
Abstract
Maple packages and data files
This article is accompanied by the maple package RSP.txt and several example
inputs and outputs available at

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html

Background

There is a rich study of Dyck paths in combinatorics. Some of the most ubiq-
uitous results are for the case that the slope of the line is 1. In particular that
the number of paths from (0,0) to (n,n) is counted by the Catalan numbers.
When we change it from 1 to another rational number a/b, we enter the realm
of appropriately named Rational Catalan Combinatorics. For notational conve-
nience, we’ll let Aa,b,n denote the number of paths from (0, 0) to (b, a) staying
on or below the line y = a/bx.

It was shown by Duchon in 2000 that for any slope a
b , the number of paths

below a line of that slope is asymptotically Θ
(

1
n

(
(a+b)n
an

))
[D1]. However, it’s

still unknown what the constant out front is. To show the asymptotics, Duchon
showed that the contant is somewere between 1

a+b and 1
a . This upper bound on

the number of paths was known at least as far back as 1950 to Grossman.
It’s clear that Aa,b,n = Ab,a,n, so in this paper, we’ll assume that we always

have a > b.
For the case b = 1, there is an exact solution known, using Fuss-Catalan

numbers 1
1+an

(
(1+a)n
an

)
.

This Article
We would like to try and find the coefficient out front, that is, α so that the
number of paths is (1 + o(1)) αn

(
(a+b)n
an

)
. In an effort to do this, we first are

tasked with computing many terms of the sequence
Through a simple dynamic programming algorithm, we are able to compute

the number of paths from (0,0) to (bn,an) for n around a thousand. This gives us
enough data to try and find a recurrence relation that it satisfies using the maple
package available at http://www.math.rutgers.edu/ zeilberg/tokhniot/FindRec.txt

However, we were only able to successfully find recurrences for the slopes 3/2
and 5/2. Armed with these recurrences we are able to blindingly fast crank out
many thousands more terms of this sequence. The recurrence for slope 3/2 is
given below: Though we can’t guarentee this is the minimal recurrence, it still
gives a massively faster of counting the paths for these two unknown slopes, and
potentially for many more slopes that our computer wasn’t keen enough to find
this time.

Then, once we have exact numbers, we do a statistical fit of the data for

many values of n against the model
(
α
n + β

n2 + γ
n3 + δ

n4

) (
(a+b)n
an

)
to get our

estimate of α. Adding more error terms didn’t affect the value of α much. We
estimate how close this is to the truth by running it for the first 100 values of n,
and the first 200 values of n, and seeing how much our estimate stays the same.
We can get quite good estimates of these numbers!
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a\b 1 2 3 4 5 6

1
2 0.50000000 1
3 0.333333333 0.240706636 1
4 0.25 0.50000000 0.15972479544 1
5 0.2 0.1613399969 0.1372518253 0.119952918 1
6 0.166666667 0.333333333 0.50000000 0.240706636 0.09621264003 1

There are many more slopes for which we have very exact estimates of α,
and are availiable online at

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html in the extra data
folder.

A similar, but interesting and distinct problem is to try letting something
else go to infinity in Aa,b,n other than n, as we had before.

Suppose instead that we were to let a go to infinity while b is fixed. There’s
a nice pattern that appears. In particular, we have the conjecture that it is

asymptitically equal to gcd(a,b)
b . The gcd(a, b) factor makes sense because it

makes the expression only depend on the fraction a/b.

Figure 1: aα as a function of a for b = 2
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Figure 2: aα as a function of a for b = 8

A much less studied area is to consider paths in a three dimensional lattice
that have to stay to stay in a region bounded by planes. It is simple to extend
the dynamic programming solution to this situation. However, since there many
more lattic points, the runtime goes up from Θ(n2) to Θ(n3). This keeps us from
getting anywhere near as much data. With the data we do have, we have the sug-
gestion that something much more interesting than in the 2D case is happening!
In particular, the way that we set up the three dimensional problems, is that we
take the number of paths with steps in {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉}. Instead of
the 2D problem of requiring ax < by, we define the counting problem with three
numbers, a, b, c, and require of our paths that they satisfy ax ≤ by ≤ cz that end
at x = bc, y = ac, z = ab. If we have a = b = c = 1, this has the precise formula
of the 3D Catalan numbers (A005789) 2

(n+1)2(n+2)

(
3n

n,n,n

)
. however, there is a

lot left to understand, and some things that are distinctly different than the 2D

case. In particular, for 2D, it was always Θ
(

1
n

(
(a+b)n
an

))
. That is, the slope of

the line didn’t affect the fact that you always had a Θ( 1
n ) fraction of all paths.

For the already known a = b = c = 1, it is a Θ( 1
n3 ), however this appears to

change for different choices of a, b, c. We have some data on the value of this
coefficient in the following table
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Table 1: a=1
b\c 1 2 3 4 5 6 7

1 3.0 2.7 2.6 2.5 2.5 2.4 2.4
2 3.7 3.3 3.0 2.9 2.8 2.7 2.6
3 4.3 3.7 3.4 3.2 3.1 3.0 2.9
4 4.8 4.1 3.8 3.5 3.4 3.2 3.1
5 5.2 4.5 4.1 3.8 3.6 3.4 3.3
6 5.7 4.8 4.4 4.1 3.8 3.6 3.5
7 6.0 5.2 4.6 4.3 4.0 3.8 3.7

Table 2: a=2
b\c 1 2 3 4 5 6 7

1 2.7 2.5 2.5 2.4 2.4 2.3 2.3
2 3.3 3.0 2.8 2.7 2.6 2.6 2.5
3 3.7 3.4 3.2 3.0 2.9 2.8 2.8
4 4.1 3.7 3.5 3.3 3.1 3.0 3.0
5 4.5 4.0 3.7 3.5 3.4 3.2 3.2
6 4.8 4.3 4.0 3.7 3.6 3.4 3.3
7 5.2 4.6 4.2 4.0 3.8 3.6 3.5
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