
Abstract

How many ways can a King walk around the board and come back to the
origin. We give a procedure for computing this for higher dimensional boards
highly efficiently. Also, for several low dimensions, up to the board being Z8,
we give conjectured recurrences for the sequences.

Maple packages and data files

This article is accompanied by the maple package KW.txt and several exam-
ple inputs and outputs available at

http://www.math.rutgers.edu/~ajl213/DrZ/KW.html

Background

Everyone is familiar with chess, combined with the fact that it is played on a
discrete board makes it a fun thing to analyze problems related to. However, a
real chess board is only 8x8, for all of our analysis, we will instead be moving on
an infinite grid of spaces. In particular, we’ll be looking at how many of the 8n

paths that a king can take in n moves end up coming back to the original square
that he started. A similar analysis can be done for knights. This technique can
be extended to any movement rule that only allows movement to squares within
some finite distance away from where it started. In particular, this puts all of
the results in rook theory outside the scope of this approach.

This Article

The sequence in n we will call xd,n will denote the number of walks of length
n that a king could take on a d-dimensional grid ending where he starts. A move
that the king can take is one that moves either -1, 0, or 1 in each coordinate, but
he must not stand still during his move. We disallow standing still as a move,
both because it is more analogous to chess, and because it causes the problem
to become more interesting.

We use a little trick to compute out a large number of the terms in the
sequence, and then, once enough terms are found, we use the procedure FindRec
accompanying [Z] found online at

http://sites.math.rutgers.edu/ zeilberg/tokhniot/FindRec.txt

to guess a rational recurrence that is satisfied by the sequence using the
Zeilberger algorithm. Since we find that the number of such paths grows ex-
ponentially, actually listing out all of the paths to count up the number that
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have the king coming back to the start is entirely unfeasible. A slightly less
dumb, but still quite slow way of trying to compute this sequence is to take the
constant term of ((

d∏
i=1

(zi + z−1
i + 1

)
− 1

)n

To help us compute xd,n in a much better way, we will instead first consider
the number of paths ending at the start that are taken by a lazy king, one which
may decide to stand still as a step. Lets call the sequence counting these kind
of paths yd,n. This lazy king’s behavior is much easier to analyze, as all of the
motion in each dimension is independent. We can just just consider which of
the three options he picks in each dimension, and require that for each of them,
he ends up with a total offset of zero. As far as the counting is concerned, this
means that we just need to count in one dimension, and then raise that to the
number of dimensions. Luckily, the one dimensional lazy king problem is given
by the central trinomial coefficients (A002426), it has a generating function
given by

1√
1− 2x− 3x2

So we can then just take the nth term from that and raise it to the number of
dimensions to answer this different counting problem with very little computa-
tion.

Now, we go back to the original problem where the king is not allowed to
stand still. Summing over all the possible numbers of the lazy king’s moves
where he actually moved, and spacing those acutal moves out over the n poten-
tial moves, we get

yd,n =

n∑
i=0

(
n

i

)
xd,i

Rearranging this for xd,n, we get that

xd,n = yd,n −
n−1∑
i=0

(
n

i

)
xd,n

To compute the next term of the sequence, we just need to weight earlier
terms in the sequence, and subtract them from a very easy to compute quantity.
Also great about this approach is that the number of operations that we need
to do doesn’t go up as the dimension does. Higher dimension is only a tiny
headache for the computer in that the operations it does do need to be done on
larger numbers. Using this we were able to compute many hundreds of terms in
the sequence. This was enough to guess at finite recurrences that are satisfied
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by this sequence. For example, on the two dimensional chessboard, we get that
the sequence satisfies

x3,n+3 = 32
(3n + 7)(n + 1)2

(3n + 4)(n + 3)2
x3,n

+ 4
(27n3 + 144n2 + 248n + 139)

(3n + 4)(n + 3)2
x3,n+1

+
(3n + 5)(n + 2)(3n + 8)

(3n + 4)(n + 3)2
x3,n+2

Where N represents the shift operator. For higher dimensions, the recurrences
themselves are quite large, and can be found online at:

http://www.math.rutgers.edu/~ajl213/DrZ/KingWalks/RecurrenceData.txt

We were unfortunately unable to obtain recurrences for dimension higher
than eight because even though it was simple to crank out many many terms
for those sequences, obtaining a recurrence of such high degree using the existing
tools was not feasible.
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