endomorphism of a complex vector space
V ∼= Cn and let λ ∈ C be an eigenvalue of φ. Then eλ is an eigenvalue of eφ.
Furthermore, if all eigenvalues of φ are real, then the algebraic and geometric
multiplicities of λ as an eigenvalue of φ are equal to the algebraic and geometric
multiplicities of eλ as an eigenvalue of eφ.

5. Dual vector spaces

Given two vector spaces V and W over the field F, let Hom(V,W ) = HomF(V,W )
denote the set of all F-linear maps φ : V → W . This set is a vector space with
operations (φ + ψ)(v) = φ(v) + ψ(v) and (aφ)(v) = aφ(v) for φ, ψ ∈ Hom(V,W ),
v ∈ V , and a ∈ F. Notice that End(V ) = Hom(V, V ). The dual vector space of
V is the space V ∨ = HomF(V,F) of all linear maps α : V → F. Any linear map
φ : V →W of has a dual map φ∨ : W∨ → V ∨ defined by φ∨(α)(v) = α(φ(v)).

Exercise 5.1. Define a linear map ι : V → V ∨∨ by ι(v)(α) = α(v) for v ∈ V and
α ∈ V ∨. Show that ι is always injective, and that ι is an isomorphism of vector
spaces if and only if V has finite dimension.

Given a basis {v1, . . . , vn} of a finite dimensional vector space V , we obtain a
dual basis {v∨1 , . . . , v∨n} of V ∨ by defining v∨i : V → F to be the unique linear map
satisfying v∨i (vj) = δij . Notice that this construction can be applied to a basis of
V , but not to single elements.

Exercise 5.2. Let φ : V → W be a linear map, and let {v1, . . . , vn} be a basis of
V and {w1, . . . , wm} a basis of W . The matrix A = (aij) representing φ relative
to these bases is given by φ(vj) =

∑m
i=1 aijwi. Show that the transpose matrix AT

represents the dual map φ∨ : W∨ → V ∨ relative to the dual bases {w∨1 , . . . , w∨m}
and {v∨1 , . . . , v∨n}. For this reason φ∨ is sometimes called the transpose of φ.

6. Bilinear forms

A bilinear form on the F-vector space V is a map ω : V × V → F that is linear
in each argument. In other words we have

ω(av + v′, w) = aω(v, w) + ω(v′, w) and ω(v, bw + w′) = b ω(v, w) + ω(v, w′)

for all v, v′, w, w′ ∈ V and a, b ∈ F. The form ω is symmetric if ω(v, w) = ω(w, v)
for all v, w ∈ V . It is skew-symmetric if ω(v, w) = −ω(w, v), and alternating if
ω(v, v) = 0 for all v ∈ V .

Example 6.1. (1) The standard symmetric bilinear form on Fn is the dot product,
which is defined on column vectors x and y by ω(x, y) = xT y =

∑n
i=1 xiyi.

(2) The Lorentz metric on R4 is defined by ω(x, y) = x1y1 + x2y2 + x3y3 − x4y4.
This form is symmetric but not positive definite.
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(3) The cross product on F2 is defined by ω(x, y) = x1y2 − x2y1 =

∣∣∣∣x1 y1
x2 y2

∣∣∣∣. This

form is alternating.

Exercise 6.2. Any alternating bilinear form is also skew-symmetric. Is the con-
verse implication true?

A bilinear form ω : V × V → F defines an element in Hom(V, V ∨) that we will
also denote by ω. More precisely, we identify ω with the linear map ω : V → V ∨

defined by ω(v)(w) = ω(v, w). We will say that ω is non-degenerate if this linear
map is injective. Equivalently, for each non-zero v ∈ V there exists w ∈ V such
that ω(v, w) 6= 0.

Exercise 6.3. The form ω : V → V ∨ is symmetric if and only if ω = ω∨ι, where
ι : V → V ∨∨ is defined in Exercise 5.1. The form ω is skew-symmetric if and only
if ω = −ω∨ι.

Let ω : V × V → F be a bilinear form. Relative to a basis {v1, . . . , vn} of V , ω
is represented by the n× n matrix A = (aij) defined by aij = ω(vi, vj).

Exercise 6.4. The form ω is symmetric if and only if A = AT , skew-symmetric
if and only if A = −AT , and alternating if and only if A = −AT and all diagonal
entries are zero. The form ω is non-degenerate if and only if A is invertible.

Exercise 6.5. The matrix representing a form ω : V × V → F relative to a given
basis of V is the transpose of the matrix representing the linear map ω : V → V ∨

relative to the same basis and its dual basis of V ∨.

Let A,A′ ∈ Matn(F) be n× n matrices with entries in F. We say that A and A′

are similar if there exists an invertible matrix P such that A′ = PAP−1, and that A
and A′ are equivalent if there exists an invertible matrix P such that A′ = PAPT .

Exercise 6.6. Two matrices are similar if and only if they represent the same
endomorphism φ : V → V relative to two different bases of the vector space V .
The matrices are equivalent if and only if they represent the same bilinear form
ω : V × V → F relative to two different bases.

Alternating bilinear forms are classified by the following theorem. It states that
any alternating bilinear form can be represented by a block matrix of the form 0 I 0

−I 0 0
0 0 0

 .
Theorem 6.7. Let ω : V ×V → F be an alternating bilinear form on a finite dimen-
sional vector space V . Then V has a basis {v1, v2, . . . , vk, v′1, v′2, . . . , v′k, w1, . . . , wm}
such that ω(vi, v

′
j) = δij and ω(vi, vj) = ω(v′i, v

′
j) = ω(u,wk) = 0 for all 1 ≤ i, j ≤

k, 1 ≤ k ≤ m, and u ∈ V .

Proof. If ω = 0, then the theorem is obvious. Otherwise choose v, v′ ∈ V such that
ω(v, v′) 6= 0. By replacing v with ω(v, v′)−1v, we may assume that ω(v, v′) = 1.
Since ω is alternating we have ω(v, v) = ω(v′, v′) = 0, so v and v′ are linearly
independent. Let W = 〈v, v′〉⊥ = {w ∈ V | ω(w, v) = ω(w, v′) = 0}. By induction
on dim(V ) there exists a basis of W of the form described in the theorem, and by
adding v and v′ to this basis we obtain the desired basis for V . �
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Exercise 6.8. If a finite dimensional vector space V has an alternating non-
degenerate bilinear form, then V has even dimension.

We next consider symmetric bilinear forms, which turn out to be most well
behaved when the field F does not have characteristic 2. For the rest of this section
we therefore assume that char(F) 6= 2.

Exercise 6.9 (Quadratic forms). A set map q : V → F is called a quadratic
form if q(λv) = λ2q(v) for all λ ∈ F and v ∈ V , and if the function ω(v, w) =
q(v + w) − q(v) − q(w) is a (symmetric) bilinear form on V . Show that there is a
1-1 correspondence between quadratic forms and symmetric bilinear forms on V .

The following classification states that every symmetric bilinear form can be
represented by a diagonal matrix. However, the diagonal entries are in general not
unique.

Theorem 6.10. Let ω : V × V → F be a symmetric bilinear form on a vector
space V of finite dimension, and assume that char(F) 6= 2. Then there exists a
basis {v1, . . . , vn} of V and scalars a1, . . . , an ∈ F such that ω(vi, vj) = aiδij for all
1 ≤ i, j ≤ n.

Proof. If ω = 0, then the theorem is obvious. Otherwise there exist v, v′ ∈ V
such that ω(v, v′) 6= 0. Notice that if ω(v, v) = ω(v′, v′) = 0, then ω(v + v′, v +
v′) = 2ω(v, v′) 6= 0. We may therefore choose v ∈ V such that ω(v, v) 6= 0. The
orthogonal complement 〈v〉⊥ = {w ∈ V | ω(v, w) = 0} has a basis of the form
described in the theorem by induction on dim(V ), and by adding the vector v we
obtain the desired basis of V . �

The rank of a bilinear form ω : V × V → F is the rank of the corresponding
linear map ω : V → V ∨. The following exercise states that, when F is algebraically
closed, then a bilinear form is determined by its rank up to isomorphism.

Exercise 6.11. Let ω : V ×V → F be a symmetric bilinear form on a vector space
V of finite dimension, and assume that F is algebraically closed with char(F) 6= 2.
Then V has a basis {v1, . . . , vn} such that

ω(vi, vj) =

{
1 if i = j ≤ rank(ω);

0 otherwise.

Exercise 6.12. Let V be as in Exercise 6.11 and let ω and ω′ be symmetric bilinear
forms on V of the same rank. Then there exists an isomorphism of vector spaces

φ : V
∼=−→ V such that ω′(v, w) = ω(φ(v), φ(w)) for all v, w ∈ V .

Exercise 6.13. Let ω : V × V → R be a symmetric bilinear form on a real vector
space V of finite dimension. Then there exists a basis {v1, . . . , vn} and integers
0 ≤ k ≤ l ≤ n such that ω(vi, vj) = 0 for i 6= j and

ω(vi, vi) =


1 if 1 ≤ i ≤ k,

−1 if k < i ≤ l, and

0 if l < i ≤ n.

A symmetric bilinear form ω : V × V → R on a real vector space V is called
positive definite if ω(v, v) > 0 for all non-zero vectors v ∈ V . This implies that ω
is non-degenerate.



10 ANDERS S. BUCH AND YI-ZHI HUANG

Exercise 6.14. Show that the integers k and l of Exercise 6.13 depend only on
the form ω and not on the chosen basis for V . In fact, if V+ ⊂ V is a subspace
of maximal dimension such that ω restricts to a positive definite form on V+, then
dim(V+) = k. Similarly, l − k = dim(V−) where V− ⊂ V is a maximal subspace
such that ω restricts to a negative definite form on V−.

The signature of the form ω from Exercise 6.13 is defined to be k − (l − k), i.e.
the number of basis vectors vi with ω(vi, vi) > 0 minus the number of basis vectors
vi with ω(vi, vi) < 0. Exercise 6.13 and Exercise 6.14 show that a real symmetric
bilinear form is determined up to isomorphism by its rank and signature.

Exercise 6.15. Determine whether the bilinear forms on R3 defined by ω(x, y) =
4x1y1 + x2y2 − x3y3 and ω′(x, y) = x1y3 − x2y2 + x3y1 are equivalent (represented
by equivalent matrices).

7. Sesquilinear forms

Let V be a vector space over the complex numbers C. A sesquilinear form on
V is a map ω : V × V → C that is antilinear in its first argument and linear in its
second argument. More precisely we have

ω(av + v′, w) = aω(v, w) + ω(v′, w) and ω(v, bw + w′) = b ω(v, w) + ω(v, w′)

for v, v′, w, w′ ∈ V and a, b ∈ C, where a denotes the complex conjugate of a. The
sesquilinear form ω is called Hermitian if ω(v, w) = ω(w, v) for all v, w ∈ V .

Given a basis {v1, . . . , vn} of V , we can represent a sesquilinear form ω : V ×V →
C by the matrix A = (aij), where aij = ω(vi, vj). The complex conjugate transpose
of a complex matrix A is the matrix A∗ obtained by replacing all entries in the
transpose of A with their complex conjugates. The (i, j)-entry of A∗ is equal to
aji. The matrix A is called Hermitian if A∗ = A.

Exercise 7.1. A sesquilinear form ω : V ×V → C on a finite dimensional complex
vector space is Hermitian if and only if it is represented by a Hermitian matrix.

Given any complex vector space V , we let V denote the complex conjugated
vector space which is the same as V as an additive group, but with complex con-
jugated scalar multiplication. More precisely, set V = {[v] | v ∈ V } and define
operations on this set by [v]+ [w] = [v+w] and a[v] = [av], for v, w ∈ V and a ∈ C.
For any C-linear map φ : V →W of complex vector spaces, we obtain a conjugate
map φ : V →W by φ([v]) = [φ(v)]. This map φ is again a C-linear map of complex
vector spaces.

Exercise 7.2. A sesquilinear form ω : V × V → C is the same as a C-linear map

ω : V → V ∨. The form ω is Hermitian if and only if ω = ω∨ι in HomC(V, V
∨

).

The classification of Hermitian forms is exactly like that of symmetric bilinear
real forms. In particular, a Hermitian bilinear form on a complex vector space of
finite dimension is determined up to isomorphism by its rank and signature.

Exercise 7.3. Let ω : V × V → C be a Hermitian form on a complex vector
space V of finite dimension. Then there exists a basis {v1, . . . , vn} and integers
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0 ≤ k ≤ l ≤ n such that ω(vi, vj) = 0 for i 6= j and

ω(vi, vi) =


1 if 1 ≤ i ≤ k,

−1 if k < i ≤ l, and

0 if l < i ≤ n.

The rank l and signature 2k − l of ω are independent of the chosen basis.

A Hermitian form ω : V × V → C is called positive definite if ω(v, v) > 0 for
all non-zero vectors v ∈ V . In this case ω is also called an inner product on V .
Given a fixed inner product ω we say that v is a unit vector if ω(v, v) = 1, and v is
perpendicular to w if ω(v, w) = 0. An orthonormal basis of V is a basis consisting
of unit vectors, such that any two distinct vectors from the basis are perpendicular.
Similar terminology is used if ω is a positive definite symmetric bilinear form on a
real vector space.

Exercise 7.4. Let ω : V × V → C be a positive definite Hermitian form. Define
ωr : V ×V → R and ωi : V ×V → R by ω(v, w) = ωr(v, w)+ iωi(v, w) for v, w ∈ V .
Show that ωr is a positive definite symmetric form on V considered as a real vector
space, and that ωi is a non-degenerate skew-symmetric real bilinear form.

8. Symmetric and Hermitian endomorphisms

Let V be a vector space over the field F, and let φ : V → V be an endomor-
phism. In this generality there is no natural definition of what it means for φ to
be symmetric. However, if we are given a fixed basis {v1, . . . , vn} of V and let
A = (aij) be the matrix representing φ relative to this basis, then we might say
that φ is symmetric relative to this basis if A = AT is a symmetric matrix. This is
equivalent to the following definition if we use the form ω : V × V → F defined by
ω(vi, vj) = δij .

Definition 8.1. The endomorphism φ ∈ End(V ) is symmetric relative to a bilinear
form ω : V ×V → F if and only if we have ω(φ(v), w) = ω(v, φ(w)) for all v, w ∈ V .

We are mostly interested in endomorphisms that are symmetric relative to a
non-degenerate symmetric form, but the definition makes sense in general.

Exercise 8.2. Let A ∈ Matn(F). The endomorphism on Fn given by multiplication
by A is symmetric relative to the standard form on Fn if and only if A = AT is a
symmetric matrix.

Exercise 8.3. Show by example that an endomorphism may be symmetric relative
to one basis but non-symmetric relative to another.

Exercise 8.4. Consider the form ω as a linear map ω : V → V ∨. Then φ ∈ End(V )
is symmetric relative to ω if and only if ωφ = φ∨ω holds in HomF(V, V ∨).

Definition 8.5. Let V be a complex vector space and ω : V ×V → C a Hermitian
form. An endomorphism φ ∈ End(V ) is called Hermitian relative to ω if we have
ω(φ(v), w) = ω(v, φ(w)) for all v, w ∈ V .

Exercise 8.6. Let V = Cn and let ω : V × V → C be the standard inner product
defined by ω(v, w) = v∗w =

∑
i viwi. Then an endomorphism φ : V → V is

Hermitian relative to ω if and only if it is represented by a Hermitian matrix
relative to the standard basis of Cn.
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Theorem 8.7. Let V be a complex vector space of finite dimension and let ω :
V × V → C be a positive definite Hermitian form. Assume that φ ∈ End(V ) is
Hermitian relative to ω. Then V has an orthonormal basis consisting of eigenvectors
of φ, and all eigenvalues of φ are real numbers.

Proof. Since C is an algebraically closed field, we can find an eigenvalue λ ∈ C and
a corresponding eigenvector v ∈ V such that φ(v) = λv. By assumption ω(v, v)
is a positive real number. Since λω(v, v) = ω(v, λv) = ω(v, φ(v)) = ω(φ(v), v) =
ω(λv, v) = λω(v, v), it follows that λ = λ is a real number. By replacing v with
ω(v, v)−1/2v, we may assume that v is a unit vector. Let W = {w ∈ V | ω(v, w) =
0} be the orthogonal complement of v. Since for each w ∈W we have ω(φ(w), v) =
ω(w, φ(v)) = ω(w, λv) = λω(w, v) = 0, we deduce that φ(W ) ⊂ W . Since the
restricted endomorphism φ : W →W is Hermitian relative to the restriction of ω to
W , it follows by induction on dim(V ) that W has an orthonormal basis consisting
of eigenvectors of φ. The theorem follows because all vectors in this basis are
perpendicular to v. �

A complex matrix U ∈ Matn(C) is called unitary if U∗U = I. Equivalently, the
columns of U form an orthonormal basis of Cn with respect to the standard inner
product.

Corollary 8.8. Let A ∈ Matn(C) be a Hermitian matrix. Then there exists a
unitary matrix U such that U∗AU is a diagonal matrix. In particular, A is diago-
nalizable. The eigenvalues of A are real numbers.

Exercise 8.9. Let A ∈ Matn(R) be a symmetric real matrix. Then there exist an
orthogonal matrix P such that PTAP is a diagonal matrix.

Exercise 8.10. Let V be a real vector space of finite dimension and let ω : V ×V →
R be a positive definite symmetric form. Assume that φ ∈ End(V ) is symmetric
relative to ω. Then V has an orthonormal basis consisting of eigenvectors of φ.

Exercise 8.9 shows that all symmetric matrices with real entries are diagonaliz-
able. However, this property does not generalize to symmetric matrices with entries
in an arbitrary field.

Exercise 8.11. The complex matrix A =

[
i 1
1 −i

]
is symmetric but not diagonal-

izable.

Exercise 8.12. Let φ, ψ ∈ End(V ) be commuting endomorphisms of a finite dimen-
sional complex vector space V , both of which are Hermitian relative to a positive
definite Hermitian form ω on V . Then V has an orthonormal basis {v1, . . . , vn}
such that each vector vi is an eigenvector of both φ and ψ.

9. Normal endomorphisms

In this section we let V be a complex vector space of finite dimension, and we
fix a positive definite Hermitian form ω : V × V → C. Then ω is non-degenerate in
the sense that the corresponding C-linear map ω : V → V ∨ is an isomorphism of
vector spaces. In other words, for any α ∈ V ∨ there exists a unique vector v ∈ V
such that α(w) = ω(v, w) for all w ∈ V .
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Given any endomorphism φ ∈ End(V ) and a vector v ∈ V , we obtain an element
α ∈ V ∨ by setting α(w) = ω(v, φ(w)). Let φ∗(v) ∈ V denote the unique vector
corresponding to α, that is φ∗(v) satisfies

ω(φ∗(v), w) = ω(v, φ(w))

for all w. This defines a C-linear endomorphism φ∗ : V → V called the Hermitian
transpose of φ relative to ω.

Exercise 9.1. Check that φ∗ ∈ EndC(V ). For a ∈ C we have (aφ)∗ = aφ∗.

Exercise 9.2. We have φ = φ∗ if and only if φ is Hermitian relative to ω.

Definition 9.3. An endomorphism φ ∈ End(V ) is called normal relative to ω if
we have φ∗φ = φφ∗.

Exercise 9.4. Let φ ∈ End(V ) be represented by A ∈ Matn(C) relative to an
orthonormal basis of V . Then φ∗ is represented by A∗, and φ is normal if and only
if A∗A = AA∗.

The matrix A ∈ Matn(C) is called normal if A∗A = AA∗. Examples of normal
matrices include Hermitian matrices (A∗ = A), unitary matrices (A∗A = I), real
symmetric matrices (AT = A∗ = A), real orthogonal matrices (ATA = A∗A = I),
and real skew-symmetric matrices (AT = A∗ = −A). The following theorem says
that a complex matrix A is normal if and only if it is diagonalizable by a unitary
matrix, i.e. there exists a unitary matrix U such that U∗AU is a diagonal matrix.

Theorem 9.5. An endomorphism φ ∈ End(V ) is normal relative to ω if and only
if V has an orthonormal basis consisting of eigenvectors of φ.

Proof. Assume first that {v1, . . . , vn} is an orthonormal basis of V consisting of
eigenvectors of φ, and choose λ1, . . . , λn ∈ C such that φ(vi) = λivi for each i.
Since we have ω(φ∗(vi), vj) = ω(vi, φ(vj)) = δijλj = ω(λivi, vj) for all 1 ≤ i, j ≤ n,

it follows that φ∗(vi) = λi vi. This implies that φ(φ∗(vi)) = |λi|2vi = φ∗(φ(vi)), so
φ is normal.

Assume next that φ∗φ = φφ∗. Set φ1 = 1
2 (φ + φ∗) and φ2 = 1

2i (φ − φ
∗). Then

we have φ = φ1 + iφ2, φ∗1 = φ1, φ∗2 = φ2, and φ1φ2 = φ2φ1. Since φ1 and φ2
are commuting Hermitian endomorphisms, it follows from Exercise 8.12 that there
exists an orthonormal basis {v1, . . . , vn} of V such that each vi is an eigenvector
of both φ1 and φ2. Write φ1(vi) = µivi and φ2(vi) = µ′ivi for each i. Then
φ(vi) = (µi + iµ′i)vi, so vi is an eigenvector of φ, as required. �

Exercise 9.6. A complex n×n matrix is Hermitian if and only if it is normal and
has real eigenvalues.

10. Direct sums and direct products of vector spaces

Suppose we are given an F-vector space Vi for each element i in some set I.
Let V be the disjoint union of all these vector spaces. Then the direct product∏
i Vi can be defined as the set of all functions f : I → V for which f(i) ∈ Vi

for each i, and the direct sum
⊕

i Vi is the set of functions f ∈
∏
i Vi for which

f(i) = 0 for all but finitely many elements i ∈ V . If the index set I is finite, then⊕
i Vi =

∏
i Vi. For each j ∈ I we have a natural projection ρj :

∏
i Vi → Vj

defined by ρj(f) = f(j), and we have a natural inclusion ιj : Vj →
⊕

i Vi given by
ιj(vj)(j) = vj and ιj(vj)(i) = 0 for i 6= j.
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More abstractly, direct products and direct sums can be defined as follows. Let
P be any F-vector space, and suppose we are given a linear map ρi : P → Vi for
each i ∈ I. Then (P, {ρi}) is called a direct product of the family {Vi}i∈I if the
following universal property is satisfied: If W is any F-vector space and hi : W → Vi
is a linear map for each i ∈ I, then there exists a unique linear map h : W → P
such that hi = ρih for each i ∈ I.

Similarly, let S be any F-vector space, and suppose we are given a linear map
ιi : Vi → S for each i ∈ I. Then (S, {ιi}) is called a direct sum of {Vi}i∈I if the
following universal property is satisfied: If W is any F-vector space and qi : Vi →W
is a linear map for each i ∈ I, then there exists a unique linear map q : S → W
such that qi = qιi for each i ∈ I.

Exercise 10.1. Prove that (
∏
i Vi, {ρi}) is a direct product of the family of vector

spaces {Vi}i∈I and (
⊕

i Vi, {ιi}) is a direct sum.

Exercise 10.2. Let P and P ′ be two direct products of the family {Vi}i∈I , with
projections ρi : P → Vi and ρ′i : P ′ → Vi. Then there is a unique isomorphism

φ : P
∼=−→ P ′ such that ρi = ρ′iφ for each i ∈ I. Prove a similar statement saying

that direct sums are unique up to unique isomorphism.

Exercise 10.3. Let V be a vector space and let W1, . . . ,Wk be subspaces of V
such that W1 + · · · + Wk = V . Assume that W1 ∩W2 = 0, (W1 + W2) ∩W3 = 0,
. . . , (W1 + · · ·+Wk−1) ∩Wk = 0. Then V is isomorphic to W1 ⊕ · · · ⊕Wk.

11. Tensor products

Assume first that V andW finite dimensional F-vector spaces. In this case we can
define the tensor product of V andW over F to be V ⊗W = V ⊗FW = Hom(V ∨,W ).
For v ∈ V and w ∈W , define v ⊗ w ∈ V ⊗W by (v ⊗ w)(α) = α(v)w.

Exercise 11.1. The map V ×W → V ⊗W given by (v, w) 7→ v ⊗w is F-bilinear,
that is, linear in each argument.

Exercise 11.2. If {v1, . . . , vn} is a basis of V and {w1, . . . , wm} is a basis of W ,
then {vi ⊗ wj} is a basis of V ⊗W .

More abstractly, a tensor product of V and W is defined as an F-vector space
T together with a bilinear map µ : V ×W → T such that the following universal
property holds: If M is any F-vector space and ν : V ×W → M is any bilinear
map, then there exists a unique linear map φ : T → M such that ν = φµ. If
(T, µ) is a tensor product of V and W , then we write v ⊗ w = µ(v, w) for v ∈ V
and w ∈ W . (This is the correct definition of the tensor product when the vector
spaces are allowed to have infinite dimension, and it also applies to modules over a
commutative ring.)

Exercise 11.3. Prove that V ⊗W = Hom(V ∨,W ) satisfies this universal property
when V has finite dimension.

Exercise 11.4. If T and T ′ are both tensor products of V and W , with associated
bilinear maps µ : V ×W → T and µ′ : V ×W → T ′, then there exists a unique
isomorphism φ : T → T ′ such that µ′ = φµ.

If S is any set, then let F(S) denote the F-vector space with basis S. It consists
of finite formal linear combinations of the elements in S. The tensor product of V
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and W can be constructed as follows. Let F(V ×W ) be the (huge!) vector space
with basis {[v, w] | v ∈ V and w ∈ W}, and let N ⊂ F(V × W ) be the vector
subspace spanned by all elements of the form

[av,w]− a[v, w] [v + v′, w]− [v, w]− [v′, w]

[v, aw]− a[v, w] [v, w + w′]− [v, w]− [v, w′]

where v, v′ ∈ V , w,w′ ∈W , and a ∈ F. Then define V ⊗W = F(V ×W )/N . Notice
that the map V ×W → V ⊗W given by (v, w) 7→ [v, w] +N is bilinear.

Exercise 11.5. Prove that V ⊗W = F(V ×W )/N satisfies the universal property.

Exercise 11.6. Compute the dimensions of C ⊗R C and C ⊗C C as vector spaces
over R. Are these R-vector spaces isomorphic?

Exercise 11.7 (Associativity). Prove that (V1⊗V2)⊗V3 is canonically isomorphic
to V1 ⊗ (V2 ⊗ V3). These tensor products satisfy the same universal property.

Exercise 11.8 (Commutativity). V ⊗W is canonically isomorphic to W ⊗ V .

Exercise 11.9. Given linear maps φ : V → V ′ and ψ : W →W ′, there is a unique
linear map φ⊗ ψ : V ⊗W → V ′ ⊗W ′ defined by (φ⊗ ψ)(v ⊗ w) = φ(v)⊗ ψ(w).

Exercise 11.10. Assume that φ : V → V ′ is represented by the matrix A relative
to given bases of V and V ′, and that ψ : W → W ′ is represented by the matrix
B relative to given bases of W and W ′. Then find the matrix representing φ ⊗ ψ
relative to the bases of V ⊗W and V ′ ⊗W ′ defined in Exercise 11.2.

Exercise 11.11. Let V be a vector space over F and let v1, v2 ∈ V . Show that
v1 ⊗ v2 = v2 ⊗ v1 if and only if dim〈v1, v2〉 ≤ 1.

Exercise 11.12. Hom(U⊗V,W ) is canonically isomorphic to Hom(U,Hom(V,W )).

12. Graded algebras

An F-algebra (with unit) is a ring A together with a ring homomorphism F→ A
such that 1 ∈ F maps to the multiplicative unit in A, and the image of F lies in the
center of A. When F is a field, we can identify F with a subring of A.

A grading of the F-algebra by positive integers is a direct sum decomposition
A =

⊕
n≥0An as an F-vector space, such that AnAm ⊂ An+m. In this case the

elements of An are called homogeneous of degree n.
Let A be a graded F-algebra and let I ⊂ A be a 2-sided ideal. If we set In = I∩An

for each n, then
⊕

n≥0 In ⊂ I. We say that I is homogeneous if I =
⊕

n≥0 In.

Example 12.1. The polynomial ring S = F[x1, . . . , xk] is a (commutative) graded
F-algebra, S =

⊕
n≥0 Sn, where Sn ⊂ S is the vector subspace of homogeneous

polynomials of total degree n. An ideal I ⊂ S is homogeneous if and only if it is
generated by homogeneous polynomials.

Exercise 12.2. The unit 1 ∈ A is homogeneous of degree 0.

Exercise 12.3. Any element a ∈ A can be written as a sum of homogeneous
elements a =

∑
an, with an ∈ An. The ideal I is homogeneous if and only if a ∈ I

implies an ∈ In for each n.

Exercise 12.4. If I ⊂ A is any 2-sided ideal generated by homogeneous elements,
then I is homogeneous.
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Exercise 12.5. If I ⊂ A is a homogeneous ideal, then A/I is again a graded
algebra. We have A/I =

⊕
n≥0(A/I)n where (A/I)n = An/In.

13. Tensor algebras

Let V be a vector space over F. Define the n-th tensor power of V to be

TnV = V ⊗n = V ⊗ V ⊗ · · · ⊗ V (n copies.)

The tensor algebra of V is the graded F-algebra defined by

T (V ) =
⊕
n≥0

TnV = F⊕ V ⊕ T 2V ⊕ T 3V ⊕ · · ·

Multiplication of homogeneous elements in T (V ) is defined by the bilinear maps

TnV × TmV → TnV ⊗ TmV = Tn+mV .

Let IS ⊂ T (V ) be the homogeneous ideal generated by all tensors of the form
v ⊗ w − w ⊗ v ∈ T 2V , with v, w ∈ V . The symmetric algebra of V is defined
by S(V ) = T (V )/IS . In fact, S(V ) is a commutative graded F-algebra, S(V ) =⊕

n≥0 S
nV , where we set SnV = TnV/(IS)n. The vector space SnV is called the

n-th symmetric power of V . Given v1, . . . , vn ∈ V , we let v1 · v2 · . . . · vn ∈ SnV
denote the image of v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ TnV under the map TnV → SnV .

Let I∧ ⊂ T (V ) be the homogeneous ideal generated by all tensors of the form
v⊗ v ∈ T 2V , with v ∈ V . The exterior algebra of V is defined by

∧
V = T (V )/I∧.

This is a graded F-algebra,
∧
V =

⊕
n≥0

∧n
V , where we set

∧n
V = TnV/(I∧)n.

The vector space
∧n

V is called the n-th exterior power of V . Given v1, v2, . . . , vn ∈
V , we let v1 ∧ v2 ∧ · · · ∧ vn ∈

∧n
V denote the image of v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ TnV

under the map TnV →
∧n

V .

Exercise 13.1. Formulate and prove universal properties of the maps V ×n →
TnV , V ×n → SnV , and V ×n →

∧n
V , where V ×n = V × V × · · · × V (n copies).

Exercise 13.2. Assume that {v1, v2, . . . , vm} is a basis of V . Then the tensor
power TnV has basis {vi1 ⊗ vi2 ⊗ · · · ⊗ vin | i1, . . . , in ∈ [1,m]}, the symmetric
power SnV has basis {vi1 · vi2 · . . . · vin | 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ m}, and the
alternating power

∧n
V has basis {vi1 ∧vi2 ∧· · ·∧vin | 1 ≤ i1 < i2 < · · · < in ≤ m}.

Find the dimensions of TnV , SnV ,
∧n

V , and
∧
V .

Exercise 13.3. Find the F-algebras T (V ), S(V ), and
∧

(V ) when dim(V ) = 1.

Exercise 13.4. If dim(V ) = m, then S(V ) ∼= F[x1, . . . , xm].

The symmetric group Sn acts on TnV by

σ.(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ vσ−1(2) ⊗ . . . vσ−1(n) .

We say that z ∈ TnV is a symmetric tensor if σ.z = z for all σ ∈ Sn, and that z
is a skew-symmetric tensor if σ.z = (−1)σz for all σ ∈ Sn. Here (−1)σ denotes the
sign of the permutation σ. If char(F) does not divide n! and z ∈ TnV , we define

Sym(z) =
1

n!

∑
σ∈Sn

σ.z

Alt(z) =
1

n!

∑
σ∈Sn

(−1)σσ.z .
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Exercise 13.5. If char(F) does not divide n!, then Sym induces an isomorphism
of SnV with the subspace of symmetric tensors in TnV , and Alt induces an iso-
morphism of

∧n
V with the subspace of skew-symmetric tensors in TnV .

Given a linear map φ : V →W of vector spaces, we obtain induced linear maps
Tn(φ) = φ⊗n : TnV → TnW , Sn(φ) : SnV → SnW , and

∧n
(φ) :

∧n
V →

∧n
W

defined by

Tn(φ)(v1 ⊗ v2 ⊗ · · · ⊗ vn) = φ(v1)⊗ φ(v1)⊗ · · · ⊗ φ(vn) ,

Sn(φ)(v1 · v2 · . . . · vn) = φ(v1) · φ(v1) · . . . · φ(vn) , and∧n
(φ)(v1 ∧ v2 ∧ · · · ∧ vn) = φ(v1) ∧ φ(v1) ∧ · · · ∧ φ(vn) .

Exercise 13.6. Use the universal properties from Exercise 13.1 to prove that these
maps are well defined.

Exercise 13.7. Let φ ∈ End(V ) and set n = dim(V ). Then dim
∧n

V = 1, and
∧nφ :

∧n
V →

∧n
V is multiplication with the scalar det(φ) ∈ F. This gives a

coordinate-free definition of the determinant of φ.

Let F ⊂ K be a field extension. If V is any F-vector space, we obtain a K-vector
space as the tensor product VK = V ⊗FK. Scalar multiplication with a ∈ K is given
by the linear map 1V ⊗ a : V ⊗F K → V ⊗F K. If φ : V → W is any F-linear map
of F-vector spaces, then φ⊗ 1 : VK →WK is a K-linear map.

Exercise 13.8. Let {v1, . . . , vn} be a basis of the F-vector space V . Then the set
{v1 ⊗ 1, . . . , vn ⊗ 1} is a basis of the K-vector space VK.

Exercise 13.9. Let φ : V → W be a linear map of F-vector spaces, and let
A ∈ Mat(m × n,F) be the matrix representing φ relative to given bases of V and
W . Show that A also represents the K-linear map φ⊗ 1 : VK →WK relative to the
bases of VK and WK defined in Exercise 13.8.

Let F(x) denote the field of rational functions in one variable over F, that is, the
field of fractions of the polynomial ring F[x].

Exercise 13.10. Let V be a finite dimensional F-vector space, let φ ∈ EndF(V ),
and set VF(x) = V ⊗F F(x). Then the characteristic polynomial χφ(x) ∈ F[x] is the
determinant of the endomorphism x 1VK(x)

− φ⊗ 1 ∈ EndF(x)(VF(x)).

Exercise 13.11. Let V be an F-vector space of dimension n and let φ ∈ End(V ).
Define the trace Tr(φ) to be (−1) times the coefficient of xn−1 in the characteristic
polynomial χφ(x). Show that if A ∈ Matn(F) is the matrix representing φ relative
to any basis of V , then Tr(φ) is the sum of the diagonal entries of A.

14. Representations

Let G be a group and let F be a field. A representation of G on an F-vector space
V is an action G×V → V such that, for each g ∈ G the map ρ(g) : V → V defined
by ρ(g)(v) = g.v is a linear endomorphism of V . Let GL(V ) = GLF(V ) ⊂ EndF(V )
denote the group of invertible endomorphisms of V .

Exercise 14.1. A representation of G on V is the same as a group homomorphism
ρ : G→ GL(V ).
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The group algebra of G over F is defined as follows. Let F[G] be the vector space
with basis G. The elements are functions f : G→ F with finite support, i.e. f(g) is
non-zero for only finitely many elements g ∈ G. Given f, h ∈ F[G], define a product
f · h ∈ F[G] by

(f · h)(g) =
∑
x∈G

f(x)h(x−1g) =
∑
xy=g

f(x)h(y) .

We can identify each element g ∈ G with the function G→ F that sends g to 1 and
sends all other elements of G to zero. With this convention we have f =

∑
g∈G f(g)g

for any f ∈ F[G], and for g1, g2 ∈ G we have g1 · g2 = g1g2 as elements of F[G].

Exercise 14.2. A representation of G over F is the same as a left module of the
group algebra F[G].

Let V be a representation of G over F. Then V is called irreducible if it is non-
zero and does not contain any non-trivial proper subrepresentations. Equivalently,
V is a simple F[G]-module. The representation V is called completely reducible
if it is isomorphic to a direct sum of irreducible representations. Equivalently, V
is a semisimple F[G]-module. Finally, V is called decomposable if V is isomor-
phic to a direct sum V1 ⊕ V2 of non-zero representations. Otherwise V is called
indecomposable. Any irreducible representation is also indecomposable.

Exercise 14.3. Find a representation of the additive group (Z,+) that is inde-
composable but not irreducible.

Exercise 14.4. Let V be a finite dimensional vector space over an algebraically
closed field F, and let φ ∈ EndF(V ). Use the ring homomorphism F[x] → End(V )
given by x 7→ φ to consider V as a module over F[x]. Then V is an indecomposable
F[x]-module if and only if φ has an indecomposable Jordan basis.

Theorem 14.5 (Maschke). Let G be a finite group and let V be a representation
of G of finite dimension over F. Assume that char(F) does not divide |G|. Then V
is completely reducible.

Let ρ : G → GLF(V ) be a representation of G on a finite dimensional vector
space V . The character of this representation is the map χρ : G → F defined by
χρ(g) = Tr(ρ(g)), where Tr(ρ(g)) is the trace of ρ(g) ∈ EndF(V ).

Theorem 14.6. Let G be a finite group and let V and V ′ be finite dimensional
representations of G over C. Then V and V ′ are isomorphic as representations if
and only if they have equal characters.

Exercise 14.7. Consider the group algebra C[S2] as a representation of the sym-
metric group S2. Write this representation as a direct sum of irreducible represen-
tations of S2, and find the characters of the irreducible summands.

Exercise 14.8. Repeat Exercise 14.7 for the symmetric group S3.

15. Matrix groups

Let V be an F-vector space and let ω : V × V → F be a bilinear form. Then we
can define a symmetry group of ω by

GLω(V ) = {φ ∈ GL(V ) | ω(φ(v), φ(w)) = ω(v, w) for all v, w ∈ V } .
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Here we could also replace GL(V ) with the subgroup SL(V ) of invertible endomor-
phisms of determinant 1. The following groups of matrices are variations over this
theme.

GL(n,F) = {A ∈ Matn(F) | A is invertible} : General linear group over F.
SL(n,F) = {A ∈ GL(n,F) | det(A) = 1} : Special linear group over F.
SO(n,F) = {A ∈ SL(n,F) | ATA = I} : Special orthogonal group over F.
Sp(2n,F) = {A ∈ GL(2n,F) | ATJA = J} : Symplectic group over F.

Here we set J =

[
0 In
−In 0

]
. One can show that Sp(2n,F) ⊂ SL(2n,F).

Exercise 15.1. Sp(2,F) = SL(2,F).

When the field F is the real numbers R or the complex numbers C, the above
matrix groups are Lie groups. A Lie group is a group G that is simultaneously a
differentiable manifold, such that the product map G × G → G and the inverse
element map G → G are C∞-functions. When studying representations of a Lie
group G, one usually restricts to representations ρ : G → GL(V ), where V is a
finite dimensional vector space over R or C, and ρ is a C∞ map of manifolds.

Similarly, when F is an algebraically closed field, then the matrix groups over F
are linear algebraic groups, i.e. they are both groups and algebraic varieties. When
studying representations of such a group G, one usually restricts to representations
on a finite dimensional F-vector space V , such that ρ : G→ GL(V ) is a morphism of
varieties, i.e. the dim(V )2 coordinate functions of the map G→ GL(V )→ End(V )
are rational functions in the coordinate functions on G.

Every Lie group contains a maximal compact subgroup which is unique up to
conjugation. The most important compact Lie groups are:

O(n) = {A ∈ GL(n,R) | ATA = I}: Orthogonal group.
SO(n) = O(n) ∩ SL(n,R): Special orthogonal group.
U(n) = {A ∈ GL(n,C) | A∗A = I}: Unitary group.
SU(n) = U(n) ∩ SL(n,C): Special unitary group.
Sp(n) = U(2n) ∩ Sp(2n,C): Symplectic group.

Exercise 15.2. The group SO(n) has index 2 in O(n).

Exercise 15.3. There is a short exact sequence 1→ SU(n)→ U(n)→ U(1)→ 1.

Notice that U(1) is the unit circle in the complex plane. A compact Lie group
is called a torus if it is isomorphic to U(1)n = U(1)× · · · ×U(1) for some n. Every
compact Lie group contains a maximal torus T that is unique up to conjugation.
Maximal tori of the compact Lie groups of matrices listed above can be obtained
as their subgroups of diagonal matrices.

Similarly, an algebraic group over the algebraically closed field F is called an
(algebraic) torus if it is isomorphic to (F×)n for some n, where F× is the multi-
plicative group of units in F. For example, C× is the complement of the origin in
the complex plane, which is homotopy equivalent to the unit circle U(1). Every
linear algebraic group G contains a maximal torus T and a Borel subgroup B such
that T ⊂ B ⊂ G, again unique up to conjugation. A Borel subgroup means a max-
imal Zariski-closed connected solvable subgroup. If G is any of the matrix groups
GL(n,F), SL(n,F), SO(n,F), or Sp(2n,F), then the subgroup of diagonal matrices
in G is a maximal torus, and the subgroup of upper triangular matrices is a Borel
subgroup.
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If a group G acts on a set X, then the orbit of an element x ∈ X is the subset
G.x = {g.x | g ∈ G}, and the stabilizer of x is the subgroup Gx = {g ∈ G | g.x = x}.
If S ⊂ G is any subset, we write g.S = {g.x | x ∈ S} for any element g ∈ G. This
defines an action of G on the power set P(X) of all subsets of X. The stabilizer
of S is GS = {g ∈ G | g.S = S}. The pointwise stabilizer of S is the subgroup⋂
x∈S Gx = {g ∈ G | g.x = x ∀x ∈ S}.

Exercise 15.4. The group G = GL(2,C) acts on C2 by matrix multiplication.
(1) Determine the number of orbits for this action, and describe each orbit.
(2) Find the stabilizer and the pointwise stabilizer of S = {(x, y) ∈ C2 | x = y}.
(3) Show that the stabilizer of S is a Borel subgroup of G.

Exercise 15.5. The group GL(2,R) acts on the vector space of 2 × 2 symmetric
real matrices by A.S = ASAT for A ∈ GL(2,R) and S ∈ Mat2(R) symmetric.
(1) Show that each orbit under this action has a representative which is a diagonal
matrix with entries being −1, 0, or 1.
(2) Find a representative for each orbit under this action.

Exercise 15.6. Let S be the set of all 2-dimensional subspaces of R4. Then
GL(4,R) acts naturally on S. Fix W ∈ S and let H = {g ∈ GL(4,R) | g(W ) = W}
be the stabilizer of W . Show that the action of H on S has exactly three orbits.
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