EXPOSITORY NOTE: An Arithmetic Surface ${ }^{1}$
 Alex Kontorovich

In this note we work out a brutally explicit example of a compact (no cusps) arithmetic surface, by constructing a uniform (no unipotents) arithmetic (\mathbb{Z}-points) lattice, that is, a discrete \mathbb{Q}-subgroup $\Gamma<\operatorname{SL}(2, \mathbb{R})$ with finite co-volume.

For $\mathbf{x}=(x, y, z)$, let $Q(\mathbf{x})$ be the ternary quadratic form

$$
Q(\mathbf{x})=x^{2}+y^{2}-3 z^{2}=\mathbf{x}\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & -3
\end{array}\right) \mathbf{x}^{t}
$$

It is clearly indefinite (takes positive and negative values), and anisotropic over \mathbb{Q}. The latter means there are no \mathbb{Q} points on the cone $Q=0$ (it is enough to consider \mathbb{Z} points (why?), and 3 is not the sum of two squares). The special orthogonal group $G=\mathrm{SO}_{Q} \cong \mathrm{SO}(2,1)$ preserving Q is the set

$$
\begin{aligned}
G & :=\left\{g \in \mathrm{SL}(3, \mathbb{R}): Q(\mathbf{x} g)=Q(\mathbf{x}) \text { for all } \mathbf{x} \in \mathbb{R}^{3}\right\} \\
& =\left\{g \in \mathrm{SL}(3, \mathbb{R}): g\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & -3
\end{array}\right) g^{t}=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & -3
\end{array}\right)\right\}
\end{aligned}
$$

In what follows, we construct the spin representation of SO_{Q}, which is double-covered by $\mathrm{SL}(2, \mathbb{R})$. Consider symmetric matrices of the form

$$
m_{\mathbf{x}}:=\left(\begin{array}{cc}
z \sqrt{3}-y & x \\
x & z \sqrt{3}+y
\end{array}\right) .
$$

These are cooked up to have the property that $\operatorname{det}\left(m_{\mathbf{x}}\right)=-Q(\mathbf{x})$. Clearly given $m_{\mathbf{x}}$, we can read off \mathbf{x}, e.g.:

$$
\begin{equation*}
\frac{1}{2 \sqrt{3}} \operatorname{tr}\left(m_{\mathbf{x}}\right)=z \tag{0.1}
\end{equation*}
$$

Now, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$, we have the action on $m_{\mathbf{x}}$ given by:

$$
g \circ m_{\mathbf{x}}:=g \cdot m_{\mathbf{x}} \cdot g^{t}
$$

which is clearly also symmetric, and satisfies

$$
\operatorname{det}\left(g \circ m_{\mathbf{x}}\right)=(a d-b c)^{2} \operatorname{det}\left(m_{\mathbf{x}}\right)
$$

meaning we can write $g \circ m_{\mathbf{x}}$ as $m_{\mathbf{x}^{\prime}}$ for some $\mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. It is straightforward to compute x^{\prime} :

$$
\begin{aligned}
m_{\mathbf{x}^{\prime}} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{cc}
z \sqrt{3}-y & x \\
x & z \sqrt{3}+y
\end{array}\right) \cdot\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
-y a^{2}+\sqrt{3} z a^{2}+2 b x a+b^{2} y+\sqrt{3} b^{2} z & b c x+a d x-a c y+b d y+\sqrt{3} a c z+\sqrt{3} b d z \\
b c x+a d x-a c y+b d y+\sqrt{3} a c z+\sqrt{3} b d z & -y c^{2}+\sqrt{3} z c^{2}+2 d x c+d^{2} y+\sqrt{3} d^{2} z
\end{array}\right),
\end{aligned}
$$

[^0]so we can read off $x^{\prime}, y^{\prime}, z^{\prime}$ as in (0.1), and we find that
\[

\mathbf{x}^{\prime}=(x, y, z) \cdot\left($$
\begin{array}{ccc}
b c+a d & c d-a b & \frac{a b+c d}{\sqrt{3}} \\
b d-a c & \frac{1}{2}\left(a^{2}-b^{2}-c^{2}+d^{2}\right) & \frac{-a^{2}+b^{2}-c^{2}+d^{2}}{2 \sqrt{3}} \\
\sqrt{3}(a c+b d) & \frac{1}{2} \sqrt{3}\left(-a^{2}-b^{2}+c^{2}+d^{2}\right) & \frac{1}{2}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
\end{array}
$$\right)
\]

This of course means that the matrix above is an element of G, and hence we have cooked up a map $\iota: \operatorname{SL}(2, \mathbb{R}) \rightarrow G=\mathrm{SO}_{Q}$, sending
$\iota:\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto \frac{1}{a d-b c}\left(\begin{array}{ccc}b c+a d & c d-a b & \frac{a b+c d}{\sqrt{3}} \\ b d-a c & \frac{1}{2}\left(a^{2}-b^{2}-c^{2}+d^{2}\right) & \frac{-a^{2}+b^{2}-c^{2}+d^{2}}{2 \sqrt{3}} \\ \sqrt{3}(a c+b d) & \frac{1}{2} \sqrt{3}\left(-a^{2}-b^{2}+c^{2}+d^{2}\right) & \frac{1}{2}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\end{array}\right)$.
It's a double-cover because $\mathbf{- 1}$ gets mapped to the same thing as $\mathbf{1}$ (so we could have used $\operatorname{PSL}(2, \mathbb{R}))$.

This was all over \mathbb{R}. But in fact there are two \mathbb{Q} structures of SL_{2}, one of which is the obvious $\mathrm{SL}_{2}(\mathbb{Q})$, and the other consists of norm 1 elements in a quaternion division algebra. It is the latter which leads to compact arithmetic surfaces, as follows.

Let I, J, K formally satisfy $I^{2}=3, J^{2}=3$, and $K=\frac{1}{3} I J$, so $K^{2}=-1$. Then form the quaternion

$$
\mathbf{u}=a+b I+c J+d K
$$

The norm is

$$
N(\mathbf{u})=\mathbf{u} \overline{\mathbf{u}}=a^{2}-3 b^{2}-3 c^{2}+d^{2}
$$

Let D_{Q}^{1} be the elements $\mathbf{u} \in D_{Q}$ with $N(\mathbf{u})=1$. A morphism $\rho: D_{Q}^{1} \rightarrow G$ maps

$$
\rho: \mathbf{u} \mapsto\left(\begin{array}{ccc}
a^{2}-3 b^{2}+3 c^{2}-d^{2} & 2 a d+6 b c & -2(a c+b d) \\
6 b c-2 a d & a^{2}+3 b^{2}-3 c^{2}-d^{2} & 2 c d-2 a b \\
6 b d-6 a c & -6(a b+c d) & a^{2}+3 b^{2}+3 c^{2}+d^{2}
\end{array}\right)
$$

One can check directly that

$$
\rho(\mathbf{u}) \cdot\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & -3
\end{array}\right) \cdot \rho(\mathbf{u})^{t}=N(\mathbf{u})^{2}\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & -3
\end{array}\right)
$$

so $\rho(\mathbf{u}) \in G$ if $N(\mathbf{u})=1$. Then our co-compact lattice will come from the \mathbb{Z}-elements of D_{Q}^{1}.

What's the connection between the two morphisms ι and ρ ? Quaternion division algebras can be realized as 2×2 matrices. Write

$$
\begin{aligned}
\mathbf{1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
I & =\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & -\sqrt{3}
\end{array}\right) \\
J & =\left(\begin{array}{cc}
0 & -\sqrt{3} \\
-\sqrt{3} & 0
\end{array}\right) \\
K & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

and check that $\mathbf{1}, I, J, K$ satisfy the above formal conditions. Then we can write \mathbf{u} as

$$
\mathbf{u}=a \mathbf{1}+b I+c J+d K=\left(\begin{array}{cc}
a+\sqrt{3} b & -d-\sqrt{3} c \\
d-\sqrt{3} c & a-\sqrt{3} b
\end{array}\right) .
$$

Obviously with the above representation we have $\operatorname{det}(\mathbf{u})=a^{2}-3 b^{2}-3 c^{2}+d=N(\mathbf{u})$, so if $\mathbf{u} \in D_{Q}^{1}$ has norm one, then it also lives in $\mathrm{SL}_{2}(\mathbb{R})$. That means we can apply ι, and in fact we have
$\iota:\left(\begin{array}{cc}a+\sqrt{3} b & -d-\sqrt{3} c \\ d-\sqrt{3} c & a-\sqrt{3} b\end{array}\right) \mapsto\left(\begin{array}{ccc}a^{2}-3 b^{2}+3 c^{2}-d^{2} & 2 a d+6 b c & -2(a c+b d) \\ 6 b c-2 a d & a^{2}+3 b^{2}-3 c^{2}-d^{2} & 2 c d-2 a b \\ 6 b d-6 a c & -6(a b+c d) & a^{2}+3 b^{2}+3 c^{2}+d^{2}\end{array}\right)$,
which is our old friend $\rho(\mathbf{u})$. (When we first introduced it, we pulled it out of thin air, but now its role is clear.) To get our discrete group Γ, we simply insist that $a, b, c, d \in \mathbb{Z}$.

Summarizing, we see that what we really want is elements $\alpha=a+\sqrt{3} b$, and $\beta=d+\sqrt{3} c$ in the ring of integers $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{3}]$ of the number field $K=\mathbb{Q}[\sqrt{3}]$. We put these in a matrix of the form:

$$
M_{\alpha, \beta}:=\left(\begin{array}{cc}
\alpha & -\beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

and ask that $\operatorname{det} M_{\alpha, \beta}=N(\alpha)+N(\beta)=a^{2}-3 b^{2}+d^{2}-3 c^{2}=1$.
It is easy enough to do a brute search for small elements $\gamma \in \Gamma$, take the orbit under these elements of some fixed base point, say $z_{0}=2 i$, and construct the corresponding Dirichlet domain. The result in this example, with the orbit shown on top of the Dirichlet domain, is:

Note that for any point w in the orbit of $z_{0}=2 i$ under Γ, one can draw the set of all points equidistant to w and z_{0}. This will be a geodesic, and those corresponding to the closest points will determine the bounding geodesics for the Dirichlet domain. Here they are in this case:

And the two pictures overlapped:

The group elements used in the calculation above were:

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-3 & 2(1+\sqrt{3}) \\
2(-1+\sqrt{3}) & -3
\end{array}\right),\left(\begin{array}{cc}
-2 & \sqrt{3} \\
\sqrt{3} & -2
\end{array}\right),\left(\begin{array}{cc}
-2 & 3+2 \sqrt{3} \\
-3+2 \sqrt{3} & -2
\end{array}\right) \\
\left(\begin{array}{cc}
-3 & 2(1+\sqrt{3}) \\
2(-1+\sqrt{3}) & -3
\end{array}\right),\left(\begin{array}{cc}
-3-2 \sqrt{3} & -2 \\
2 & -3+2 \sqrt{3}
\end{array}\right),\left(\begin{array}{cc}
2-\sqrt{3} & 0 \\
0 & 2+\sqrt{3}
\end{array}\right) \\
\left(\begin{array}{cc}
0 & -2-\sqrt{3} \\
2-\sqrt{3} & 0
\end{array}\right),\left(\begin{array}{cc}
-3-2 \sqrt{3} & 2 \\
-2 & -3+2 \sqrt{3}
\end{array}\right),\left(\begin{array}{cc}
-3 & -2(1+\sqrt{3}) \\
2-2 \sqrt{3} & -3
\end{array}\right) \\
\left(\begin{array}{cc}
-2 & -3-2 \sqrt{3} \\
3-2 \sqrt{3} & -2
\end{array}\right),\left(\begin{array}{cc}
-2 & -\sqrt{3} \\
-\sqrt{3} & -2
\end{array}\right)
\end{gathered}
$$

Of course here we see the great advantage of listing these elements in their more natural structure, that of a quaternion division algebra: $u=a \mathbf{1}+b I+c J+d K$, where

a	b	c	d
0	0	0	1
-3	0	-2	-2
-2	0	-1	0
-2	0	-2	-3
-3	0	-2	-2
-3	-2	0	2
2	-1	0	0
0	0	1	2
-3	-2	0	-2
-3	0	2	2
-2	0	2	3
-2	0	1	0

[^0]: ${ }^{1}$ September 27, 2011

