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ABSTRACT
We give an extension of Sister Celine’s method of proving hypergeometric sum iden-
tities that allows it to handle a larger variety of input summands. In particular, we
extend the summand to powers of a C-finite sequence times a hypergeometric term.
We then apply this to several problems. Some of these applications give new results,
and some reprove already known results in an automated way.
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Maple packages and data files

This article is accompanied by the Maple package RecSum.txt which is avail-
able with an appendix and several example inputs and outputs at

http://www.math.rutgers.edu/~ajl213/DrZ/Celine/readme.html

Background

One of the earliest steps in automatically proving identities dates back to Sis-
ter Mary Celine Fasenmyer’s 1945 Ph.D. thesis [F1]. She gave a technique for
computing sums of hypergeometric terms, also see [F2]. Her technique concerns
sequences of the form xn =

∑
kH(n, k), where the sum is over all k so that H(n, k) is

non-zero. Because it is summing over all of these k, the problems that it can be applied
to only make sense if for each n there are only finitely many values of k that cause
H(n, k) to be non-zero. Many expressions constructed from binomial coefficients fit
these requirements. It also requires that H(n, k) is doubly hypergeometric, meaning

both H(n,k+1)
H(n,k) and H(n+1,k)

H(n,k) are rational functions in n and k. In order to determine

if there is an order I recurrence for the sequence, her technique picks some J and
considers
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0 =

I∑
i=0

J∑
j=0

yi,j(n)H(n + i, k + j),

where yi,j(n) is an as yet unknown rational function of n. If the value picked for J
was not large enough then this procedure will fail, and a higher value for J would be
considered. Then, by H being hypergeometric, it is able to reduce all of the H(n +
i, k + j) = Gi,j(n, k)H(n, k) where Gi,j is some rational function of n and k. From
there, divide everything through by H(n, k). Now, we have something of the form

0 =

I∑
i=0

J∑
j=0

Gi,j(n, k)yi,j(n)

Combining denominators on the right hand side, and multiplying through by the
common denominator, we get that the right hand side becomes a polynomial in n and
k, with {yi,j(n)} thrown in as well. Collect terms by what power of k appears, and
then solve for what the {yi,j(n)} have to be in order to make all of the coefficients of
powers of k equal to zero. We may get unlucky and have no solution, then, we would
need to try a larger I to begin with. If however, we find a solution, we plug that into
where we first introduced yi,j(n). Since these have no k’s in them, and xn is obtained
by summing over all values of k that make the summand nonzero, we have

0 =

I∑
i=0

J∑
j=0

yi,j(n)H(n + i, k + j) =

I∑
i=0

 J∑
j=0

yi,j(n)

xn+i

Which we may write in shift operator notation as

0 =

 I∑
i

 J∑
j=0

yi,j(n)

N i

xn

At this point we say that we are done. First, having a recurrence allows us to
compute the sequence out to very large values very quickly, storing only a constant
number of terms. Also, once we have a rational recurrence like this for xn then we
can extract as good asymptotics as desired like using techniques by Birkhoff-Trjizinski
which has been nicely summarized in [WZ]. Sometimes we are able to recover a really
nice formula. Some of the recurrences found by our procedure are very complicated,
so there is little hope to always be able to recover a formula.

For a more complete explanation of Sister Celine’s method, look at Chapter 4 of
[PWZ]. There are some generalizations of Sister Celine’s method given in [Z1], in
particular to certain classes of multiple summations and to a continuous analog.

2



Some of our applications of the expanded method presented in this paper relate to
binomial transforms of functions. There are nice treatments of binomial transforms of
Fibonacci like sequences given in [Sp].

Main result

We take the described technique of Sister Celine and extend it to allow many more
kinds of summands. In particular, the sequence can be of the form xn =

∑n
k a

d
kH(k, n)

where d is any number, H is hypergeometric, and ak is some sequence defined by a
rational recurrence relation. Since so many sequences can be so described by rational
recurrence relations, this is a significant extension in scope.

It works very similarly to Sister Celine’s method, in that we will consider ratios of
successive terms. That is, to find a recurrence with order at most I, start with

I∑
i=0

J∑
j=0

H(n + i, k + j)

H(n, k)
adj+kyi,j(n)

Let D be the order of the recurrence describing {ak}. Then, we use that relation to
rewrite all of the {ak+j}Jj=D in terms of {ak+j}D−1j=0 . That is, by repeatedly applying
the relation, we can write each aj+k as a linear combination:

aj+k =

D−1∑
m=0

ck,j,mak+m

where for the j < D, we just let ck,j,m =

{
1 j = m

0 j 6= m
. Then, since we have an

expression with D terms to the d, we can expand that out to get at most Dd terms.
Then, unlike in Sister Celine’s method, where we have a polynomial in k, we now have
a polynomial in {k, ak, ak+1, . . . ak+D−1}. But, once we have collected the coefficients
of each of the combinations of those variables, we set all of them equal to zero, and
then try to solve for the yi,j(n). As in Sister Celine’s method, we are not guaranteed
that we can find such a solution for our particular choice of I and J . We are guaranteed
by WZ theory [PWZ] that for a large enough choice of I and J , it gives us a recurrence
relation that looks like

0 =

 I∑
i=0

 J∑
j=0

yi,j(n)

N i

xn.
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Our whole technique is implemented in a maple package whose address is given at
the beginning of this paper. The usefulness of our technique comes from being easily
carried out by a computer, since the systems of equations involved quickly get too
large for a person. We invite the reader to use this package the next time that the
come across a type of summation problem that they want to analyze.

Application to enumerating chess king walks

Suppose that there is a king wandering around on an infinite d-dimensional chess
board. We want to know how many of the (3d − 1)n walks of length n that the king
could take would end up bringing him back to where he started. Given a polynomial
p, we use the notation Ct(p) to denote the constant term of p. Then, by using the
powers of zi to keep track of our total displacement in the i dimension, we have:

xn = Ct

(((
d∏
i=1

zi + z−1i + 1

)
− 1

)n)

= Ct

 n∑
k=0

(
d∏
i=1

zi + z−1i + 1

)k (
n

k

)
(−1)n−k


=

n∑
k=0

Ct

( d∏
i=1

zi + z−1i + 1

)k(n
k

)
(−1)n−k

=

n∑
k=0

Ct
((

z + z−1 + 1
)k)d(n

k

)
(−1)n−k

Luckily for us, Ct
((

z + z−1 + 1
)k)

is already well understood. It is the sequence of

central trinomial coefficients (A002426 [Sl]). Also luckily, it is known that this sequence
satisfies the recurrence.

0 =

(
N2 − 2n− 1

n
N − 3n− 3

n

)
xn

So, we are in exactly the set up of our technique. In which case, if we let ak =

Ct
((

z + z−1 + 1
)k)

, we can describe the number of d dimensional king walks which

end at the origin after taking n steps by

n∑
k=0

adk

(
n

k

)
(−1)n−k

Once the counting problem has been rewritten as this sum, it clearly falls into the
scope of our technique. Using it we are able to find rational recurrences (effectively
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solve) for all dimensions up to 4. For a two dimensional king walking around, if we let

g(n,N) =(3n3 + 40n2 + 175n + 250)N3

+ (9n3 + 138n2 + 703n + 1190)N2

+ (108n3 + 1548n2 + 7364n + 11632)N

+ 96n3 + 1280n2 + 5632n + 8192

then

0 = g(n,N)xn.

Although this recurrence already looks a little ugly, at least it is short, which is more
than can be said of those expressions describing higher dimensions. But they are
included in an appendix. Also important is that they were found by a computer.

Something probably more insightful than these walls of text that exactly describe
these sequences is their asymptotics:

For the two dimensional king, the number of paths of length n is

c2
8n

n

(
1− 4

9n
+

1

18n2
+ O

(
1

n3

))
For three dimensions:

c3
26n

n
3

2

(
1− 11

18n
+

683

5832n2
+ O

(
1

n3

))
and for four dimensions:

c4
80n

n2

(
1− 25

9n
+

36439

6561n2
+ O

(
1

n3

))

The dominant asymptotics are somewhat unsurprising. The exponential part is all

possible paths. The dominant power of n is
(

1√
n

)d
. It is well known that the central

binomial coefficient is asymptotically 2n
√
n

, and we are doing something somewhat like

that in d dimensions. The value of c2 is approximately equal to 2
3π . This value for c2

can be proven in a rigorous way using classical analysis. For c3 and c4, we are not so
lucky, instead, all we can say from non-rigorous observation is that c3 ≈ .110225343716
and c4 ≈ .068412392872. There might be some way using a more traditional approach
that would get us the true value of these constants.

The d = 2 case was first worked out by a computer using a different approach.
For more information on this, see [E]. Their approach expresses the quantity as a
double contour integral and applies their own automated techniques to evaluate it.
For information on the techniques, see [AZ]. A completely human produced analysis
of this sequence proves more illusive.

5



Application to other sequences

Our Technique also allows for computing binomial transforms of interesting se-
quences. An example of this is if we were to let Fk denote the k-th Fibonacci number
and consider the sequence

xn =

n∑
k=0

Fk

(
n

k

)
,

we immediately receive that the recurrence that defines xn is 0 = (−N2 + 3N − 1)xn.
This recurrence is identical to the recurrence given for (A001906) which is the sequence
describing the sum. Though this is already a known fact, if we just bump the power
up on Fk to F 3

k , we still get a rather nice recurrence relation for the sum, in particular
it is described by 0 = (−N4 + 7N3 − 9N2 − 2N + 4)xn. This integer sequence is
recently added as number(A298591) in the OEIS. All powers of Fibonacci seem to
follow this nice pattern that a linear recurrence where the terms do not depend on
n suffices, instead of in general for our technique, where the recurrence may need
rational functions of n showing up to describe the next term. These C-finite sequences
are discussed in greater detail in [Z2]. The techniques given in that paper can also be
applied to some of the problems considered here.

Also of interest, suppose that ak is be the m-Fibonacci sequence, defined as a0 = 0,
a1 = 1, and ak+2 = mak+1 + ak for k ≥ 0. Then, since the program was implemented
in a symbolic way, there is no extra work to have that letting

xn =

n∑
k=0

ak

(
n

k

)
,

we have

xn+2 = (2 + m)xn+1 − xn.

This is also known, but is the main theorem of a twelve page paper by Falcon and
Plaza [FP].

Application to multiple summations

Another promising application of our technique is to evaluating multiple sums over
hypergeometric terms. A toy example of this would be computing
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n∑
i=0

i∑
k=0

(
i

k

)(
n

i

)
.

To find a recurrence for this sequence, pick out any of the factors which contain k,
and run some automated process to evaluate single summation such as the Zeilberger
Algorithm [PWZ]. Often, this sum will not have a nice formula, so we are left with
a possibly high order recurrence describing it. However, that is precisely what the
techniques here are made to handle, so we can feed this partial evaluation into the
procedure. Given enough computing this allows any number of summation signs to be
dealt with. For each summation, we have the usual requirements of the original Sister
Celine’s method, namely that for each summation, the boundaries extend as far as the
terms can be without becoming zero. In this particular case, evaluating the inner sum
yields 0 = (N − 2)xn, and substituting in that recurrence, we get that the whole sum
satisfies 0 = (N−3)zn. Which is to say, the sum evaluates to 3n. Though this has a nice
combinatorial proof counting the number of assignments from {1, . . . , n} to {1, 2, 3} by
first picking the k elements that map to either 1 or 2, and then, from those k elements,
picking the i elements that map to 2. That requires a moment of thought where such
a simple recurrence for the computer only requires less than a second of “thought”.
Alternatively, consider the harder problem, where we would want to compute

n∑
i=0

n∑
k=0

(
i− k

k

)2(n
i

)

It may be possible to evaluate this in a more human way, but for the computer it
can easily determine that the solution is described by the recurrence

0 =
(
−(n + 9)N5 + (7n + 54)N4 − (17n + 103)N3 + (21n + 97)N2 − (15n + 50)N + 5n + 5

)
xn

A Maple package for multiple summations has already been described in [AZ] and
is available at:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html

However our package takes roughly the same time on the simple first example given,
and is faster than their package on the second example. Their package, however, gives
a “better” analysis of the summation, in that it does indefinite summation, and does
not require that on the bounds of summation, the summand is zero. That is, theirs
generalizes Zeilberger’s algorithm, instead of Sister Celine’s method.

Using this Maple package

Hopefully by this point, the usefulness of our package has been made clear.
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Though there is more detailed documentation in the maple package itself, here is a
brief description of how they are used. The first step is to figure out the recurrence
that is satisfied by ak, called rec1. Then, call findrec(I,J,timeout,rec1,F,d,n,N) where
both rec1 and the output are in shift operator notation, with N denoting the shift
operator. This call will attempt to find the recurrence for the sum:

xn =

n∑
k=0

adkH(n, k),

where the recurrence is of order at most I, and degree at most J . timeout is the most
time (in seconds) to wait on a particular attempt, if it exceeds that time, the procedure
exits.

Acknowledgments

I would like to thank Doron Zeilberger for helping to guide me though this
topic. I’d also like to thank Anthony Zaleski for his comments. The referee’s detailed
comments were invaluable to editing and clarifying this paper.

8



References

[AZ] Moa Apagodu and Doron Zeilberger, Multi-Variable Zeilberger and Almkvist-
Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory, Advances in
Applied Mathematics, Vol 37, Issue 2, August 2006, 139-152.

[E] Shalosh B. Ekhad, “In How Many Ways Can a Chess King Return Home After
n Steps?”
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/melech.pdf.

[F1] Fasenmyer, Sister Mary Celine, Some generalized hypergeometric polynomials,
Ph.D. dissertation, University of Michigan, November, 1945.

[F2] Fasenmyer, Sister Mary Celine, A note on pure recurrence relations, Amer.
Math. Monthly 56 (1949), 14-17.

[FP] Sergio Falcon and Angel Plaza, Binomial Transforms of the k-Fibonacci Se-
quence, International Journal of Nonlinear Sciences & Numerical Simulation 10, 2009,
1527-1535.

[Sl] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, pub-
lished electronically at https://oeis.org, 2017.

[Sp] Michael Spivey, Combinatorial Sums and Finite Differences, Discrete Mathe-
matics Vol 307 Issue 24, November 2007, 3130-3146.

[WZ] Jet Wimp and Doron Zeilberger Resurrecting the Asymptotics of Linear Re-
currences, Journal of Mathematical Analysis and Applications Vol 111, Issue 1, Octo-
ber 1985, 162-176.

[PWZ] Mario Petkovsek, Herbert Wilf, and Doron Zeilberger, A=B, Taylor & Fran-
cis, 1996. http://www.math.rutgers.edu/~zeilberg/AeqB.pdf.

[Z1] Doron Zeilberger, Sister Celine’s Technique and Its Generalizations, Journal
of Mathematical Analysis and Applications, Volume 85, Issue 1, January 1982, 114-145
http://www.math.rutgers.edu/~zeilberg/mamarimY/Zeilberger y1982 p114.pdf.

[Z2] Doron Zeilberger, The C-Finite Ansatz, Ramanujan Journal 31(2013), 23-32
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.html.

9


