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Abstract

In this paper, we discus an approach to compute indefinite summations. The
approach given here differs from the popular Gosper’s algorithm for computing
hypergeometric sums in two ways. The first not good, in that, unlike Gosper’s
algorithm, this procedure is not guarenteed to evaluate a summation if a formula
for it if one exists. The second good, in that it allows for much broader classes
of functions to be summed. For example, we consider the multi basic sequences,
which allow for more than just rational functions to be ratios of successive terms,
as is the case with hypergeometric sequences.

Maple packages and data files

This article is accompanied by the maple package TEL.txt which is available
with an appendix and several example inputs and outputs at

http://www.math.rutgers.edu/~ajl213/DrZ/Telescope/readme.html

Background

A sequence tn is called hypergeometric if there exists polynomials p(n) and
q(n) such that

tn+1

tn
=

p(n)

q(n)
.

.

Some simple examples of this are (products of) rationals, exponentials, fac-
torials, and binomial coefficients.

Gosper’s algorithm [G] gives a technique for “solving” summations of hyper-
geometric sequences, that is, given a hypergeometric F (n, k), and a sum of the
form

xN =

N−1∑
n=0

F (n),

it is able to find a formula for xN as a constant plus a hypergeometric term,
if one exists. For a detailed description of how (and why) Gosper’s algorithm
works, we refer the reader to Chapter five of the book A=B.[PWZ]
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However, many sequences of interest are not hypergeometric, so there is
definitely room for further work along this same goal of computing indefinite
summations.

This Article

Instead of starting with sequences more complicated than hypergeometric,
we will start with applying our approach to sequences that are less complicated,
and move up from there. Consider rational functions. Suppose that we have
some summation

xN =

N−1∑
n=0

P (n)

Q(n)

and we want to say what rational function this is equal to. We know that
one exists because we could always of expanded out the summand by rational
functions that telescope, notice some cancellation, and then add together what
is left over to get a rational expression. In Gosper’s algorithm, we are able to tell
precisely when some summation is equal to a constant plus a hypergeometric
term. However, to pay the price for expanding the possible values that it could
sum to, we will have to give up this guarantee of knowing for certain that if our
algorithm fails to figure out such a summation, then there is none. Instead, it
could be that it only failed for the considered degree of the recurrence, and it
may instead find a recurrence that the summation satisfies by simply increasing
the order of the recurrence or the degree of the rational functions that are used
as coefficients in the recurrence.

First, we try to identify an expression for the limit L of the summation.
For our considered summations of a rational summand, we know that the limit
will always be rational, and so, by looking at partial fraction decompositions
of larger and larger partial summations. Looking at the decomposition, one
entry blows up while everything before that entry stays the same, giving us a
very good guess that the limit is the part of the decomposition before the entry
blowing up. Then, once we know the value of the limit of the summation, we
construct the sequence

yN =

∞∑
N

P (n)

Q(n)
,

that is,

yN = L− xN
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Then, we generate may terms of this sequence and try to identify the result
as a hypergeometric sequence. This step in particular allows for a lot of freedom.
If instead of hypergeometric, we were looking for descriptions of this sequence
as a higher order recurrence, we could just use that information to change the
set of linear equations that need to be solved. The other class of functions that
we are considering are called multibasic sequences. They are ones where the
ratio of successive terms is some fraction of multinomials in different expressions
depending on n instead of just polynomials in n.

So, for example, to evaluate

N∑
n=0

−1

4

(22n+2n2 + 2n23n − 24n + 3n22n + n2n+1 + 4n2 − 23n − 722n − 42n − 12)

(n!(22n−2 + 1)(22n + 1))

It si found to be

e +
(2N + N + 3 + 22N )

((22N + 1)N !)

That is, it is Euler’s constant plus a multibasic expression in N and 2N of
max degree 2.

The drawback of this technique is that of identifying L. It works fine if
the function is very quickly converging, but it starts to perform poorly as the
sum converges more slowly, and is completely worthless when the sum does not
have a finite limit. Instead of solving the set of linear equations that we set up,
also allow this limit to be an unknown, and solve a resulting non-linear set of
equations. Of course this is much slower, and so this techniques is only best
used for summations that rapidly converge.

Another broad class of summands to which this can apply are not just when
we extend the rato of successive terms to some fixed rational expression of atoms
that are hypergeometric,

P (a1, a2, . . . , ak)

P (a1, a2, . . . , ak)

where ai is something such as 2n or n!. Instead, what if we were to allow
ai to be more free in how it depends on ai. For example imagine that we
had that successive terms had the ratio Fn+1

Fn
where Fn for this little example

represnets the nth Fibonacci number. More generally, the structure about this
that is helpful to us is that our new atoms that we are exploting is that they
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are C − finite. This allows us to reduce occurrences of them for larger n to a
number of starrting terms equal to the order minus one, possibly times rational
expressions in n that come from the recurrence that they satisfy.

Examples

Many of the examples here are artificially cooked up, but show the power of
this procedure. Any, In general, non-cooked up examples would also yield re-
sults. The only problem with that is that the degrees that would be required for
for the solution could be very very high. There isn’t a way to know before hand
how high how high of degrees would need to be considered, so our procedure
needs to look for higher and higher degree solutions.

Using this maple package

Hopefully by this point, the usefulness of these procedures has been made clear.
Though there is more detailed documentation in the maple package itself, here
is a breif description of how they are used. To try and figure out a hypergeo-
metric expression for the indefinite sum, allowing degree at most d, and starting
at n = 0, call PMG(expression, n, d, 0). The procedure will then spit out it’s
guess for the summation, followed by a line that contains a constant followed
by the ratio of consecutive terms satisfied by the sequence. Lastly, it will at-
tempt to return a closed form expression for the summation, which may often
not exist.

For The version that is multibasic, instead call PMGMB, with the same
format for arguments.
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