
Chapter 24

Michelle Bodnar, Andrew Lohr

April 24, 2017

Exercise 24.1-1

If we change our source to z and use the same ordering of edges to decide
what to relax, the d values after successive iterations of relaxation are:

s t x y z
∞ ∞ ∞ ∞ 0
2 ∞ 7 ∞ 0
2 5 7 9 0
2 5 6 9 0
2 4 6 9 0

The π values are:

s t x y z
NIL NIL NIL NIL NIL
z NIL z NIL NIL
z x z s NIL
z x y s NIL
z x y s NIL

Now, if we change the weight of edge (z, x) to 4 and rerun with s as the
source, we have that the d values after successive iterations of relaxation are:

s t x y z
0 ∞ ∞ ∞ ∞
0 6 ∞ 7 ∞
0 6 4 7 2
0 2 4 7 2
0 2 4 7 −2

The π values are:

s t x y z
NIL NIL NIL NIL NIL
NIL s NIL s NIL
NIL s y s t
NIL x y s t
NIL x y s t

1

Note that these values are exactly the same as in the worked example. The
difference that changing this edge will cause is that there is now a negative
weight cycle, which will be detected when it considers the edge (z, x) in the for
loop on line 5. Since x.d = 4 > −2 + 4 = z.d + w(z, x), it will return false on
line 7.

Exercise 24.1-2

Suppose there is a path from s to v. Then there must be a shortest such
path of length δ(s, v). It must have finite length since it contains at most |V |−1
edges and each edge has finite length. By Lemma 24.2, v.d = δ(s, v) <∞ upon
termination. On the other hand, suppose v.d <∞ when BELLMAN-FORD ter-
minates. Recall that v.d is monotonically decreasing throughout the algorithm,
and RELAX will update v.d only if u.d + w(u, v) < v.d for some u adjacent
to v. Moreover, we update v.π = u at this point, so v has an ancestor in the
predecessor subgraph. Since this is a tree rooted at s, there must be a path
from s to v in this tree. Every edge in the tree is also an edge in G, so there is
also a path in G from s to v.

Exercise 24.1-3

Before each iteration of the for loop on line 2, we make a backup copy of the
current d values for all the vertices. Then, after each iteration, we check to see
if any of the d values changed. If none did, then we immediately terminate the
for loop. This clearly works because if one iteration didn’t change the values of
d, nothing will of changed on later iterations, and so they would all proceed to
not change any of the d values.

Exercise 24.1-4

If there is a negative weight cycle on some path from s to v such that u
immediately preceeds v on the path, then v.d will strictly decrease every time
RELAX(u, v, w) is called. If there is no negative weight cycle, then v.d can
never decrease after lines 1 through 4 are executed. Thus, we just update all
vertices v which satisfy the if-condition of line 6. In particular, replace line 7
with v.d = −∞.

Exercise 24.1-5

Initially, we will make each vertex have a D value of 0, which corresponds to
taking a path of length zero starting at that vertex. Then, we relax along each
edge exactly V −1 times. Then, we do one final round of relaxation, which if any
thing changes, indicated the existence of a negative weight cycle. The code for
this algorithm is identical to that for Bellman ford, except instead of initializing
the values to be infinity except at the source which is zero, we initialize every d
value to be infinity. We can even recover the path of minimum length for each

2

vertex by looking at their π values.
Note that this solution assumes that paths of length zero are acceptable. If

they are not to your liking then just initialize each vertex to have a d value
equal to the minimum weight edge that they have adjacent to them.

Exercise 24.1-6

Begin by calling a slightly modified version of DFS, where we maintain the
attribute v.d at each vertex which gives the weight of the unique simple path
from s to v in the DFS tree. However, once v.d is set for the first time we will
never modify it. It is easy to update DFS to keep track of this without changing
its runtime. At first sight of a back edge (u, v), if v.d > u.d + w(u, v) then we
must have a negative-weight cycle because u.d + w(u, v) − v.d represents the
weight of the cycle which the back edge completes in the DFS tree. To print
out the vertices print v, u, u.π, u.π.π, and so on until v is reached. This has
runtime O(V + E).

Exercise 24.2-1

If we run the procedure on the DAG given in figure 24.5, but start at vertex
r, we have that the d values after successive iterations of relaxation are:

r s t x y z
0 ∞ ∞ ∞ ∞ ∞
0 5 3 ∞ ∞ ∞
0 5 3 11 ∞ ∞
0 5 3 10 7 5
0 5 3 10 7 5
0 5 3 10 7 5

The π values are:

r s t x y z
NIL NIL NIL NIL NIL NIL
NIL r r NIL NIL NIL
NIL r r s NIL NIL
NIL r r t t t
NIL r r t t t
NIL r r t t t

Exercise 24.2-2

When we reach vertex v, the last vertex in the topological sort, it must have
out-degree 0. Otherwise there would be an edge pointing from a later vertex to
an earlier vertex in the ordering, a contradiction. Thus, the body of the for-loop
of line 4 is never entered for this final vertex, so we may as well not consider it.

3

Exercise 24.2-3

Introduce two new dummy tasks, with cost zero. The first one having edges
going to every task that has no in edges. The second having an edge going to it
from every task that has no out edges. Now, construct a new directed graph in
which each e gets mapped to a vertex ve and there is an edge (ve, ve′) with cost
w if and only if edge e goes to the same vertex that e′ comes from, and that
vertex has weight w. Then, every path through this dual graph corresponds to
a path through the original graph. So, we just look for the most expensive path
in this DAG which has weighted edges using the algorithm from this section.

Exercise 24.2-4

We will compute the total number of paths by counting the number of paths
whose start point is at each vertex v, which will be stored in an attribute v.paths.
Assume that initial we have v.paths = 0 for all v ∈ V . Since all vertices adjacent
to u occur later in the topological sort and the final vertex has no neighbors,
line 4 is well-defined. Topological sort takes O(V +E) and the nested for-loops
take O(V + E) so the total runtime is O(V + E).

Algorithm 1 PATHS(G)

1: topologically sort the vertices of G
2: for each vertex u, taken in reverse topologically sorted order do
3: for each vertex v ∈ G.Adj[u] do
4: u.paths = u.paths+ 1 + v.paths
5: end for
6: end for

Exercise 24.3-1

We first have s as the source, in this case, the sequence of extractions from
the priority queue are: s, t, y,x,z. The d values after each iteration are:

s t x y z
0 3 ∞ 5 ∞
0 3 9 5 ∞
0 3 9 5 11
0 3 9 5 11
0 3 9 5 11

The π values are:

4

s t x y z
NIL s NIL NIL NIL
NIL s t s NIL
NIL s t s y
NIL s t s y
NIL s t s y

Now, if we repeat the procedure, except having z as the source, we have that
the d values are

s t x y z
3 ∞ 7 ∞ 0
3 6 7 8 0
3 6 7 8 0
3 6 7 8 0
3 6 7 8 0

The π values are:

s t x y z
z NIL z NIL NIL
z s z s NIL
z s z s NIL
z s z s NIL
z s z s NIL

Exercise 24.3-2

Consider any graph with a negative cycle. RELAX is called a finite number
of times but the distance to any vertex on the cycle is −∞, so DIJKSTRA’s
algorithm cannot possibly be correct here. The proof of theorem 24.6 doesn’t
go through because we can no longer guarantee that δ(s, y) ≤ δ(s, u).

Exercise 24.3-3

It does work correctly to modify the algorithm like that. Once we are at the
point of considering the last vertex, we know that it’s current d value is at at
least as large as the largest of the other vertices. Since none of the edge weights
are negative, its d value plus the weight of any edge coming out of it will be
at least as large as the d values of all the other vertices. This means that the
relaxations that occur will not change any of the d values of any vertices, and
so not change their π values.

Exercise 24.3-4

Begin by verifying that proposed shortest paths tree is indeed a tree. Next
check that s.d = 0. Then, for each vertex in V \{s}, examine all edges coming

5

into V . Check that v.π is the vertex which minimizes u.d+w(u, v) for all vertices
u for which there is an edge (u, v), and that v.d = v.π.d + w(v.π, v). If this is
ever false, return false. Otherwise, return true. This takes O(V +E) time. Now
we must check that this correctly checks whether or not the d and π attributes
match those of some shortest-paths tree. Suppose that this is not true; ie,
that the algorithm terminates without returning false on input which doesn’t
correspond to correctly computed minimum distances and a minimum spanning
tree. Let v be a vertex which is incorrect which minimizes min(v.d, δ(s, v)).
Break ties by choosing the vertex closest to s along the proposed shortest paths
tree T . (If there are still ties, choose arbitrarily from among them).

First suppose v.d ≤ δ(s, v). Then we must have v.π.d < v.d since v.π.d
is closer to the root along T , so if equality held we would have selected v.π
instead of v. By construction, v.π.d must be correct. Furthermore, if v had a
better neighbor than v.π according to the estimated distances, the algorithm
would have identified it at terminated. Thus, if v.π cannot be the parent of
v on a shortest paths tree, there must exist a neighbor u of v such that u.d
was computed incorrectly, but such that δ(s, u) + w(u, v) < v.d. However, this
implies δ(s, u) < v.d, which means we should have initially chosen u instead of
v.

Now suppose δ(s, v) < v.d. If v has no incident edges of weight 0 then each
vertex u ∈ N(v) = {u|(u, v) ∈ E} has been computed correctly. Since v.d must
equal u.d+ w(u, v) for some such vertex u ∈ N(v), the algorithm would detect
if v were incorrectly computed. Thus, v must have at least one incident edge
of weight 0. Let S = {v′|(v′, v) ∈ E,w(v′, v) = 0}. Then no v′ ∈ S can be
the parent of v in the proposed shortest paths tree, since it would have been
chosen instead of v to begin with. Furthermore, since v.d is incorrect and each
u ∈ N(v)− S has strictly lower estimated distances, the estimated distances of
each u ∈ N(v)− S must be correct. This implies that the only possible parents
of v in a true shortest paths tree must lie in S. Let z be one such vertex. Then
δ(s, z) = δ(s, v), so we may apply the exact same argument as above to z. Con-
tinuing in this fashion, follow 0-weight edges back towards the root along some
true shortest paths tree. Since 0 ≤ δ(s, v) < v.d, this process will eventually
terminate because the estimated distance is nonzero, so either we’ll run out of
0-weight edges or we’ll hit the root and the algorithm will correctly identify an
overestimated distance.

Exercise 24.3-5

Consider the graph on 5 vertices {a, b, c, d, e}, and with edges (a, b), (b, c), (c, d), (a, e), (e, c)
all with weight 0. Then, we could pull vertices off of the queue in the ordera, e, c, b, d.
This would mean that we relax (c, d) before (b, c). However, a shortest pat to
d is (a, b), (b, c), (c, d). So, we would be relaxing an edge that appears later on
this shortest path before an edge that appears earlier.

Exercise 24.3-6

6

We now view the weight of a path as the reliability of a path, and it is
computed by taking the product of the reliabilities of the edges on the path.
Our algorithm will be similar to that of DIJKSTRA, and have the same run-
time, but we now wish to maximize weight, and RELAX will be done inline by
checking products instead of sums, and switching the inequality since we want
to maximize reliability. Finally, we track that path from y back to x and print
the vertices as we go.

Algorithm 2 RELIABILITY(G, r, x, y)

1: INITIALIZE-SINGLE-SOURCE(G, x)
2: S = ∅
3: Q = G.V
4: while Q 6= ∅ do
5: u = EXTRACT-MIN(Q)
6: S = S ∪ {u}
7: for each vertex v ∈ G.Adj[u] do
8: if v.d < u.d · r(u, v) then
9: v.d = u.d · r(u, v)

10: v.π = u
11: end if
12: end for
13: end while
14: while y 6= x do
15: Print y
16: y = y.π
17: end while
18: Print x

Exercise 24.3-7

Each edge is replaced with a number of edges equal to its weight, and one
less than that many vertices. That is, |V ′| =

∑
(v,u)∈E w(v, u) − 1. Similarly,

|E′| =
∑

(v,u)∈E w(v, u). Since we can bound each of these weights by W , we

can say that |V ′| ≤ W |E| − |E| so there are at most W |E| − |E|+ |V | vertices
in G′. A breadth first search considers vertices in an order so that u and v
satisfy u.d < v.d it considers u before v. Similarly, since each iteration of the
while loop in Dijkstra’s algorithm considers the vertex with lowest d value in
the queue, we will also be considering vertices with smaller d values first. So,
the two order of considering vertices coincide.

Exercise 24.3-8

We will modify Dijkstra’s algorithm to run on this graph by changing the
way the priority queue works, taking advantage of the fact that its members

7

will have keys in the range [0,WV] ∪ {∞}, since in the worst case we have to
compute the distance from one end of a chain to the other, with |V | vertices each
connected by an edge of weight W . In particular, we will create an array A such
that A[i] holds a linked list of all vertices whose estimated distance from s is i.
We’ll also need the attribute u.list for each vertex u, which points to u’s spot
in the list stored at A[u.d]. Since the minimum distance is always increasing,
k will be at most VW , so the algorithm spends O(VW) time in the while loop
on line 9, over all iterations of the for-loop of line 8. We spend only O(V + E)
time executing the for-loop of line 14 because we look through each adjacency
list only once. All other operations take O(1) time, so the total runtime of the
algorithm is O(VW) +O(V + E) = O(VW + E).

Algorithm 3 MODIFIED-DIJKSTRA(G,w,s)

1: for each v ∈ G.V do v.d = VW + 1 v.π = NIL
2: end for
3: s.d = 0
4: Initialize an array A of length VW + 2
5: A[0].insert(s)
6: Set A[VW + 1] equal to a linked list containing every vertex except s
7: k = 0
8: for i = 1 to |V | do
9: while A[k] = NIL do

10: k = k + 1
11: end while
12: u = A[k].head
13: A[k].delete(u)
14: for each vertex v ∈ G.Adj[u] do
15: if v.d > u.d+ w(u, v) then
16: A[v.d].delete(v.list)
17: v.d = u.d+ w(u, v)
18: v.π = u
19: A[v.d].insert(v)
20: v.list = A[v.d].head
21: end if
22: end for
23: end for

Exercise 24.3-9
We can modify the construction given in the previous exercise to avoid having to
do a linear search through the array of lists A. To do this, we can just keep a set
of the indices of A that contain a non-empty list. Then, we can just maintain
this as we move the vertices between lists, and replace the while loop in the
previous algorithm with just getting the minimum element in the set.

One way of implementing this set structure is with a self-balancing binary

8

search tree. Since the set consists entirely of indices of A which has length W ,
the size of the tree is at most W . We can find the minimum element, delete an
element and insert in element all in time O(lg(W)) in a self balancing binary
serach tree.

Another way of doing this, since we know that the set is of integers drawn
from the set {1, . . . ,W}, is by using a vEB tree. This allows the insertion,
deletion, and find minimum to run in time O(lg(lg(W)).

Since for every edge, we potentially move a vertex from one list to another,
we also need to possibly perform a deletion and insertion in the set. Also, at
the beginning of the outermost for loop, we need to perform a get min opera-
tion, if removing this element would cause the list in that index of A to become
empty, we have to delete it from our set of indices. So, we need to perform a
set operation for each vertex, and also for each edge. There is only a constant
amount of extra work that has to be done for each, so the total runtime is
O((V + E) lg lg(W)) which is also O((V + E) lg(W)).

Exercise 24.3-10

The proof of correctness, Theorem 24.6, goes through exactly as stated in
the text. The key fact was that δ(s, y) ≤ δ(s, u). It is claimed that this holds
because there are no negative edge weights, but in fact that is stronger than is
needed. This always holds if y occurs on a shortest path from s to u and y 6= s
because all edges on the path from y to u have nonnegative weight. If any had
negative weight, this would imply that we had “gone back” to an edge incident
with s, which implies that a cycle is involved in the path, which would only be
the case if it were a negative-weight cycle. However, these are still forbidden.

Exercise 24.4-1

Our vertices of the constraint graph will be {v0, v1, v2, v3, v4, v5, v6}. The
edges will be (v0, v1), (v0, v2), (v0, v3), (v0, v4), (v0, v5), (v0, v6), (v2, v1), (v4, v1), (v3, v2), (v5, v2), (v6, v2), (v6, v3), (v2, v4), (v1, v5), (v4, v5), (v3, v6)
with edge weights 0, 0, 0, 0, 0, 0, 1,−4, 2, 7, 5, 10, 2,−1, 3,−8 respectively. Then,
computing (δ(v0, v1), δ(v0, v2), δ(v0, v3), δ(v0, v4), δ(v0, v5), δ(v0, v6)), we get (−5,−3, 0,−1,−6,−8)
which is a feasible solution by Theorem 24.9.

Exercise 24.4-2

There is no feasible solution because the constraint graph contains a negative-
weight cycle: (v1, v4, v2, v3, v5, v1) has weight -1.

Exercise 24.4-3

No, it cannot be positive. This is because for every vertex v 6= v0, there is
an edge (v0, v) with weight zero. So, there is some path from the new vertex
to every other of weight zero. Since δ(v0, v) is a minimum weight of all paths,
it cannot be greater than the weight of this weight zero path that consists of a

9

single edge.

Exercise 24.4-4

To solve the single source shortest path problem we must have that for each
edge (vi, vj), δ(s, vj) ≤ δ(s, vi) +w(vi, vj), and δ(s, s) = 0. We we will use these
as our inequalities.

Exercise 24.4-5

We can follow the advice of problem 14.4-7 and solve the system of con-
straints on a modified constraint graph in which there is no new vertex v0. This
is simply done by initializing all of the vertices to have a d value of 0 before run-
ning the iterated relaxations of Bellman Ford. Since we don’t add a new vertex
and the n edges going from it to to vertex corresponding to each variable, we
are just running Bellman Ford on a graph with n vertices and m edges, and so
it will have a runtime of O(mn).

Exercise 24.4-6

To obtain the equality constraint xi = xj + bk we simply use the inequalities
xi − xj ≤ bk and xj − xi ≤ −bk, then solve the problem as usual.

Exercise 24.4-7

We could avoid adding in the additional vertex by instead initializing the
d value for each vertex to be 0, and then running the bellman ford algorithm.
These modified initial conditions are what would result from looking at the ver-
tex v0 and relaxing all of the edges coming off of it. After we would of processed
the edges coming off of v0, we can never consider it again because there are no
edges going to it. So, we can just initialize the vertices to what they would be
after relaxing the edges coming off of v0.

Exercise 24.4-8

Bellman-Ford correctly solves the system of difference constraints so Ax ≤ b
is always satisfied. We also have that xi = δ(v0, vi) ≤ w(v0, vi) = 0 so xi ≤ 0 for
all i. To show that

∑
xi is maximized, we’ll show that for any feasible solution

(y1, y2, . . . , yn) which satisfies the constraints we have yi ≤ δ(v0, vi) = xi. Let
v0, vi1 , . . . , vik be a shortest path from v0 to vi in the constraint graph. Then we
must have the constraints yi2 − yi1 ≤ w(vi1 , vi2), . . . , yik − yik−1

≤ w(vik−1
, vik).

Summing these up we have

yi ≤ yi − y1 ≤
k∑

m=2

w(vim , vim−1) = δ(v0, vi) = xi.

10

Exercise 24.4-9

We can see that the Bellman-Ford algorithm run on the graph whose con-
struction is described in this section causes the quantity max{xi} −min{xi} to
be minimized. We know that the largest value assigned to any of the vertices in
the constraint graph is a 0. It is clear that it won’t be greater than zero, since
just the single edge path to each of the vertices has cost zero. We also know
that we cannot have every vertex having a shortest path with negative weight.
To see this, notice that this would mean that the pointer for each vertex has
it’s p value going to some other vertex that is not the source. This means that
if we follow the procedure for reconstructing the shortest path for any of the
vertices, we have that it can never get back to the source, a contradiction to the
fact that it is a shortest path from the source to that vertex.

Next, we note that when we run Bellman-Ford, we are maximizing min{xi}.
The shortest distance in the constraint graphs is the bare minimum of what is
required in order to have all the constraints satisfied, if we were to increase any
of the values we would be violating a constraint.

This could be in handy when scheduling construction jobs because the quan-
tity max{xi} −min{xi} is equal to the difference in time between the last task
and the first task. Therefore, it means that minimizing it would mean that the
total time that all the jobs takes is also minimized. And, most people want the
entire process of construction to take as short of a time as possible.

Exercise 24.4-10

Consider introducing the dummy variable x. Let yi = xi + x. Then
(y1, . . . , yn) is a solution to a system of difference constraints if and only if
(x1, . . . , xn) is. Moreover, we have xi ≤ bk if and only if yi−x ≤ bk and xi ≥ bk
if and only if yi−x ≥ bk. Finally, xi−xj ≤ b if and only if yi−yj ≤ b. Thus, we
construct our constraint graph as follows: Let the vertices be v0, v1, v2, . . . , vn, v.
Draw the usual edges among the vi’s, and weight every edge from v0 to another
vertex by 0. Then for each constraint of the form xi ≤ bk, create edge (x, yi)
with weight bk. For every constraint of the form xi ≥ bk, create edge (yi, x)
with weight −bk. Now use Bellman-Ford to solve the problem as usual. Take
whatever weight is assigned to vertex x, and subtract it from the weights of
every other vertex to obtain the desired solution.

Exercise 24.4-11

To do this, just take the floor of (largest integer that is less than or equal to)
each of the b values and solve the resulting integer difference problem. These
modified constraints will be admitting exactly the same set of assignments since
we required that the solution have integer values assigned to the variables. This
is because since the variables are integers, all of their differences will also be
integers. For an integer to be less than or equal to a real number, it is neces-
sary and sufficient for it to be less than or equal to the floor of that real number.

11

Exercise 24.4-12

To solve the problem of Ax ≤ b where the elements of b are real-valued
we carry out the same procedure as before, running Bellman-Ford, but allow-
ing our edge weights to be real-valued. To impose the integer condition on
the xi’s, we modify the RELAX procedure. Suppose we call RELAX(vi, vj , w)
where vj is required to be integral valued. If vj .d > bvi.d+w(vi, vj)c, set vj .d =
bvi.d+w(vi, vj)c. This guarantees that the condition that vj .d−vi.d ≤ w(vi, vj)
as desired. It also ensures that vj is integer valued. Since the triangle inequal-
ity still holds, x = (v1.d, v2.d, . . . , vn.d) is a feasible solution for the system,
provided that G contains no negative weight cycles.
Exercise 24.5-1

Since the induced shortest path trees on {s, t, y} and on {t, x, y, z} are in-
dependent and have to possible configurations each, there are four total arising
from that. So, we have the two not shown in the figure are the one consist-
ing of the edges {(s, t), (s, y), (y, x), (x, z)} and the one consisting of the edges
{(s, t), (t, y), (t, x), (y, z)}.

Exercise 24.5-2

Let G have 3 vertices s, x, and y. Let the edges be (s, x), (s, y), (x, y) with
weights 1, 1, and 0 respectively. There are 3 possible trees on these vertices
rooted at s, and each is a shortest paths tree which gives δ(s, x) = δ(s, y) = 1.

Exercise 24.5-3

To modify Lemma 24.10 to allow for possible shortest path weights of ∞
and −∞, we need to define our addition as ∞ + c = ∞, and −∞ + c = −∞.
This will make the statement behave correctly, that is, we can take the shortest
path from s to u and tack on the edge (u, v) to the end. That is, if there is a
negative weight cycle on your way to u and there is an edge from u to v, there
is a negative weight cycle on our way to v. Similarly, if we cannot reach v and
there is an edge from u to v, we cannot reach u.

Exercise 24.5-4

Suppose u is the vertex which first caused s.π to be set to a non-NIL value.
Then we must have 0 = s.d > u.d + w(u, s). Let p be the path from s
to u in the shortest paths tree so far, and C be the cycle obtained by fol-
lowing that path from s to u, then taking the edge (u, s). Then we have
w(C) = w(p) + w(u, s) = u.d + w(u, s) < 0, so we have a negative-weight
cycle.

12

Exercise 24.5-5

Suppose that we have a grap hon three vertices {s, u, v} and containing edges
(s, u), (s, v), (u, v), (v, u) all with weight 0. Then, there is a shortest path from
s to v of s, u, v and a shortest path from s to u of s, v, u. Based off of these, we
could set v.pi = u and u.π = v. This then means that there is a cycle consisting
of u, v in Gπ.

Exercise 24.5-6

We will prove this by induction on the number of relaxations performed. For
the base-case, we have just called INITIALIZE-SINGLE-SOURCE(G, s). The
only vertex in Vπ is s, and there is trivially a path from s to itself. Now suppose
that after any sequence of n relaxations, for every vertex v ∈ Vπ there exists
a path from s to v in Gπ. Consider the (n + 1)st relaxation. Suppose it is
such that v.d > u.d + w(u, v). When we relax v, we update v.π = u.π. By the
induction hypothesis, there was a path from s to u in Gπ. Now v is in Vπ, and
the path from s to u, followed by the edge (u, v) = (v.π, v) is a path from s to
v in Gπ, so the claim holds.

Exercise 24.5-7

We know by 24.16 that a Gπ forms a tree after a sequence of relaxation
steps. Suppose that T is the tree formed after performing all the relaxation
steps of the Bellman Ford algorithm. While finding this tree would take many
more than V − 1 relaxations, we just want to say that there is some sequence
of relaxations that gets us our answer quickly, not necessarily proscribe what
those relaxations are. So, our sequence of relaxations will be all the edges of T
in an order so that we never relax an edge that is below an unrelaxed edge in
the tree(a topological ordering). This guarantees that Gπ will be the same as
was obtained through the slow, proven correct, Bellman-Ford algorithm. Since
any tree on V vertices has V − 1 edges, we are only relaxing V − 1 edges.

Exercise 24.5-8

Since the negative-weight cycle is reachable from s, let v be the first vertex
on the cycle reachable from s (in terms of number of edges required to reach v)
and s = v0, v1, . . . , vk = v be a simple path from s to v. Start by performing the
relaxations to v. Since the path is simple, every vertex on this path is encoun-
tered for the first time, so its shortest path estimate will always decrease from
infinity. Next, follow the path around from v back to v. Since v was the first
vertex reached on the cycle, every other vertex will have shortest-path estimate
set to ∞ until it is relaxed, so we will change these for every relaxation around
the cycle. We now create the infinite sequence of relaxations by continuing to
relax vertices around the cycle indefinitely. To see why this always causes the
shortest-path estimate to change, suppose we have just reached vertex xi, and

13

the shortest-path estimates have been changed for every prior relaxation. Let
x1, x2, . . . , xn be the vertices on the cycle. Then we have xi−1.d+w(xi−1, x) =
xi−2.d+w(xi−2, xi−1) +w(xi−1, wi) = . . . = xi.d+

∑n
j=1 w(xj) < w.d since the

cycle has negative weight. Thus, we must update the shortest-path estimate of
xi.

Problem 24-1

a. Since in Gf edges only go from vertices with smaller index to vertices with
greater index, there is no way that we could pick a vertex, and keep increas-
ing it’s index, and get back to having the index equal to what we started
with. This means that Gf is acyclic. Similarly, there is no way to pick an
index, keep decreasing it, and get back to the same vertex index. By these
definitions, since Gf only has vertices going from lower indices to higher in-
dices, (v1, . . . , v|V |) is a topological ordering of the vertices. Similarly, for Gb,
(v|V |, . . . , v1) is a topological ordering of the vertices.

b. Suppose that we are trying to find the shortest path from s to v. Then,
list out the vertices of this shortest path vk1 , vk2 , . . . , vkm . Then, we have
that the number of times that the sequence {ki}i goes from increasing to
decreasing or from decreasing to increasing is the number of passes over the
edges that are necessary to notice this path. This is because any increasing
sequence of vertices will be captured in a pass through Ef and any decreasing
sequence will be captured in a pass through Eb. Any sequence of integers
of length |V | can only change direction at most b|V |/2c times. However, we
need to add one more in to account for the case that the source appears later
in the ordering of the vertices than vk2 , as it is in a sense initially expecting
increasing vertex indices, as it runs through Ef before Eb.

c. It does not improve the asymptotic runtime of Bellman ford, it just drops
the runtime from having a leading coefficient of 1 to a leading coefficient of
1
2 . Both in the original and in the modified version, the runtime is O(EV).

Problem 24-2

1. Suppose that box x = (x1, . . . , xd) nests with box y = (y1, . . . , yd) and
box y nests with box z = (z1, . . . , zd). Then there exist permutations π
and σ such that xπ(1) < y1, . . . , xπ(d) < yd and yσ(1) < z1, . . . , yσ(d) < zd.
This implies xπ(σ(1)) < z1, . . . , xπ(σ(d)) < zd, so x nests with z and the
nesting relation is transitive.

2. Box x nests inside box y if and only if the increasing sequence of dimen-
sions of x is component-wise strictly less than the increasing sequence of
dimensions of y. Thus, it will suffice to sort both sequences of dimensions
and compare them. Sorting both length d sequences is done in O(d lg d),

14

and comparing their elements is done in O(d), so the total time is O(d lg d).

3. We will create a nesting-graph G with vertices B1, . . . , Bn as follows. For
each pair of boxes Bi, Bj , we decide if one nests inside the other. If Bi
nests in Bj , draw an arrow from Bi to Bj . If Bj nests in Bi, draw an
arrow from Bj to Bi. If neither nests, draw no arrow. To determine the
arrows efficiently, after sorting each list of dimensions in O(nd lg d) we
can sort all boxes’ sorted dimensions lexicographically in O(dn lg n) using
radix sort. By transitivity, it will suffice to test adjacent nesting relations.
Thus, the total time to build this graph is O(ndmax lg d, lg n). Next, we
need to find the longest chain in the graph.

Problem 24-3

a. To do this we take the negative of the natural log (or any other base will also
work) of all the values ci that are on the edges between the currencies. Then,
we detect the presence or absence of a negative weight cycle by applying
Bellman Ford. To see that the existence of an arbitrage situation is equivalent
to there being a negative weight cycle in the original graph, consider the
following sequence of steps:

R[i1, i2] ·R[i2, i3] · · · · ·R[ik, i1] > 1

ln(R[i1, i2]) + ln(R[i2, i3]) + · · ·+ ln(R[ik, i1]) > 0

− ln(R[i1, i2])− ln(R[i2, i3])− · · · − ln(R[ik, i1]) < 0

b. To do this, we first perform the same modification of all the edge weights as
done in part a of this problem. Then, we wish to detect the negative weight
cycle. To do this, we relax all the edges |V | − 1 many times, as in Bellman-
Ford algorithm. Then, we record all of the d values of the vertices. Then, we
relax all the edges |V | more times. Then, we check to see which vertices had
their d value decrease since we recorded them. All of these vertices must lie
on some (possibly disjoint) set of negative weight cycles. Call S this set of
vertices. To find one of these cycles in particular, we can pick any vertex in
S and greedily keep picking any vertex that it has an edge to that is also in
S. Then, we just keep an eye out for a repeat. This finds us our cycle. We
know that we will never get to a dead end in this process because the set S
consists of vertices that are in some union of cycles, and so every vertex has
out degree at least 1.

Problem 24-4

15

a. We can do this in O(E) by the algorithm described in exercise 24.3-8 since
our “priority queue” takes on only integer values and is bounded in size by E.

b. We can do this in O(E) by the algorithm described in exercise 24.3-8 since
w takes values in {0, 1} and V = O(E).

c. If the ith digit, read from left to right, of w(u, v) is 0, then wi(u, v) =
2wi−1(u, v). If it is a 1, then wi(u, v) = 2wi−1(u, v) + 1. Now let s =
v0, v1, . . . , vn = v be a shortest path from s to v under wi. Note that any
shortest path under wi is necessarily also a shortest path under wi−1. Then
we have

δi(s, v) =

n∑
m=1

wi(vm−1, vm)

≤
n∑

m=1

[2wi−1(u, v) + 1]

≤ 2

n∑
m=1

wi−1(u, v) + n

≤ 2δi−1(s, v) + |V | − 1.

On the other hand, we also have

δi(s, v) =

n∑
m=1

wi(vm−1, vm)

≥
n∑

m=1

2wi−1(vm−1, vm)

≥ 2δi−1(s, v)

d. Note that every quantity in the definition of ŵi is an integer, so ŵi is
clearly an integer. Since wi(u, v) ≥ 2wi−1(u, v), it will suffice to show that
wi−1(u, v) + δi−1(s, u) ≥ δi−1(s, v) to prove nonnegativity. This follows im-
mediately from the triangle inequality.

e. First note that s = v0, v1, . . . , vn = v is a shortest path from s to v with
respect to ŵ if and only if it is a shortest path with respect to w. Then we

16

have

δ̂i(s, v) =

n∑
m=1

wi(vm−1, vm) + 2δi−1(s, vm−1)− 2δi−1(s, vm)

=

n∑
m=1

wi(vm−1, vm)− 2δi−1(s, vn)

= δi(s, v)− 2δi−1(s, v)

f. By part a we can compute δ̂i(s, v) for all v ∈ V in O(E) time. If we have
already computed δi−1 then we can compute δi in O(E) time. Since we can
compute δ1 in O(E) by part b, we can compute δi from scratch in O(iE)
time. Thus, we can compute δ = δk in O(Ek) = O(E lgW) time.

Problem 24-5

a. If µ∗ = 0, then we have that the lowest that 1
k

∑k
i=1 w(ei) can be is zero.

This means that the lowest
∑k
i=1 w(ei) can be is 0. This means that no cycle

can have negative weight. Also, we know that for any path from s to v, we
can make it simple by removing any cycles that occur. This means that it
had a weight equal to some path that has at most n− 1 edges in it. Since we
take the minimum over all possible number of edges, we have the minimum
over all paths.

b. To show that

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n− k
≥ 0

we need to show that

max
0≤k≤n−1

δn(s, v)− δk(s, v) ≥ 0

Since we have that µ∗ = 0, there aren’t any negative weight cycles. This
means that we can’t have the minimum cost of a path decrease as we increase
the possible length of the path past n − 1. This means that there will be a
path that at least ties for cheapest when we restrict to the path being less
than length n. Note that there may also be cheapest path of longer length
since we necessarily do have zero cost cycles. However, this isn’t guaranteed
since the zero cost cycle may not lie along a cheapest path from s to v.

c. Since the total cost of the cycle is 0, and one part of it has cost x, in order to
balance that out, the weight of the rest of the cycle has to be −x. So, suppose
we have some shortest length path from s to u, then, we could traverse the
path from u to v along the cycle to get a path from s to u that has length
δ(s, u) + x. This gets us that δ(s, v) ≤ δ(s, u) + x. To see the converse

17

inequality, suppose that we have some shortest length path from s to v.
Then, we can traverse the cycle going from v to u. We already said that this
part of the cycle had total cost −x. This gets us that δ(s, u) ≤ δ(s, v) − x.
Or, rearranging, we have δ(s, u) + x ≤ δ(s, v). Since we have inequalities
both ways, we must have equality.

d. To see this, we find a vertex v and natural number k ≤ n−1 so that δn(s, v)−
δk(s, v) = 0. To do this, we will first take any shortest length, smallest
number of edges path from s to any vertex on the cycle. Then, we will just
keep on walking around the cycle until we’ve walked along n edges. Whatever
vertex we end up on at that point will be our v. Since we did not change the
d value of v after looking at length n paths, by part a, we know that there
was some length of this path, say k, which had the same cost. That is, we
have δn(s, v) = δk(s, v).

e. This is an immediate result of the previous problem and part b. part b says
that for all v the inequality holds, so, we have

min
v∈V

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n− k
≥ 0

The previous part says that there is some v on each minimum weight cycle
so that

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n− k
= 0

which means that

min
v∈V

max
0≤k≤n−1

δn(s, v)− δk(s, v)

n− k
≤ 0

Putting the two inequalities together, we have the desired equality.

f. if we add t to the weight of each edge, the mean weight of any cycle becomes

µ(c) = 1
k

∑k
i=1(w(ei) + t) = 1

k

(∑k
i w(ei)

)
+ kt

k = 1
k

(∑k
i w(ei)

)
+ t. This

is the original, unmodified mean weight cycle, plus t. Since this is how the
mean weight of every cycle is changed, the lowest mean weight cycle stays the
lowest mean weight cycle. This means that µ∗ will increase by t. Suppose
that we first compute µ∗. Then, we subtract from every edge weight the
value µ∗. This will make the new µ∗ equal zero, which by part e means that

minv∈V max0≤k≤n−1
δn(s,v)−δk(s,v)

n−k = 0. Since they are both equal to zero,
they are both equal to each other.

g. By the previous part, it suffices to compute the expression on the previ-
ous line. We will start by creating a table that lists δk(s, v) for every
k ∈ {1, . . . , n} and v ∈ V . This can be done in time O(V (E + V)) by
creating a |V | by |V | table, where the kth row and vth column represent
δk(s, v) when wanting to compute a particular entry, we need look at a num-
ber of entries in the previous row equal to the in degree of the vertex we

18

want to compute. So, summing over the computation required for each row,
we need O(E + V). Note that this total runtime can be bumped down to
O(V E) by not including in the table any isolated vertices, this will ensure
that E ∈ Ω(V) So, O(V (E + V)) becomes O(V E). Once we have this table
of values computed, it is simple to just replace each row with the last row
minus what it was, and divide each entry by n−k, then, find the min column
in each row, and take the max of those numbers.

Problem 24-6

We’ll use the Bellman-Ford algorithm, but with a careful choice of the order
in which we relax the edges in order to perform a smaller number of RELAX
operations. In any bitonic path there can be at most two distinct increasing se-
quences of edge weights, and similarly at most two distinct decreasing sequences
of edge weights. Thus, by the path-relaxation property, if we relax the edges
in order of increasing weight then decreasing weight three times (for a total of
six times relaxing every edge) the we are guaranteed that v.d will equal δ(s, v)
for all v ∈ V . Sorting the edges takes O(E lgE). We relax every edge 6 times,
taking O(E). Thus the total runtime is O(E lgE) + O(E) = O(E lgE), which
is asymptotically faster than the usual O(V E) runtime of Bellman-Ford.

19

