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Galton-Watson Random Trees: Definition

Defined in terms of some finite set S ⊂ N+

For the root, Either it is a leaf, or its number of children is in S .
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Our question

Given a tree T sampled from a Galton-Watson distribution. Compute the
“total height”. ∑

v∈T
h(v)

What distribution does this have if we generate the tree with certain
classes of Galton-Watson processes?
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introducing generating functions

A generating function f (x) for any sequence yn is the FORMAL sum

f (x) =
∞∑
n=0

ynx
n

A different way of viewing sequences, so that you can apply algebraic
manipulations to the functions
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An application of Generating functions

Suppose we wanted to get a nice formula for xn, with x0 = 0, x1 = 1
satisfying

xn+2 = 2xn+1 + xn

Suppose F (x) is a generating function for xn

F (x) = x + (2f1 + f0)x2 + (2f2 + f1)x3 + · · ·
= x + 2x(f1x + f2x

2 + · · · ) + x2(f0 + f1x + · · · )
= x + 2xF (x) + x2F (x)
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Application of Generating functions (Continued)

F (x) =
x

1− 2x − x2
=

A

x − r1
+

B

x − r2

r1 = 1 +
√

2, r2 = 1−
√

2,
Geometric sum formula gets us that xn is a sum of a power of r1 and r2.
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our approach

We construct a bivariate generating function, F (x , y), where the coefficient
of x iy j denotes the number of trees on i vertices with total height j

If we let
P(x) = 1 +

∑
i∈S

x i ,

We can show that F satisfies

F (x , y) = xP(F (xy , y))

Lets parse out the right hand side

1 the x comes from picking the root

2 F(xy,y) denotes counting each vertex in the tree as having one more
depth

3 The function P indicates that we have the indicated number of
subtrees (independent choice means multiplication)
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computing the moments

We want to know, as the number of vertices in our tree gets larger, what
happens to the distribution of total heights?
Take some number of partial derivatives in y , then plug in y = 1.

1 no derivatives – number of elements

2 one derivative – expectation(once you normalize)

3 two derivatives – second factorial moment (once you normalize)

4 . . .
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results

For the simple example of S = {2}, get dominant terms of 2
√
πn3 for

expectation, (40/3− 4π) n3 for variance,
√

n9π(16π2 − 50) for skewness.

Approach can apply to any other S , all the steps are automated.
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Definitions

Dyck Path

An (a,b,n)-Dyck Path is a sequence {w1,w2, . . .wan+bn} of steps (1,0) and
(0,1) so that for every i, the point (x , y) =

∑i
j=1 wj satisfies ax >= by .

In other words, it is paths from (0, 0) to (bn, an) that stay on or below the
line y = a/bx .
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Results for 2D lattice walks

Theorem[Duchon’00]

The number of paths of length n that stay on or below the line
y = (a/b)x are Θ( 1n

(an+bn
an

)
).

really:

Theorem[Duchon’00]

If dn is the number of paths of length n that stay on or below the line
y = (a/b)x ,

1

an + bn

(
an + bn

bn

)
≤ dn ≤

1

an + 1

(
an + bn

bn

)
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Proving an Upper Bound

Proposition

the number of (a,b,n) Dyck Paths is ≤ 1
an

(an+bn
bn

)
Definition

A conjugation of a word w1uw2 with respect to letter u is the word w2uw1

u conjugating forms an equivalence class of size an+1

only one word in each equivalence class can correpond to an
(a,b,n)-Dyck Path

at most 1
an+1

(an+bn
an

)
(a,b,n)-Dick Paths
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Exact Results for 2D lattice walks

Theorem

When a=1, the exact solution given by Fuss-Catalan number:
1

bn+1

((b+1)n
n

)
.

2
7n−1

(7n−1
2n

)
result for a only slightly different question.
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A Nasty Formula

Theorem[Bizley’54]

The number of (a,b,n) Dyck Paths is exactly

∑ F k1
1 F k2

2 · · ·
k1!k2! · · ·

where the summation is taken over all {ki} ⊆ (Z+)∗ such that
∑

iki = n
and

Fj =
1

j(a + b)

(
ja + jb

ja

)
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Getting Estimates

Can quickly get a lot of data using a dynamic programming technique.

Once we have a lot of data, we do a statistical fit to the model we
want and get a good estimate for the coefficient.
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Some Numerics!

a\b 1 2 3 4 5 6

1 1 0.500 0.333 0.250 0.200 0.167
2 0.500 1 0.241 0.500 0.161 0.333
3 0.333 0.241 1 0.160 0.137 0.500
4 0.250 0.500 0.160 1 0.12 0.241
5 0.200 0.161 0.137 0.120 1 0.096
6 0.166 0.333 0.500 0.241 0.096 1
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3D Lattice walks

Definition

An (a,b,c) lattice walk is a sequence of steps in either (1,0,0),(0,1,0), or
(0,0,1) so that all of the partial sums satisfy

ax ≤ by ≤ cz

for the case that one of {a, c} are zero, we have a 2D lattice walk.
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3D Lattice walks

If a = b = c = 1. It is the classical three dimensional Catalan numbers
which have formula

2

(n + 1)(n + 2)2

(
3n

n, n, n

)
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coefficients

We saw that (1, 1, 1) lattice paths grew like 1
n3

( 3n
n,n,n

)
.

This exponenital part is the same for other choices of (a,b,c).
However, the rational part grows with different exponents on n.
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3D Numerics

Table: a=1

b\c 1 2 3 4 5 6 7

1 3.0 2.7 2.6 2.5 2.5 2.4 2.4
2 3.7 3.3 3.0 2.9 2.8 2.7 2.6
3 4.3 3.7 3.4 3.2 3.1 3.0 2.9
4 4.8 4.1 3.8 3.5 3.4 3.2 3.1
5 5.2 4.5 4.1 3.8 3.6 3.4 3.3
6 5.7 4.8 4.4 4.1 3.8 3.6 3.5
7 6.0 5.2 4.6 4.3 4.0 3.8 3.7
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Counting Time Above the Line

Theorem[Andersen]

Of all paths of length n, the number of paths with k edges above the line
y = x is given exactly by: (

2n − 2k

n − k

)(
2k

k

)
for even k.

As n goes to infinity, this looks like arcsine

Originally in a continuous context, but the lattice path version is also
usually attributed to him
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Counting Time Above the Line

Theorem[Chung,Feller]

Of all paths ending at (n,n), the number of paths that have an even
number k edges above y = x is independent of k .

Distribution is definitly not uniform for slanted line
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Hypergeometric summations: Gentle introduction

It’s a basic fact due to the binomial theorem that, for example∑
k

(
n

k

)
= 2n

rewrite as ∑
k

(
n

k

)
1k1n−k = (1 + 1)n

∑
k

(
n

k

)
2k = 3n

and many more
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Definition of Hypergeometric

We want to generalize. What is it about exponentials and binomial
coefficients that are so nice?

H(n, k) is called hypergeometric if it satisfies:

H(n + 1, k)

H(n, k)
∈ Q(n, k)

and
H(n, k + 1)

H(n, k)
∈ Q(n, k)

past some initial value, For example, you may give H(0, 0) = 1.
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Sister Celine’s Technique

Given H(n, k) hypergeometric, try to find a good description of

yn =
∑
k

H(n, k)

A good description means a hypergeometric description.
That is, what rational function is equal to:

yn+1

yn
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Moving from Hypergeometric to Linear Recurrent

Not all seqences are hypergeometric.
By settling for a slightly less friendly description, we can describe many
more sums
A sequence yn is linear recurrent of order d if there are qi each rational
functions of n so that

yn+d = q0yn + q1yn+1 + · · ·+ qd−1yn+d−1

If we have such a description, we call yn Q-finite or holonomic.
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Linear Recurrent Sums

Using very similar techniques to Sister celine’s method, can take any linear
recurrent xk and hypergeometric H(n, k), and find a recurrence for

yn =
∑
k

xdk H(n, k)
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application to king walks

A chess king walking in a d dimensional chessboard.
Can step from v ∈ Zd to u ∈ Zd so long as ||v − u||∞ = 1.
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Analyzing the problem

Generating functions again!
Let f be a generating function (on variables z1, . . . , zn so that the
coefficient of

d∏
j=1

z
nj
j

represents number of paths from 0 to (n1, n2, . . . nj)
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building the generating function, a simple case

What if had one dimension?

Then, at each step, we can pick either left or right, so, multiplying by
either z−11 or z1. so, we would have fn(z1) = (z−11 + z1)n.

That was kind of boring. We’d just get binomial coefficients, as we’d
expect.
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building the generating function

How about higher dimensions?

If we allow standing still, All dimensions are independent! We just undo
that afterwards, getting a single step is: d∏

j=1

(
z−1i + 1 + zi

)− 1

each step is independent, so,

fn(z1, . . . , zd) =

 d∏
j=1

(
z−1i + 1 + zi

)− 1

n
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Rephrasing the question

The binomial theorem lets us write:

fn(z1, . . . , zd) =
n∑

k=0

 d∏
j=1

(
z−1i + 1 + zi

)k

(−1)n−k
(
n

k

)

=
n∑

k=0

 d∏
j=1

(
z−1i + 1 + zi

)k (−1)n−k
(
n

k

)

Take constant term to get back to where we started.

n∑
k=0

Constant Term(
(
z−1 + 1 + z

)k
)d(−1)n−k

(
n

k

)
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results

Recurrences too long to list.
For the two dimensional king, the number of paths of length n is:

c2
8n

n

(
1− 4

9n
+

1

18n2
+ O

(
1

n3

))
,

For three dimensions the number is:

c3
26n

n
3
2

(
1− 11

18n
+

683

5832n2
+ O

(
1

n3

))
.

and for four dimensions the number is:

c4
80n

n2

(
1− 25

9n
+

36439

6561n2
+ O

(
1

n3

))
.
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Other applications

1 computing binomial transforms of sequences

2 evaluating multiple summations
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Bunkbed Graphs

Starting with any finite graph G , take an isomorphic copy of it, G ′. Put an
edge between each vertex in G and the vertex that it corresponds to in G ′

For example, the triangle, C3 would become
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Percolation

For each edge, remove it independently with some probability.

vertices stay the same.

Our proof works for slightly more general random model.
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Bunkbed Conjecture

Fix any two vertices s and f . The probability that s is connected to f is at
least the probability s is connected to f ′. Intuitive, but hard to prove.
Originally asked in 1985 by Kasteleyn, in it’s current version, it was stated
by Häggström in 1998.
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Partial results so far

The conjecture has been shown in the following cases:

1 If only one vertical edges exists using FKG inequality.

2 If G is outerplanar

3 If G is complete and p ≥ 1
2

We can show it for the case of exactly two vertical edges.
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Thank You
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