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This thesis deals with applications of experimental mathematics to a number of prob-

lems. The First is random graph statistics. In that, a symbolic-computational algo-

rithm, fully implemented in Maple, is described, that computes explicit expressions for

generating functions that enable the efficient computations of the expectation, variance,

and higher moments, of the random variable ‘sum of distances to the root’, defined on

any given family of rooted ordered trees (defined by degree restrictions). Taking limits,

we confirm, via elementary methods, the fact, due to David Aldous, and expanded by

Svante Janson and others, that the limiting (scaled) distributions are all the same, and

coincide with the limiting distribution of the same random variable, when it is defined

on labeled rooted trees.

We also examine generalizations of Sister Celine’s method and Gosper’s algorithm

for evaluating summations. For both, we greatly extend the classes of applicable func-

tions. For the generalization of Sister Celine’s method, we allow summations of ar-

bitrary products of hypergeomtric terms and linear recurrent sequences with rational

coefficients. For the extension of Gosper’s algorithm, we extend it from solely hypergeo-

metric sequences to any multi-basic sequence. For both, we have numerous applications

to proving, or reproving in an automated way, interesting combinatorial problems.
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Chapter 1

Introduction

In Experimental Mathematics, it’s often hard to distinguish whether the results, or the

methods to find the results are where the real content lies. The techniques used here a

heavily based in using computer assistance to solve problems that might otherwise fall

to a person to figure out. It is a matter of opinion whether this is a reward in and of

itself, showing that something that we thought needed a lot of creativity to determine

might actually be just as mechanical as the “lower” mathematics that we teach to our

Calculus students, say. There are more concrete cases to be made for the benefits of

using a computer to either assist in a result, or find it all on its own. Computers

are faster, cheaper, and less prone to errors or boredom than people. Perhaps a less

interesting, though not less important use for computers that shows up in this thesis is to

compute many, many quantities, and then perform statistical calculations on this data

in order to suggest possible conjectures for a person to come along an notice. This is

primarily the content of Chapter 3. In Chapter 2 we are able to convert a combinatorial

problem involving trees into a mechanical problem involving multi-variable Calculus.

In chapters 4 and 5 we will addressing problems in summation. Recurrence relations

will be showing up in abundance. That is, we will have some quantity, either an integer

sequence or some expression sequence xn, and will show that it satisfies some

N∑
j=0

(Q(n)Rj)xn = 0

where R is the so called “shift operator” which is to say that for and xn, Rxn stands for

xn+1. We then call N the order of the recurrence. We will sometimes call this whole

expression the recurrence, and sometimes will refer to
∑N

j=0(Q(n)Rj) as the recurrence

that xn satisfies.
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There is a wealth of information on how to analyze something once you know such

a recurrence that it satisfies. So, for our cases, if we can analyze something to the point

that we know some such recurrence that is satisfies, we will consider it solved. Since

we are often starting these summation problems with some undetermined number of

terms that is allowed to grow arbitrarily larger, anytime that such a finite description

exists, it is a cause for joy. All of the code used for the results here, as well as re-

sults of the computations that are too bulky to fit in this document can be found at

http://sites.math.rutgers.edu/~ajl213/DrZ/
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Chapter 2

Limiting Total Height Distributions for Galton Watson

Trees

2.1 Background

While many natural families of combinatorial random variables, Xn, indexed by a pos-

itive integer n, (for example, tossing a coin n times and noting the number of Heads, or

counting the number of occurrences of a specific pattern in an n-permutation) have dif-

ferent expectations, µn, and different standard deviations, σn, and (usually) largely

different asymptotic expressions for these, yet the centralized and scaled versions,

Zn := Xn−µn
σn

, very often, converge (in distribution) to the standard normal distribution

whose probability density function is famously 1√
2π
exp(−x2

2 ), and whose moments are

0, 1, 0, 3, 0, 5, 0, 15, 0, 105, . . . . Such sequences of random variables are called asymptot-

ically normal. Whenever this is not the case, it is a cause for excitement [Of course,

excitement is in the eyes of the beholder]. One celebrated case (see [21] for an engaging

and detailed description) is the random variable ‘largest increasing subsequence’, de-

fined on the set of permutations, where the intriguing Tracy-Widom distribution shows

up.

Other, more recent, examples of abnormal limiting distributions are described in

[29], [6],[7], and [9].

In this chapter we consider, from an elementary, explicit, symbolic-computational,

viewpoint, the random variable ‘sum of distances to the root’, defined over an arbitrary

family of ordered rooted trees defined by degree restrictions. For analysis of this statistic

over uniformly chosen random rooted trees, see [25] and [26]. The asymptotic behavior

of this statistic for that uniform distribution of random rooted trees is given in [27].
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It turns out that the families of trees considered in this paper are special cases of

Galton-Watson trees. These have been studied extensively by continuous probability

theorists for many years, with a nice, comprehensive introduction given by Janson in

[16]. For an analysis of unlabelled Galton-Watson trees, see the work Wagner[28]. In

particular, they are trees that are determined by determining the number of children

that every node has by independently sampling some fixed distribution with expected

value at most 1. Like the trees considered here (described below), they are also types of

Galton-Watson trees. It was shown in [1], [2], and [18] that all Galton-Watson generated

from a finite variance distribution of vertex degrees followed the same distribution as

the area under a Brownian excursion, also a topic well studied in advanced probability

theory. In particular, Janson, in section 14 of [14], presents a complicated infinite sum

which converges to this distribution originally discovered by Darling (1983). Asymptotic

analysis of mean, variance, and higher moments for Galton-Watson trees can be found

in [17].

All these authors used continuous, advanced, probability theory, that while very

powerful, only gives you the limit. We are interested in explicit expressions for the first

few moments themselves, or failing this, for explicit expressions for the generating func-

tions, for any family of rooted ordered trees given by degree restrictions. In particular,

we study in detail the case of complete binary trees, famously counted by the Catalan

numbers.

We proceed in the same vein as in [7]. In that article, the random variable ‘sum of

the distances from the root’, defined on the set of labelled rooted trees on n vertices, was

considered, and it was shown how to find explicit expressions for any given moment, and

the first 12 moments were derived, extending the pioneering work of John Riordan and

Neil Sloane ([20]), who derived an explicit formula for the expectation. The exact and

approximate values for the limits, as n → ∞, of α3 (the skewness), α4 (the kurtosis),

and the higher moments through the ninth turn out to be as follows.

α3 =

(
6π − 75

4

)√
3
√

π
10−3π

10− 3π
= 0.7005665293596503 . . . ,
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α4 =
−189π2 + 315π + 884

7 (10− 3π)2
= 3.560394897132889 . . . ,

α5 =

(
36π2 + 75

2 π −
105845
224

)√
3
√

π
10−3π

(10− 3π)2
= 7.2563753582799571 . . . ,

α6 =
15

16016

−144144π3 − 720720π2 + 3013725π + 2120320

(10− 3π)3
= 27.685525695770609 . . . ,

α7 =

(
162π3 + 6615

4 π2 − 103965
32 π − 101897475

9152

)√
3
√

π
10−3π

(10− 3π)3
= 90.0171829093603301 . . . ,

α8 =
3

2586584

−488864376π4 − 8147739600π3 − 455885430π2 + 86568885375π + 32820007040

(10− 3π)4

= 358.80904151261251 . . . ,

α9 =

(
648π4 + 15795π3 + 591867

16 π2 − 461286225
2288 π − 188411947088175

662165504

)√
3
√

π
10−3π

(10− 3π)4
= 1460.7011342971821 . . . .

[Note that when the moments are not centralized, the expressions are simpler, but

we prefer it this way].

2.2 Overview

In this chapter we extend the work of [7] and treat infinitely many other families of

trees. For any given set of positive integers, S, we will have a ‘sample space’ of all

ordered rooted trees where a vertex may have no children (i.e. be a leaf) or it must

have a number of children that belongs to S. If S = {2} we have the case of complete

binary trees.

For each such family, defined by S, we will show how to derive explicit expressions

for the generating functions of the numerators of the straight moments, from which

one can easily get many values, and very efficiently find the numerical values for the

moments-about-the-mean and hence the scaled moments. For the special case of com-

plete binary trees, we will derive explicit expressions for the first nine moments (that

may be extended indefinitely), as well as explicit expressions for the asymptotics of

the scaled moments, and indeed (as predicted by the above-mentioned authors) they

coincide exactly with those found in [7] for the case of labeled rooted trees. This is a

specific example of a more general statement about Galton Watson trees given in [17].
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2.3 Rooted Ordered Trees

Recall that an ordered rooted tree is an unlabeled graph with the root drawn at the top,

and each vertex has a certain number (possibly zero) of children, drawn from left to

right. For any finite set of positive integers, S, let T (S) be the set of all rooted labelled

trees where each vertex either has no children, or else has a number of children that

belongs to S. The set T (S) has the following structure (“grammar”)

T (S) = {·}
⋃
i∈S
{·} × T (S)i .

Fix S, Let fn be number of rooted ordered trees in T (S) with exactly n vertices.

It follows immediately, by elementary generatingfunctionology, that the ordinary gen-

erating function

f(x) :=
∞∑
n=0

fn x
n ,

(that is the sum of the weights of all members of T (S) with the weight xNumberOfV ertices

assigned to each tree) satisfies the algebraic equation

f(x) = x

(
1 +

∑
i∈S

f(x)i

)
.

Given an ordered tree, t, define the random variable H(t) to be the sum of the

distances to the root of all vertices. Let Hn be its restriction to the subset of T (S),

let’s call it Tn(S), of members of T (S) with exactly n vertices. Our goal in this chapter

is to describe a symbolic-computational algorithm that, for any finite set S of positive

integers, automatically finds generating functions that enable the fast computation of

the average, variance, and as many higher moments as desired. We will be particularly

interested in the limit, as n→∞, of the centralized-scaled distribution, and we confirm

that it is always the same as the one for rooted labelled trees found in [7] as we’d expect

by [17].

Let Pn(y) be the generating polynomial defined over Tn(S), of the random variable,

‘sum of distances from the root’. Define the grand generating function

F (x, y) =
∞∑
n=0

Pn(y)xn .
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Consider a typical tree, t, in Tn(S), and now define the more general weight by

xNumberOfV ertices yH(t) = xn yH(t). If t is a singleton, then its weight is simply x1y0 = x,

but if its sub-trees (the trees whose roots are the children of the original root) are

t1, t2, . . . ti (where i ∈ S), then

H(t) = H(t1) + · · ·+H(ti) + n− 1 ,

since when you make the tree t, out of subtrees t1, . . . , ti by placing them from left to

right and then attaching them to the root, each vertex gets its ‘distance to the root’

increased by 1, so altogether the sum of the vertices’ heights gets increased by the total

number of vertices in t1, . . . , ti (i.e. n − 1). Hence F (x, y) satisfies the functional

equation

F (x, y) = x ·

(
1 +

∑
i∈S

F (xy, y)i

)
,

that can be used to generate many terms of the sequence of generating polynomials

{Pn(y)}.

Note that when y = 1, F (x, 1) = f(x), and we get back the algebraic equation

satisfied by f(x).

2.4 From Enumeration to Statistics in General

Suppose that we have a finite set, A, on which a certain numerical attribute, called

random variable, X, (using the probability/statistics lingo), is defined.

For any non-negative integer i, let’s define

Ni :=
∑
a∈A

X(a)i .

In particular, N0(X) is the number of elements of A.

The expectation of X, E[X], denoted by µ, is, of course,

µ =
N1

N0
.

For i > 1, the i-th straight moment is

E[Xi] =
Ni

N0
.
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The i-th moment about the mean is

mi := E[(X − µ)i] = E[
i∑

r=0

(
i

r

)
(−1)rµrXi−r] =

i∑
r=0

(−1)r
(
i

r

)
µrE[Xi−r]

=

i∑
r=0

(−1)r
(
i

r

)(
N1

N0

)r Ni−r
N0

=
1

N i
0

i∑
r=0

(−1)r
(
i

r

)
N r

1N
i−r−1
0 Ni−r .

Finally, the most interesting quantities, statistically speaking, apart from the mean

µ and variance m2 are the scaled-moments, also known as, alpha coefficients, defined

by

αi :=
mi

m
i/2
2

.

2.5 Using Generating functions

In our case X is Hn (the sum of the vertices’ distances to the root, defined over rooted

ordered trees in our family, with n vertices), and we have

N1(n) = P ′n(1)

Ni(n) = (y
d

dy
)iPn(y)

∣∣
y=1

.

It is more convenient to first find the numerators of the factorial moments

Fi(n) = (
d

dy
)iPn(y)|y=1 ,

from which Ni(n) can be easily found, using the Stirling numbers of the second kind.

2.6 Automatic Generation of Generating functions for the (Numer-

ators of the) Factorial Moments

Let’s define

P (X) = 1 +
∑
i∈S

Xi ,

then our functional equation for the grand-generating function, F (x, y) can be written

F (x, y) = xP (F (xy, y)) .
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If we want to get generating functions for the first k factorial moments of our random

variable Hn, we need the first k coefficients of the Taylor expansion, about y = 1, of

F (x, y). Writing y = 1 + z, and

G(x, z) = F (x, 1 + z) ,

we get the functional equation for G(x, z)

G(x, z) = xP (G(x+ xz, z)) . (FE)

Let’s write the Taylor expansion of G(x, z) around z = 0 to order k

G(x, z) =

k∑
r=0

gr(x)
zr

r!
+O(zk+1) .

It follows that

G(x+ xz, z) =

k∑
r=0

gr(x+ xz)
zr

r!
+O(zk+1) .

We now do the Taylor expansion of gr(x+ xz) around x, getting

gr(x+ xz) = gr(x) + g′r(x)(xz) + g′′r (x)
(xz)2

2!
+ . . . + g(k)r (x)

(xz)k

k!
+ O(zk+1) .

Plugging all this into (FE), and comparing coefficients of respective terms of zr for

r from 0 to k we get k+ 1 equations relating g
(j)
r (x) to each other. It is easy to see that

one can express gr(x) in terms of g
(j)
s (x) with s < r (and 0 ≤ j ≤ k) .

Using implicit differentiation, the derivatives of g0(x), g
(j)
0 (x) (where g0(x) is the

same as f(x)), can be expressed as rational functions of x and g0(x). As soon as we get

an expression for gr(x) in terms of x and g0(x), we can use calculus to get expressions

for the derivatives g
(j)
r (x) in terms of x and g0(x). At the end of the day, we get

expressions for each gr(x) in terms of x and g0(x) (alias f(x)), and since it is easy to

find the first ten thousand (or whatever) Taylor coefficients of g0(x), we can get the first

ten thousand coefficients of gr(x), for all 0 ≤ r ≤ k, and get the numerical sequences

that will enable us to get very good approximations for the alpha coefficients.

The beauty is that this is all done by the computer! Maple knows calculus.

We can do even better. Using the methods described in [13], one should be able

to get, automatically, asymptotic formulas for the expectation, variance, and as many
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moments as desired. Using these techniques, it may be possible to obtain expressions

for the leading terms of all moments, and so show weak convergence of this distribution

to a particular limiting distribution. This should be an interesting future project.

For the special case of complete binary trees, everything can be expressed in terms

of Catalan numbers, and hence the asymptotic is easy, and our beloved computer,

running the Maple package TREES.txt (mentioned above), obtained the results in the

next section.

Computer-Generated Theorems About the Expectation, Variance, and

First Nine Moments for the Total Height on Complete Binary Trees on n

Leaves

See the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oTREES3.txt .

2.7 Universality

The computer output, given in the above webpage, proved that for this case, of complete

binary trees, the limits of the first nine scaled moments coincide exactly with those

found in [7], and given above. Confirming, by purely elementary, finitistic methods, the

universality property mentioned above. We do it for one family at a time, and only for

finitely many moments, but on the other hand, we derived explicit expressions for the

first twelve moments in the case of complete binary trees, and explicit expressions for

the generating functions for the moments for other families.
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Chapter 3

Rational Sloped Paths

3.1 Background

There is a rich study of Dyck paths in combinatorics. Some of the most ubiquitous

results are for the case that the slope of the line is 1. In particular that the number of

paths from (0,0) to (n,n) is counted by the Catalan numbers. When we change it from

1 to another rational number a/b, we enter the realm of appropriately named Rational

Catalan Combinatorics. For notational convenience, we’ll let Aa,b,n denote the number

of paths from (0, 0) to (b, a) staying on or below the line y = a/bx.

It was shown by Duchon in 2000 that for any slope a
b , the number of paths below a

line of that slope is asymptotically Θ
(

1
n

(
(a+b)n
an

))
[5]. However, it’s still unknown what

the constant out front is. To show the asymptotics, Duchon showed that the content is

somewhere between 1
a+b and 1

a . This upper bound on the number of paths was known

at least as far back as 1950 to Grossman. Grossman also had an interesting result, the

first proof of which is given by Bizley in 1954 in a now defunt actuarial journal [4].

It gives that gives an exact formula for every Aa,b,n.Of course, this precision comes at

a cost, The formula is given as a sum over a large set of weighted integer partitions.

There is no good way to extract estimates from this formula that we know, but it seems

powerful and may be useful for this problem in the future. It would be great to have a

simpler explanation of the simper problem of determining this value up to a (1 + o(1))

factor.

It’s clear that Aa,b,n = Ab,a,n, so in this paper, we’ll assume that we always have

a > b.

For the case b = 1, there is an exact solution known, using Fuss-Catalan numbers
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1
1+an

(
(1+a)n
an

)
.

3.2 Approach

We would like to try and find the coefficient out front, that is, α so that the number of

paths is (1 + o(1)) αn
(
(a+b)n
an

)
. In an effort to do this, we first are tasked with computing

many terms of the sequence

Through a simple dynamic programming algorithm, we are able to compute the

number of paths from (0,0) to (bn,an) for n around a thousand. This gives us enough

data to try and find a recurrence relation that it satisfies using the maple package avail-

able at http://www.math.rutgers.edu/ zeilberg/tokhniot/FindRec.txt However,

we were only able to successfully find recurrences for the slopes 3/2 and 5/2. Armed

with these recurrences we are able to blindingly fast crank out many thousands more

terms of this sequence. The recurrence in the data file for slope 3/2 is order 4, whereas

the one for 5/2 is order 8 and monstrously long. Though we can’t guarantee this is the

minimal recurrence, it still gives a massively faster of counting the paths for these two

unknown slopes, and potentially for many more slopes that our computer wasn’t keen

enough to find this time.

Then, once we have exact numbers, we do a statistical fit of the data for many values

of n against the model
(
α
n + β

n2 + γ
n3 + δ

n4

) (
(a+b)n
an

)
to get our estimate of α. Adding

more error terms didn’t affect the value of α much. We estimate how close this is to

the truth by running it for the first 100 values of n, and the first 200 values of n, and

seeing how much our estimate stays the same. We can get quite good estimates of these

numbers!

3.3 Data and Figures

There are many more slopes for which we have very exact estimates of α, and are

availiable online at

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html in the extra data file.

Though we knew it already with Duchon’s result that the value of the coefficient is
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Table 3.1: Estimates for α part 1
a\b 2 3

2 1
3 0.240706636 1
4 0.50000000 0.15972479544
5 0.1613399969 0.1372518253
6 0.333333333 0.50000000
7 0.1216701970 0.1073342967
8 0.250000000 0.09683505915

Table 3.2: Estimates for α part 2
a\b 4 5 6 7

4 1
5 0.119952918 1
6 0.240706636 0.09621264003 1
7 0.09639805178 0.08763172133 0.08039623916 1
8 0.5000000 0.08048157890 0.159724795 0.06908631788

at most 1/a, it still seems surprising that the value of the coefficient is not monotone

in the value of the slope, that is the actual number a/b. We can notice a few simple

patterns here, in particular, except in the cases that a and b are not in lowest terms,

the value of coefficient decreases as you increase either a or b.

We can investigate this second observation a little further. A similar, but interesting

and distinct problem is to try letting something else go to infinity in Aa,b,n other than

n, as we had before.

Suppose instead that we were to let a go to infinity while b is fixed. There’s a nice

pattern that appears. In particular, we have the conjecture that α is asymptotically

equal to gcd(a,b)
a . The gcd(a, b) factor is expected because it makes the expression only

depend on the value of a/b, as it should.
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Figure 3.1: aα as a function of a for b = 2

Figure 3.2: aα as a function of a for b = 8

3.4 Three Dimensional Lattice Walks

A much less studied area is to consider paths in a three dimensional lattice(Z3) that

have to stay to stay in a region bounded by planes. It is simple to extend the dynamic

programming solution to this situation. However, since there many more lattice points,

the runtime goes up from Θ(n2) to Θ(n3). This keeps us from getting anywhere near

as much data as we did in the previous section. With the data we do have, we have the

suggestion that something much more interesting than in the 2D case is happening!

The way that we set up the three dimensional problems, is that we take the number

of paths with steps in {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉}. Instead of the 2D problem of requiring

ax < by, we define and instance of the counting problem to be indexed by three numbers,
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Table 3.3: a=1
b\c 1 2 3 4 5 6 7

1 3.0 2.7 2.6 2.5 2.5 2.4 2.4
2 3.7 3.3 3.0 2.9 2.8 2.7 2.6
3 4.3 3.7 3.4 3.2 3.1 3.0 2.9
4 4.8 4.1 3.8 3.5 3.4 3.2 3.1
5 5.2 4.5 4.1 3.8 3.6 3.4 3.3
6 5.7 4.8 4.4 4.1 3.8 3.6 3.5
7 6.0 5.2 4.6 4.3 4.0 3.8 3.7

Table 3.4: a=2
b\c 1 2 3 4 5 6 7

1 2.7 2.5 2.5 2.4 2.4 2.3 2.3
2 3.3 3.0 2.8 2.7 2.6 2.6 2.5
3 3.7 3.4 3.2 3.0 2.9 2.8 2.8
4 4.1 3.7 3.5 3.3 3.1 3.0 3.0
5 4.5 4.0 3.7 3.5 3.4 3.2 3.2
6 4.8 4.3 4.0 3.7 3.6 3.4 3.3
7 5.2 4.6 4.2 4.0 3.8 3.6 3.5

a, b, c, and require of our paths that they satisfy ax ≤ by ≤ cz that end at x = bc, y =

ac, z = ab. If we have a = b = c = 1, this has the precise formula of the 3D Catalan

numbers (A005789 in [22]) 2
(n+1)2(n+2)

(
3n
n,n,n

)
. However, there is a lot left to understand

in this problem, and some things that are distinctly different than the 2D case. In

particular, for 2D, it was always Θ
(

1
n

(
(a+b)n
an

))
. That is, the slope of the line didn’t

affect the fact that you always had a Θ( 1
n) fraction of all paths. For the already known

a = b = c = 1, it is a Θ( 1
n3 ) fraction of all paths, however this appears to change for

different choices of a, b, c. We have some data on the value of this coefficient in tables

3.3 and 3.4.
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Chapter 4

Generalization of Sister Celine’s Method

4.1 Background

One of the earliest steps in automatically proving identities dates back to Sister Mary

Celine Fasenmyer’s 1945 Ph.D. thesis [11]. She gave a technique for computing sums

of hypergeometric terms, also see [12]. Very briefly, in order to determine if there is an

order I recurrence for the sequence xn =
∑

kH(n, k), it first considers

0 =

I∑
i=0

J∑
j=0

yi,j(n)H(n+ i, k + j)

Where yi,j(n) is an as yet unknown rational function of n. Then, by H being

hypergeometric, it is able to reduce all of the H(n+ i, k+ j) = Gi,j(n, k)H(n, k) where

Gi,j is some rational function of n and k. From there, divide everything through by

H(n, k). Now, we have something of the form

0 =
I∑
i=0

J∑
j=0

Gi,j(n, k)yi,j(n)

Combining denominators on the right hand side, and multiplying through by the

common denominator, we get that the right hand side becomes a polynomial in n and

k, with {yi,j(n)} thrown in as well. Collect terms by what power of k appears, and

then solve for what the {yi,j(n)} have to be in order to make all of the coefficients of

powers of k equal to zero. We may get unlucky and have no solution, then, we would

need to try a larger I to begin with. If however, we find a solution, we plug that into

where we first introduced yi,j(n). Since these have no k’s in them, and xn is obtained

by summing over all values of k that make the summand nonzero, we have



17

0 =
I∑
i=0

J∑
j=0

yi,j(n)H(n+ i, k + j) =
∑
i=0

 J∑
j=0

yi,j(n)

xn+i

Which, setting zi =
∑J

j=0 yi,j(n), we may write in shift operator notation as

0 =

(
I∑
i

zi(n)N i

)
xn

At this point we say that we are done. First, having a recurrence allows you to

compute the sequence out to very large values very quickly, storing only a constant

number of terms. Also, once you have a rational recurrence like this for xn then you

can extract as good asymptotics as desired like using techniques by Birkhoff-Trjizinski

which has been nicely summarized in [24]. Though sometimes you may be able to take

these recurrences and recover a really nice formula, there are more sequences to describe

than there are nice formulas, so we have to deal with the fact that we can only go so

far in making it prettier.

For a more complete explanation of Sister Celine’s method, look at chapter 4 of [19].

There are some generalizations of Sister Celine’s method given in [30], in particular to

certain classes of multiple summations and to a continuous analog.

Some of our applications of the expanded method presented in this paper relate to

binomial transforms of functions. There are nice treatments of binomial transforms of

Fibonacci like sequences given in [23].

4.2 Overview

We will be taking this technique of Sister Celine and extending it to allow many more

kinds of summands. In particular, it can be of the form xn =
∑n

k a
d
kH(k, n) where

d is any number, H is hypergeometric, and ak is some sequence defined by a rational

recurrence relation. Since so many sequences can be so described by rational recurrence

relations, this is a significant extension in scope.

It works very similarly to Sister Celine, in that we will consider ratios of successive

terms. That is, to find a recurrence with order at most I, start with
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I∑
i=0

J∑
j=0

F (n+ i, k + j)

F (n, k)
adj+kyi,j(n)

Let D be the order of the recurrence describing {ak}. Then, we use that relation

to rewrite all of the {ak+j}Jj=D in terms of {ak+j}D−1j=0 . That is, by repeatedly applying

the relation, we can write each aj+k as a linear combination:

aj+k =
D−1∑
m=0

ck,j,mak+m

where for the j < D, we just let ck,j,m =


1 j = m

0 j 6= m

. Then, since we have an

expression with D terms to the d, we can expand that out to get at most Dd terms.

Then, unlike in Sister Celine, where we have a polynomial in k, we now have a polyno-

mial in {k, ak, ak+1, . . . ak+D−1}. But, once we have collected the coefficients of each of

the combinations of those variables, we set all of them equal to zero, and then try to

solve for the yi,j(n). As in Sister Celine, we are not guaranteed that we can find such

a solution for our particular choice of I and J . We are guaranteed by WZ theory that

for a large enough choice of I and J , it gives us a recurrence relation that looks like

0 =

 I∑
i=0

 I∑
j=0

yi,j(n)

N i

xn

4.3 Application to Enumerating Chess King Walks

Suppose that there is a king wandering around on an infinite d-dimensional chess board,

we want to know how many of the (3d− 1)n walks of length n that the king could take

would end up bringing him back to where he started. Given a polynomial p, we will

use the notation Ct(p) to denote the constant term of p. Then, by using the powers of



19

zi to keep track of our total displacement in the i dimension, we have:

xn = Ct

(((
d∏
i=1

zi + z−1i + 1

)
− 1

)n)

= Ct

 n∑
k=0

(
d∏
i=1

zi + z−1i + 1

)k (
n

k

)
(−1)n−k


=

n∑
k=0

Ct

( d∏
i=1

zi + z−1i + 1

)k(n
k

)
(−1)n−k

=
n∑
k=0

Ct
((
z + z−1 + 1

)k)d(n
k

)
(−1)n−k

Luckily for us, Ct
((
z + z−1 + 1

)k)
is already well understood. It is the central

trinomial coefficients (A002426 [22]). Also luckily, it is a known that this sequence

satisfies the recurrence.

0 =

(
N2 − 2n− 1

n
N − 3n− 3

n

)
xn

So, we are in exactly the set up of this extended method. In which case you can

describe the number of d dimensional king walks which end at the origin after taking

n steps by

n∑
k=0

adk

(
n

k

)
(−1)n−k

This clearly falls into the scope of this modified algorithm, and using it you are able

to find rational recurrences (effectively solve) for all dimensions up to 4. Here is the

one for a two dimensional king walking around

g(n,N) =(3n3 + 40n2 + 175n+ 250)N3

+ (9n3 + 138n2 + 703n+ 1190)N2

+ (108n3 + 1548n2 + 7364n+ 11632)N

+ 96n3 + 1280n2 + 5632n+ 8192

then

0 = g(n,N)xn
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Although this already does not look super nice, at least it is short, which is more than

can be said of those describing higher dimensions, but they are included in an appendix.

Also important is that they were found by a computer.

Something probably more insightful than these walls of text that exactly describes

these sequences is their asymptotics:

For the two dimensional king, the number of paths of length n is

c2
8n

n

(
1− 4

9n
+

1

18n2
+O

(
1

n3

))
For three dimensions:

c3
26n

n
3
2

(
1− 11

18n
+

683

5832n2
+O

(
1

n3

))
and for four dimensions:

c4
80n

n2

(
1− 25

9n
+

36439

6561n2
+O

(
1

n3

))
The dominant asymptotics are somewhat unsurprising. The exponential part is all

possible paths. The dominant power of n is
(

1√
n

)d
, and it is well known that the central

binomial coefficient is asymptotically 2n√
n

, and we are doing something somewhat like

that in d dimensions. The value of c2 is approximately equal to 2
3π . This value for c2

can be proven in a rigorous way using classical analysis. For c3 and c4, we are not so

lucky, instead, all we can say from non-rigorous observation is that c3 ≈ .110225343716

and c4 ≈ .068412392872. There might be some way using a more traditional approach

that would get us the true value of these constants.

The d = 2 case was first worked out by a computer using a different approach. For

more information on this, see [8], or for information on the techniques, see [3].

4.4 Application to other sequences

This also allows for computing binomial transforms of other sequences. An example of

this is if you were to let Fk be the k-th Fibonacci number and consider the sequence

xn =

n∑
k=0

Fk

(
n

k

)
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You immediately receive the recurrence that defines xn is 0 = (−N2 + 3N − 1)xn,

and this is identical to the recurrence given for (A001906 [22]) which is the sequence

describing the sum. Though this is already a known fact, if you just bump the power

up on Fk to F 2
k , you still get a rather nice recurrence relation for the sum, in particular

it is described by 0 = (−N3 + 5N2 − 5)xn. This integer sequence is as yet unnamed in

the OEIS, but has both a simple definition in terms of Fibonacci, and a lovely formula

where it is just 5 times the difference of two earlier terms. All powers of Fibonacci seem

to follow this nice pattern that a linear recurrence where the terms do not depend on

n suffices, instead of in general, where the recurrence may need rational functions of n

showing up to describe the next term. These C-finite sequences are discussed in greater

detail in [31]. The techniques given in that paper can also be applied to some of the

problems considered here.

Also of interest, suppose that you are considering ak to be the m-Fibonacci sequence,

that is, ak+2 = mak+1 + ak then, it is simple enough to plug in this recurrence, and lo

and behold, an answer is found. For

xn =

n∑
k=0

ak

(
n

k

)
we have

xn+2 = (2 +m)xn+1 − xn

Which is also known, but is a main theorem of a twelve page paper by Falcon and

Plaza [10] instead of a two second calculation by the computer.

4.5 Application to multiple summations

Another promising application of this technique is to evaluating multiple sums over

hypergeometric terms. A toy example of this would be if you wanted to compute

n∑
i=0

i∑
k=0

(
i

k

)(
n

i

)
To do this, pick out any of the factors which contain k, and run some automated

process to evaluate single summation such as the Zeilberger Algorithm [19]. Often, this
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sum will not have a nice formula, so you are left with a possibly high order recurrence

describing it. However, that is precisely what the techniques here are made to handle,

so you can feed this partial evaluation into the procedure. Given enough computing

this allows any number of summation signs to be dealt with. For each summation, we

have the usual requirements of the original Sister Celine’s method, namely that for each

summation, the boundaries extend as far as the terms can be without becoming zero.

In this particular case, evaluating the inner sum, you get 0 = (N − 2)xn, and plugging

that recurrence in, we get that the whole sum satisfies 0 = (N − 3)zn. Which is to say,

the sum evaluates to 3n. Though this has a nice combinatorial proof where you count

the number of assignments from {1, . . . , n} to {1, 2, 3} by first picking the k elements

that map to either 1 or 2, and then, from those k elements, picking the i elements that

map to 2, That requires a moment of thought where such a simple recurrence for the

computer only requires less than a second of thought. Or, suppose the harder problem,

where we would want to compute

n∑
i=0

n∑
k=0

(
i− k
k

)2(n
i

)
It may be possible as a person to figure this out in a more human way, but for the

computer it is just a few seconds away from spitting out the the solution is described

by the recurrence

0 =
(
−(n+ 9)N5 + (7n+ 54)N4 − (17n+ 103)N3 + (21n+ 97)N2 − (15n+ 50)N + 5n+ 5

)
xn

A maple package for multiple summations has already been described in [3] and is

available at:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html

However this package is roughly the same time on the simple first example given,

and faster than their package on the second example. Their package, however, gives

a ‘better’ analysis of the summation, in that it does indefinite summation, and does

not require that on the bounds of summation, the summand is zero. That is, theirs

generalizes Zeilberger’s algorithm, instead of Sister Celine’s.
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4.6 Example Usage of this Maple Package

Hopefully by this point, you are asking yourself, how to use these powerful tools.

Though there is more detailed documentation in the maple package itself. The first

step is to figure out the recurrence that is satisfied by your ak, called rec1. Then,

call findrec(I, J, timeout, rec1, F, d, n,N) where both rec1 and the output will be in

shift operator notation, with N the shift operator. This call will attempt to find the

recurrence for the sum:

xn =
n∑
k=0

adkF (n, k)

Where the recurrence is of order at most I, and degree at most J . timeout is the

most time (in seconds) that you are willing to wait on a particular attempt, if it exceeds

that time, the procedure exits.
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Chapter 5

A Practical Variation on Gosper’s Algorithm

This chapter will be filled in once work on the article has been completed separately,

so as to only have one incomplete version of it floating around at a time.
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