
Dec 2017

Letter to Arthur Baragar on a “Crystallographic Sphere Packing”

from Alex Kontorovich

Dear Arthur,

As mentioned when we discussed, the “Structure Theorem for Crystallographic Packings”
(see Theorem 31 in the paper [KN17] with Kei Nakamura) allows one to just “look” at a
Coxeter diagram and immediately see the corresponding sphere packing. Let me carry out
the calculation explicitly (and post the corresponding Mathematica file) for the case of the
integer orthogonal group OF (Z) preserving the quadratic form F , where

F (x1, . . . , x5) := x21 + · · ·+ x24 − 3x25.

This orthogonal group OF (Z) is reflective, meaning that the group generated by all reflections
in OF (Z) is itself a lattice (i.e. is of finite index in OF (Z)). One proves this by running
Vinberg’s algorithm [Vin72], as carried out in Mcleod [Mcl11] (see the case n = 4 in Mcleod’s
Figure 1). The resulting reflection group has Coxeter diagram given by:

1 2 3 4 5 6

The meaning of this diagram is that “walls” (spheres/planes) labelled (1) and (2) meet at
infinity (tangentially), (2) and (3) meet at dihedral angle π/4, (3) and (4) meet at dihedral
angle π/3, as do (4) and (5), and lastly, (5) and (6) meet at dihedral angle π/6, with all other
dihedral angles being π/2 (that is, orthogonal). To build a packing based on this diagram,
we will need to realize the walls of a configuration explicitly. Instead of running Vinberg’s
algorithm (the knowledge of which is not necessary for what follows), since we are already
given the diagram, we will reverse-engineer the configuration, as follows.

We will use inversive coordinates (see [Kon17]), attaching to a sphere S of radius r and
center (x, y, z) (oriented internally) the vector

vS := (
1

r̂
,
1

r
,
x

r
,
y

r
,
z

r
),

where the “co-radius” r̂ is the radius of the sphere after inversion through the unit sphere;
one calculates that

r̂ =
r

x2 + y2 + z2 − r2
. (♠)

For a sphere with external orientation, r is negative. If S is a plane, the inversive coordi-
nates are obtained by taking limits of appropriate spheres as r →∞, so the second entry in
vS becomes 0, and it turns out the last three coordinates become the unit normal vector to
the plane in the direction of its interior.
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From (♠), it is immediate that Q(vS) = −1, where Q is the quadratic form with half-
Hessian

Q =

 1
2

1
2

−I3

 .

(Here I3 is the 3×3 identity matrix.) The dihedral angle θ between spheres given by inversive
coordinates v1, v2 is computed by the “inversive product”

v1 ? v2 = cos θ, where v1 ? v2 := v1 ·Q · v†2,
and “†” denotes transpose. If the spheres do not meet but instead are separated by a
hyperbolic distance d, then v1 ? v2 = cosh d. Hence to realize the above Coxeter diagram
explicitly as walls, we will need to find inversive coordinates v1, . . . , v6 of the six walls in the
diagram, so that the “Gram matrix” G = [vi ? vj] of all inversive products becomes:

G =



−1 1 0 0 0 0
1 −1 1√

2
0 0 0

0 1√
2
−1 1

2
0 0

0 0 1
2
−1 1

2
0

0 0 0 1
2
−1

√
3
2

0 0 0 0
√
3
2
−1


.

To do this, may take (1) and (2) to be horizontal planes (tangent at infinity), and since (4),
(5), and (6) are orthogonal to (1) and (2), they must then be vertical planes; moreover these
three form a 30-60-90 triangle. So we may already assign (1) to have inversive coordinates,
say,

v1 = (0, 0, 0, 0,−1),

which means that (1) is the xy-plane with normal vector pointing down (i.e., its interior is
the lower half-space). The wall (2) will similarly have coordinates

v2 = (?, 0, 0, 0, 1),

that is, a plane with upwards pointing normal vector, but we’re not sure yet where in space
it will be positioned. Let us choose (4) to be the xz-plane with normal pointing in the
positive-y direction:

v4 = (0, 0, 0, 1, 0).

Then (5) can also be a vertical plane through the origin, and in order to meet (4) at angle
π/3, we set

v5 = (0, 0,

√
3

2
,−1

2
, 0).

This determines that wall (6) has coordinates

v6 = (?, 0,−1, 0, 0),

and “?” here can be chosen arbitrarily, say, 2, so that (6) becomes the plane x = 1. Having
determined v1, v4, v5, and v6, we may compute the coordinates, v3, of (3) by using knowledge
of its inversive products with v1, v4, v5, and v6. We find (see the Mathematica file) that

v3 =

(
− 4√

3
,

1

2
√

3
,− 1

2
√

3
,−1

2
, 0

)
.
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Now the “?” in v2 may be determined by solving v2 ?v3 = cosπ/4 =
√

2/2; we compute that

v2 =
(

2
√

6, 0, 0, 0, 1
)
.

Collecting these vectors into a matrix V = {vi} whose rows are the coordinates,

V =



0 0 0 0 −1

2
√

6 0 0 0 1
− 4√

3
1

2
√
3
− 1

2
√
3
−1

2
0

0 0 0 1 0

0 0
√
3
2

−1
2

0
2 0 −1 0 0

 ,

we may check that indeed

V ·Q · V † = G.

Thus we have the desired Gramian (what you would call “intersection pairing”). Here’s the
configuration in space:

(6)
(5)

(4)

(2)

(1)
(3)

Now our Structure Theorem says that one obtains a packing by taking the “cluster” to
be just the wall (1), and letting reflections through to rest (the “cocluster”) act on (1). The
reflection Rv through a sphere S given by inversive coordinates v is a Mobius transformation,
that is, Rv ∈ OQ(R), and is given by the standard formula

Rv : x 7→ x− 2
x ? v

v ? v
v, that is, Rv = I + 2Q · v† · v.

(This is because v is actually the normal vector in “Lorentz space” to the plane corresponding
to S – see again [Kon17].) Thus our “thin” group Γ < OQ(R) acts on the right on v1 and is
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generated by the reflections:

R2 =


1 0 0 0 0

24 1 0 0 2
√

6
0 0 1 0 0
0 0 0 1 0

−4
√

6 0 0 0 −1

 , R3 =


1
3

1
12

− 1
12
− 1

4
√
3

0
16
3

1
3

2
3

2√
3

0

−4
3

1
6

5
6

− 1
2
√
3

0

− 4√
3

1
2
√
3
− 1

2
√
3

1
2

0

0 0 0 0 1

 ,

R4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 , R5 =


1 0 0 0 0
0 1 0 0 0

0 0 −1
2

√
3
2

0

0 0
√
3
2

1
2

0
0 0 0 0 1

 , R6 =


1 0 0 0 0
4 1 −2 0 0
4 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Now we can look at the orbit O = v1 · Γ:

And that’s all there is to it! Now, this is all just to construct the packing; issues of
(super)integrality, etc, are discussed in [KN17]. Note that, though we started with a nice
integral form F , the vectors vj and reflection matrices Rj can have arbitrary (not even
algebraic, should we choose to apply some random Mobius transformation to the whole
picture) entries. But because the “supergroup” (see [KN17]) of Γ is arithmetic (in particular,
it is commensurate to OF (Z)), we know that there exist configurations of this packing in
which all bends (reciprocals of radii) are integers.

Best wishes,

Alex
4



References

[KN17] A. Kontorovich and K. Nakamura. Geometry and arithmetic of crystallographic packings, 2017.
https://arxiv.org/abs/1712.00147.

[Kon17] A. Kontorovich. Letter to Bill Duke, 2017. https://math.rutgers.edu/~alexk/files/

LetterToDuke.pdf.
[Mcl11] John Mcleod. Hyperbolic reflection groups associated to the quadratic forms −3x2

0 + x2
1 + · · ·+ x2

n.
Geom. Dedicata, 152:1–16, 2011.
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