
Abstract

In this note, we present some empirical data on an old problem in rational
Catalan combinatorics. In particular, counting lattice paths that lie to one side
of a line with rational slope.

Maple packages and data files

This article is accompanied by the maple package RSP.txt and several example
inputs and outputs available at

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html

Background

There is a rich study of Dyck paths in combinatorics. Some of the most ubiq-
uitous results are for the case that the slope of the line is 1. In particular that
the number of paths from (0,0) to (n,n) is counted by the Catalan numbers.
When we change it from 1 to another rational number a/b, we enter the realm
of appropriately named Rational Catalan Combinatorics. For notational conve-
nience, we’ll let Aa,b,n denote the number of paths from (0, 0) to (b, a) staying
on or below the line y = a/bx.

It was shown by Duchon in 2000 that for any slope a
b , the number of paths

below a line of that slope is asymptotically Θ
(

1
n

(
(a+b)n
an

))
[D1]. However, it’s

still unknown what the constant out front is. To show the asymptotics, Duchon
showed that the content is somewhere between 1

a+b and 1
a . This upper bound

on the number of paths was known at least as far back as 1950 to Grossman.
Grossman also had an interesting result, the first proof of which is given by
Bizley in 1954 in a now defunt actuarial journal [B]. It gives that gives an exact
formula for every Aa,b,n.Of course, this precision comes at a cost, The formula
is given as a sum over a large set of weighted integer partitions. There is no
good way to extract estimates from this formula that we know, but it seems
powerful and may be useful for this problem in the future. It would be great to
have a simpler explanation of the simper problem of determining this value up
to a (1 + o(1)) factor.

It’s clear that Aa,b,n = Ab,a,n, so in this paper, we’ll assume that we always
have a > b.

For the case b = 1, there is an exact solution known, using Fuss-Catalan
numbers 1

1+an

(
(1+a)n
an

)
.

This Article

We would like to try and find the coefficient out front, that is, α so that the
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number of paths is (1 + o(1)) αn
(
(a+b)n
an

)
. In an effort to do this, we first are

tasked with computing many terms of the sequence

Through a simple dynamic programming algorithm, we are able to compute
the number of paths from (0,0) to (bn,an) for n around a thousand. This gives us
enough data to try and find a recurrence relation that it satisfies using the maple
package available at http://www.math.rutgers.edu/ zeilberg/tokhniot/FindRec.txt

However, we were only able to successfully find recurrences for the slopes 3/2
and 5/2. Armed with these recurrences we are able to blindingly fast crank out
many thousands more terms of this sequence. The recurrence in the data file
for slope 3/2 is order 4, whereas the one for 5/2 is order 8 and monstrously
long. Though we can’t guarantee this is the minimal recurrence, it still gives a
massively faster of counting the paths for these two unknown slopes, and po-
tentially for many more slopes that our computer wasn’t keen enough to find
this time.

Then, once we have exact numbers, we do a statistical fit of the data for

many values of n against the model
(
α
n + β

n2 + γ
n3 + δ

n4

) (
(a+b)n
an

)
to get our

estimate of α. Adding more error terms didn’t affect the value of α much. We
estimate how close this is to the truth by running it for the first 100 values of n,
and the first 200 values of n, and seeing how much our estimate stays the same.
We can get quite good estimates of these numbers!

a\b 2 3 4 5 6 7

2 1
3 0.240706636 1
4 0.50000000 0.15972479544 1
5 0.1613399969 0.1372518253 0.119952918 1
6 0.333333333 0.50000000 0.240706636 0.09621264003 1
7 0.1216701970 0.1073342967 0.09639805178 0.08763172133 0.08039623916 0.999999
8 0.250000000 0.09683505915 0.5000000 0.08048157890 0.159724795 0.06908631788

There are many more slopes for which we have very exact estimates of α,
and are availiable online at

http://www.math.rutgers.edu/~ajl213/DrZ/RSP.html in the extra data
file.

Though we knew it already with Duchon’s result that the value of the coef-
ficient is at most 1/a, it still seems surprising that the value of the coefficient
is not monotone in the value of the slope, that is the actual number a/b. We
can notice a few simple patterns here, in particular, except in the cases that a
and b are not in lowest terms, the value of coefficient decreases as you increase
either a or b.
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We can investigate this second observation a little further. A similar, but
interesting and distinct problem is to try letting something else go to infinity in
Aa,b,n other than n, as we had before.

Suppose instead that we were to let a go to infinity while b is fixed. There’s
a nice pattern that appears. In particular, we have the conjecture that it is

asymptotically equal to gcd(a,b)
a . The gcd(a, b) factor makes sense because it

makes the expression only depend on the value of a/b.

Figure 1: aα as a function of a for b = 2

Figure 2: aα as a function of a for b = 8
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