
Chapter 28

Michelle Bodnar, Andrew Lohr

May 5, 2017

Exercise 28.1-1

We get the solution: 3
14− 4 · 3

−7− 5 · (14− 4 · 3) + 6 · 3

 =

 3
2
1

Exercise 28.1-2

An LU decomposition of the matrix is given by 4 −5 6
8 −6 7
12 −7 12

 =

 1 0 0
2 1 0
3 2 1

 4 −5 6
0 4 −5
0 0 4

 .

Exercise 28.1-3

First, we find the LUP decomposition of the given matrix 1 5 4
2 0 3
5 8 2

we bring the 5 to the top, and then divide the first column by 5, and use Schur
complements to change the rest of the matrix to get 5 8 2

.4 −3.2 2.2

.2 3.4 3.6

Then, we swap the third and second rows, and apply the Schur complement to
get 5 8 2

.2 3.4 3.6

.4 − 3.2
3.4 2.2 + 11.52

3.4

1

This gets us the LUP decomposition that

L =

 1 0 0
.2 1 0
.4 − 3.2

3.4 1

U =

 5 8 2
0 3.4 3.6
0 0 2.2 + 11.52

3.4

P =

 0 0 1
1 0 0
0 1 0

Using this, we can get that the solution must be 1 0 0

.2 1 0

.4 − 3.2
3.4 1

 5 8 2
0 3.4 3.6
0 0 2.2 + 11.52

3.4

 x1
x2
x3

 =

 5
12
9

Which, by forward substitution, 5 8 2

0 3.4 3.6
0 0 2.2 + 11.52

3.4

 x1
x2
x3

 =

 5
11

7 + 35.2
3.4

So, finally by back substitution, x1

x2
x3

 =

 − 3
19
− 1

19
49
19

Exercise 28.1-4

The LUP decomposition of a diagonal matrix D is D = IDI where I is the
identity matrix.

Exercise 28.1-5

A LU decomposition of a permutation matrix is letting P be the inverse per-
mutation matrix, and let both L and U be the identity matrix. Now, we need
show that this representation is unique. We know that the permutation matrix
A is non-singular. This means that U has nonzero elements all along its diago-
nal. Now, suppose that there were some nonzero element off of the diagonal in
L, which is to say Li,j 6= 0 for i 6= j. Then, look at row i in the product LU .
This has a nonzero entry both at column j and at column i. Since it has more
than one non-zero entry, it cannot be transformed into a permutation matrix
by permuting the rows. Similarly, we have that U cannot have any off-diagonal
elements. Lastly, since we know that both L and U are diagonal matrices, we

2

know that L is the identity. Since A only has ones as its nonzero entries, and
LU = U . U must also only have ones as its nonzero entries. So, we have U
is the identity. This means that PA = I, which means that P = A−1. This
completes showing that the given decomposition is unique.

Exercise 28.1-6

The zero matrix always has an LU decomposition by taking L to be any unit
lower-triangular matrix and U to be the zero matrix, which is upper triangular.

Exercise 28.1-7

For LU decomposition, it is indeed necessary. If we didn’t run the last run
of the outermost for loop, unn would be left its initial value of zero instead of
being set equal to ann. This can clearly produce incorrect results, because the
LU decomposition of any non-singular matrix must have both L and U having
positive determinant. However, if unn = 0, the determinant of U will be zero
by problem D.2-2.

For LUP-decomposition, the iteration of the outermost for loop that occurs
with k = n will not change the final answer. Since π would have to be a per-
mutation on a single element, it cannot be non-trivial. and the for loop on line
16 will not run at all.

Exercise 28.2-1

Showing that being able to multiply matrices in time M(n) implies being
able to square matrices in time M(n) is trivial because squaring a matrix is just
multiplying it by itself.

The more tricky direction is showing that being able to square matrices in
time S(n) implies being able to multiply matrices in time O(S(n)).

As we do this, we apply the same regularity condition that S(2n) ∈ O(S(n)).
Suppose that we are trying to multiply the matrices, A and B, that is, find AB.
Then, define the matrix

C =

(
I A
0 B

)
Then, we can find C2 in time S(2n) ∈ O(S(n)). Since

C2 =

(
I A+AB
0 B

)
Then we can just take the upper right quarter of C2 and subtract A from it to
obtain the desired result. Apart from the squaring, we’ve only done work that
is O(n2). Since S(n) is Ω(n2) anyways, we have that the total amount of work
we’ve done is O(n2).

3

Exercise 28.2-2

In this problem and the next, we’ll follow the approach taken in Algebraic
Complexity Theory by Burgisser, Claussen, and Shokrollahi. Let A be an n ×
n matrix. Without loss of generality we’ll assume n = 2k, and impose the
regularity condition that L(n/2) ≤ cL(n) where c < 1/2 and L(n) is the time it
takes to find an LUP decomposition of an n× n matrix. First, decompose A as

A =

[
A1

A2

]
where A1 is n/2 by n. Let A1 = L1U1P1 be an LUP decomposition of A1,
where L1 is n/2 by n/2, U1 is n/2 by n, and P1 is n by n. Perform a block
decomposition of U1 and A2P

−1
1 as U1 = [U1|B] and A2P

−1
1 = [C|D] where

U1 and C are n/2 by n/2 matrices. Since we assume that A is nonsingular, U1

must also be nonsingular. Set F = D − CU−11 B. Then we have

A =

[
L1 0

CU
−1
1 In/2

] [
U1 B
0 F

]
P1.

Now let F = L2U2P2 be an LUP decomposition of F , and let P =

[
In/2 0

0 P2

]
.

Then we may write

A =

[
L1 0

CU
−1
1 L2

] [
U1 BP−12

0 U2

]
PP1.

This is an LUP decomposition of A. To achieve it, we computed two LUP
decompositions of half size, a constant number of matrix multiplications, and a
constant number of matrix inversions. Since matrix inversion and multiplication
are computationally equivalent, we conclude that the runtime is O(M(n)).

Exercise 28.2-3

From problem 28.2-2, we can find a LU-decomposition algorithm that only
takes time O(M(n)). So, we run that algorithm and multiply together all of
the entries along the diagonal of U , this will be the determinant of the original
matrix.

We have no short answer for the second direction of this problem. Typically
we strive to complete all the exercises independently as a way of gaining a
greater understanding ourselves. For the second half of this problem, this was
unfortunately not something that we achieved. After being stuck for several
weeks, I asked a number of other graduate students, and even two professors,
none were able to help with how the proof went. One did however refer me to
the book Algebraic Complexity Theory by Burgisser, Claussen, and Shokrollahi.
They have the proof in their section 16.4. This however is not at all self contained
and so would be very long to try and include here as a solution. This was the

4

hardest exercise in the book. If you know a good proof of this fact, I would love
to hear it, please let me know by emailing ajl213 “at” math.rutger.edu.
Exercise 28.2-4

Suppose we can multiply boolean matrices in M(n) time, where we assume
this means that if we’re multiplying boolean matrices A and B, then (AB)ij =
(ai1 ∧ b1j) ∨ . . . ∨ (ain ∧ bnj). To find the transitive closure of a boolean matrix
A we just need to find the nth power of A. We can do this by computing A2,
then (A2)2, then ((A2)2)2), and so on. This requires only lg n multiplications,
so the transitive closure can be computed in O(M(n) lg n).

For the other direction, first view A and B as adjacency matrices, and impose
the regularity condition T (3n) = O(T (n)), where T (n) is the time to compute
the transitive closure of a graph on n vertices. We will define a new graph whose
transitive closure matrix contains the boolean product of A and B. Start by
placing 3n vertices down, labeling them 1, 2, . . . , n, 1′, 2′, . . . , n′, 1′′, 2′′, . . . , n′′.
Connect vertex i to vertex j′ if and only if Aij = 1. Connect vertex j′ to vertex
k′′ if and only if Bjk = 1. In the resulting graph, the only way to get from the
first set of n vertices to the third set is to first take an edge which “looks like”
an edge in A, then take an edge which “looks like ” an edge in B. In particular,
the transitive closure of this graph is: I A AB

0 I B
0 0 I

 .
Since the graph is only of size 3n, computing its transitive closure can be

done in O(T (3n)) = O(T (n)) by the regularity condition. Therefore multiplying
matrices and finding transitive closure are are equally hard.

Exercise 28.2-5

It does not work necessarily over the field of two elements. The problem
comes in in applying theorem D.6 to conclude that ATA is positive definite. In
the proof of that theorem they obtain that ||Ax||2 ≥ 0 and only zero if every
entry of Ax is zero. This second part is not true over the field with two elements,
all that would be required is that there is an even number of ones in Ax. This
means that we can only say that ATA is positive semi-definite instead of the
positive definiteness that the algorithm requires.

Exercise 28.2-6

We may again assume that our matrix is a power of 2, this time with complex
entries. For the moment we assume our matrix A is Hermitian and positive-
definite. The proof goes through exactly as before, with matrix transposes
replaced by conjugate transposes, and using the fact that Hermitian positive-
definite matrices are invertible. Finally, we need to justify that we can obtain the

5

same asymptotic running time for matrix multiplication as for matrix inversion
when A is invertible, but not Hermitian positive-definite. For any nonsingular
matrix A, the matrix A∗A is Hermitian and positive definite, since for any x
we have x∗A∗Ax = 〈Ax,Ax〉 > 0 by the definition of inner product. To invert
A, we first compute (A∗A)−1 = A−1(A∗)−1. Then we need only multiply this
result on the right by A∗. Each of these steps takes O(M(n)) time, so we can
invert any nonsingluar matrix with complex entries in O(M(n)) time.

Exercise 28.3-1

To see this, let ei be the vector that is zeroes except for a one in the ith
position. Then, we consider the quantity eTi Aei for every i. Aei takes each row
of A and pulls out the ith column of it, and puts those values into a column
vector. Then, multiplying that on the left by eTi , pulls out the ith row of this
quantity, which means that the quantity eTi Aei is exactly the value of Ai,i. So,
we have that by positive definiteness, since ei is nonzero, that quantity must
be positive. Since we do this for every i, we have that every entry along the
diagonal must be positive.

Exercise 28.3-2

Let x = −by/a. Since A is positive-definite we must have

0 < [xy]TA

[
x
y

]
= [xy]T

[
ax+ by
bx+ cy

]
= ax2 + 2bxy + cy2

= cy2 − b2y2

a

= (c− b2/a)y2.

Thus, c− b2/a > 0 which implies ca− b2 > 0, since a > 0.

Exercise 28.3-3

Suppose to a contradiction that there were some element aij with i 6= j
so that aij were a largest element. We will use ei to denote the vector that
is all zeroes except for having a 1 at position i. Then, we consider the value
(ei − ej)TA(ei − ej). When we compute A(ei − ej) this will return a vector
which is column i minus column j. Then, when we do the last multiplication,
we will get the quantity which is the ith row minus the jth row. So,

(ei − ej)TA(ei − ej) = aii − aij − aji + ajj

= aii + ajj − 2aij ≤ 0

6

Where we used symmetry to get that aij = aji. This result contradicts the
fact that A was positive definite. So, our assumption that there was a element
tied for largest off the diagonal must of been false.

Exercise 28.3-4

The claim clearly holds for matrices of size 1 because the single entry in the
matrix is positive the only leading submatrix is the matrix itself. Now suppose
the claim holds for matrices of size n, and let A be an (n+1)×(n+1) symmetric
positive-definite matrix. We can write A as

A =

 A′ w

v c

 .
Then A′ is clearly symmetric, and for any x we have xTA′x = [x0]A

[
x
0

]
>

0, so A′ is positive-definite. By our induction hypothesis, every leading subma-
trix of A′ has positive determinant, so we are left only to show that A has
positive determinant. By Theorem D.4, the determinant of A is equal to the
determinant of the matrix

B =

c v

w A′

 .
Theorem D.4 also tells us that the determinant is unchanged if we add a

multiple of one column of a matrix to another. Since 0 < eTn+1Aen+1 = c, we
can use multiples of the first column to zero out every entry in the first row
other than c. Specifically, the determinant of B is the same as the determinant
of the matrix obtained in this way, which looks like

C =

c 0

w A′′

 .
By definition, det(A) = cdet(A′′). By our induction hypothesis, det(A′′) >

0. Since c > 0 as well, we conclude that det(A) > 0, which completes the proof.

Exercise 28.3-5
When we do an LU decomposition of a positive definite symmetric matrix, we
never need to permute the rows. This means that the pivot value being used
from the first operation is the entry in the upper left corner. This gets us that
for the case k = 1, it holds because we were told to define det(A0) = 1, getting
us, a11 = det(A1)/det(A0). When Diagonalizing a matrix, the product of the

7

pivot values used gives the determinant of the matrix. So, we have that the
determinant of Ak is a product of the kth pivot value with all the previous
values. By induction, the product of all the previous values is det(Ak−1). So,
we have that if x is the kth pivot value, det(Ak) = xdet(Ak−1), giving us the
desired result that the k th pivot value is det(Ak)/det(Ak−1).

Exercise 28.3-6

First we form the A matrix

A =

1 0 e
1 2 e2

1 3 lg 3 e3

1 8 e4

 .
We’ll compute the pseudoinverse using Wolfram Alpha, then multiply it by

y, to obtain the coefficient vector

c =

 .411741
−.20487
.16546

 .
Exercise 28.3-7

AA+A = A((ATA)−1AT)A

= A(ATA)−1(ATA)

= A

A+AA+ = ((ATA)−1AT)A((ATA)−1AT)

= (ATA)−1(ATA)(ATA)−1AT

= (ATA)−1AT

= A+

(AA+)T = (A(ATA)−1AT)T

= A((ATA)−1)TAT

= A((ATA)T)−1AT

= A(ATA)−1AT

= AA+

8

(AA+)T = ((ATA)−1ATA)T

= ((ATA)−1(ATA))T

= IT

= I

= (ATA)−1(ATA)

= A+A

Problem 28-1

a. By applying the procedure of the chapter, we obtain that

L =

1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

U =

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

P =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

b. We first do back substitution to obtain that

Ux =

5
4
3
2
1

So, by forward substitution, we have that

x =

5
9
12
14
15

9

c. We will set Ax = ei for each i, where ei is the vector that is all zeroes except
for a one in the ith position. Then, we will just concatenate all of these
solutions together to get the desired inverse.

equation solution

Ax1 = e1 x1 =

1
1
1
1
1

Ax2 = e2 x2 =

1
2
2
2
2

Ax3 = e3 x3 =

1
2
3
3
3

Ax4 = e4 x4 =

1
2
3
4
4

Ax5 = e5 x5 =

1
2
3
4
5

This gets us the solution that

A−1 =

1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

d. When performing the LU decomposition, we only need to take the max over

at most two different rows, so the loop on line 7 of LUP-DECOMPOSITION
drops to O(1). There are only some constant number of nonzero entries in
each row, so the loop on line 14 can also be reduced to being O(1). Lastly,
there are only some constant number of nonzero entries of the form aik and
akj . since the square of a constant is also a constant, this means that the
nested for loops on lines 16-19 also only take time O(1) to run. Since the

10

for loops on lines 3 and 5 both run O(n) times and take O(1) time each
to run(provided we are smart to not consider a bunch of zero entries in the
matrix), the total runtime can be brought down to O(n).

Since for a Tridiagonal matrix, it will only ever have finitely many nonzero
entries in any row, we can do both the forward and back substitution each
in time only O(n).

Since the asymptotics of performing the LU decomposition on a positive
definite tridiagonal matrix is O(n), and this decomposition can be used to
solve the equation in time O(n), the total time for solving it with this method
is O(n). However, to simply record the inverse of the tridiagonal matrix
would take time O(n2) since there are that many entries, so, any method
based on computing the inverse of the matrix would take time Ω(n2) which
is clearly slower than the previous method.

e. The runtime of our LUP decomposition algorithm drops to being O(n) be-
cause we know there are only ever a constant number of nonzero entries in
each row and column, as before. Once we have an LUP decomposition, we
also know that that decomposition have both L and U having only a con-
stant number of non-zero entries in each row and column. This means that
when we perform the forward and backward substitution, we only spend a
constant amount of time per entry in x, and so, only takes O(n) time.

Problem 28-2

a. We have ai = fi(0) = yi and bi = f ′i(0) = f ′(xi) = Di. Since fi(1) =
ai+bi+ci+di and f ′i(1) = bi+2ci+3di we have di = Di+1−2yi+1+2yi+Di

which implies ci = 3yi+1 − 3yi −Di+1 − 2Di. Since each coefficient can be
computed in constant time from the known values, we can compute the 4n
coefficients in linear time.

b. By the continuity constraints we have f ′′i (1) = f ′′i+1(0) which implies that
2ci + 6di = 2ci+1, or ci + 3di = ci+1. Using our equations from above, this is
equivalent to

Di + 2Di+1 + 3yi − 3yi+1 = 3yi+2 − 3yi+1 −Di+2 − 2Di+1.

Rearranging gives the desired equation

Di + 4Di+1 +Di+2 = 3(yi+2 − yi).

c. The condition on the left endpoint tells us that f ′′0 (0) = 0, which implies
2c0 = 0. By part a, this means 3(y1− y0) = 2D0 +D1. The condition on the
right endpoint tells us that f ′′n−1(1) = 0, which implies cn−1 +3dn−1 = 0. By
part a, this means 3(yn − yn−1) = Dn−1 + 2Dn.

11

d. The matrix equation has the form AD = Y , where A is symmetric and
tridiagonal. It looks like this:

2 1 0 0 · · · 0
1 4 1 0 · · · 0

0
. . .

. . .
. . . · · ·

...
... · · · 1 4 1 0
0 · · · 0 1 4 1
0 · · · 0 0 1 2

D0

D1

D2

...
Dn−1
Dn

=

3(y1 − y0)
3(y2 − y0)
3(y3 − y1)

...
3(yn − yn−2)
3(yn − yn−1)

.

e. Since the matrix is symmetric and tridiagonal, Problem 28-1 e tells us that
we can solve the equation in O(n) time by performing an LUP decomposition.
By part a of this problem, once we know each Di we can compute each fi in
O(n) time.

f. For the general case of solving the nonuniform natural cubic spline problem,
we require that f(xi+1) = fi(xi+1 − xi) = yi+1, f ′(xi+1) = f ′i(xi+1 − xi) =
f ′i+1(0) and f ′′(xi+1) = f ′′i (xi+1−xi) = f ′′i+1(0). We can still solve for each of
ai, bi, ci, and di in terms of yi, yi+1, Di, and Di+1, so we still get a tridiagonal
matrix equation. The solution will be slightly messier, but ultimately it is
solved just like the simpler case, in O(n) time.

12

