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Exercise 22.1-1

Since it seems as though the list for the neighbors of each vertex v is just an
undecorated list, to find the length of each would take time O(out−degree(v)).
So, the total cost will be

∑
v∈V O(outdegree(v)) = O(|E|+ |V |). Note that the

|V | showing up in the asymptotics is necessary, because it still takes a constant
amount of time to know that a list is empty. This time could be reduced to
O(|V |) if for each list in the adjacency list representation, we just also stored
its length.

To compute the in degree of each vertex, we will have to scan through all
of the adjacency lists and keep counters for how many times each vertex has
appeared. As in the previous case, the time to scan through all of the adjacency
lists takes time O(|E|+ |V |).

Exercise 22.1-2

The adjacency list representation:

1 : 2, 3

2 : 1, 4, 5

3 : 1, 6, 7

4 : 2

5 : 2

6 : 3

7 : 3.
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The adjacency matrix representation:

0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0


.

Exercise 22.1-3

For the adjacency matrix representation, to compute the graph transpose,
we just take the matrix transpose. This means looking along every entry above
the diagonal, and swapping it with the entry that occurs below the diagonal.
This takes time O(|V |2).

For the adjacency list representation, we will maintain an initially empty
adjacency list representation of the transpose. Then, we scan through every list
in the original graph. If we are in the list corresponding to vertex v and see u
as an entry in the list, then we add an entry of v to the list in the transpose
graph corresponding to vertex u. Since this only requires a scan through all of
the lists, it only takes time O(|E|+ |V |)

Exercise 22.1-4

Create an array A of size |V |. For a list in the adjacency list corresponding
to vertex v, examine items on the list one by one. If any item is equal to v,
remove it. If vertex u appears on the list, examine A[u]. If it’s not equal to
v, set it equal to v. If it’s equal to v, remove u from the list. Since we have
constant time lookup in the array, the total runtime is O(V + E).

Exercise 22.1-5

From the adjacency matrix representation, if we take the square of the ma-
trix, we are left an edge between all pairs of vertices that are separated by a
path of exactly 2, so, to get the desired notion of the square of a graph, we also
just have to add in the vertices that are separated by only a single edge in G,
that is the entry u, v in the final resulting matrix should be one iff either G2[u, v]
or G[u, v] are one. Taking the square of a matrix can be done with a matrix
multiplication, which at the time of writing, can be most efficiently done by the
Coppersmith-Windograd algorithm which takes time O(|V |2.3728639). Since the
other operation for computing the final result only takes time O(|V |2), the total
runtime is O(|V |2.3728639).

If we are given an adjacency list representation, we can find the desired re-
sulting graph by first computing the transpose graph GT from exercise 22.1-3
in O(|V |+ |E|) time. Then, our initally empty adjacency list representation of
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G2 will be added to as follows. As we scan though the list of each vertex, say
v, and see a entry going to u, then we add u to the list corresponding to v, but
also add u to the list of everything on v’s list in GT . This means that we may
take as much as O(|E||V | + |V |) time since, we have to spend potentially |V |
time as we process each edge.

Exercise 22.1-6

Start by examining position (1,1) in the adjacency matrix. When examining
position (i, j), if a 1 is encountered, examine position (i+ 1, j). If a 0 is encoun-
tered, examine position (i, j + 1). Once either i or j is equal to |V |, terminate.
I claim that if the graph contains a universal sink, then it must be at vertex
i. To see this, suppose that vertex k is a universal sink. Since k is a universal
sink, row k in the adjacency matrix is all 0’s, and column k is all 1’s except for
position (k, k) which is a 0. Thus, once row k is hit, the algorithm will continue
to increment j until j = |V |. To be sure that row k is eventually hit, note that
once column k is reached, the algorithm will continue to increment i until it
reaches k. This algorithm runs in O(V ) and checking whether or not i in fact
corresponds to a sink is done in O(V ). Therefore the entire process takes O(V ).

Exercise 22.1-7

We have two cases, one for the diagonal entries and one for the non-diagonal
entries.

The entry of [i, i] for some i represents the sum of the in and ourt degrees of
the vertex that i corresponds to. To see this, we recall that an entry in a matrix
product is the dot product of row i in B and column i in BT . But, column i
in BT is the same as row i in B. So, we have that the entry is just row i of B
dotted with itself, that is

|E|∑
j=1

b2ij

However, since bij only takes values in {−1, 0, 1}, we have that b2ij only takes
values in {0, 1}, taking zero iff bi,j is zero. So, the entry is the sum of all nonzero
entries in row i of B, Since each edge leaving i is −1 and each edge going to i
is 1, we are counting all the edges that either leave or enter i, as we wanted to
show.

Now, suppose that our entry is indexed by [i, j] where i 6= j. This is the dot
product of row i in B with column j in BT , which is row j in B. So, the entry
is equal to

|E|∑
k=1

bi,k · bj,k

Each term in this sum is −1 if k goes between i and j, or 0 if it doesn’t. Since
we can’t have that two different vertices ar both on the same side of an edge,
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no terms may ever be 1. So, the entry is just -1 if there is an edge between i
and j, and zero otherwise.

Exercise 22.1-8

The expected lookup time is O(1), but in the worst case it could take O(V ).
If we first sorted vertices in each adjacency list then we could perform a binary
search so that the worst case lookup time is O(lg V ), but this has the disadvan-
tage of having a much worse expected lookup time.

Exercise 22.2-1

vertex d π
1 ∞ NIL
2 3 4
3 0 NIL
4 2 5
5 1 3
6 1 3

Exercise 22.2-2

These are the results when we examine adjacent vertices in lexicographic
order:

Vertex d π
r 4 s
s 3 w
t 1 u
u 0 NIL
v 5 r
w 2 t
x 1 u
y 1 u

Exercise 22.2-3

As mentioned in the errata, the question should state that we are to show
that a single bit suffices by removing line 18. To see why it is valid to remove
line 18, consider the possible transitions between colors that can occur. In par-
ticular, it is impossible for a white vertex to go straight to black. This is because
inorder for a vertex to be colored black, it must of been assigned to u on line
11. This means that we have to of enqueued the vertex in the queue at some
point. This can only occur on line 17, however, if we are running line 17 on a
vertex, we have to of run line 14 on it, giving it the color GRAY. Then, notice
that the only testing of colors that is done anywhere is on line 13, in which we
test whiteness. Since line 13 doesn’t care if a vertex is GRAY or BLACK, and
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we only ever assign black to a gray vertex, we don’t affect the running of the
algorithm at all by removing line 18. Since, once we remove line 18, we ever
assign BLACK to a vertex, we can represent the color by a single bit saying
whether the vertex is WHITE or GRAY.

Exercise 22.2-4

If we use an adjacency matrix, for each vertex u we dequeue we’ll have to
examine all vertices v to decide whether or not v is adjacent to u. This makes
the for-loop of line 12 O(V ). In a connected graph we enqueue every vertex of
the graph, so the worst case runtime becomes O(V 2).

Exercise 22.2-5

First, we will show that the vale d assigned to a vertex is independent of
the order that entries appear in adjacency lists. To do this, we rely on theorem
22.5 which proves correctness of BFS. In particular, that we have ν.d = δ(s, ν)
at the end of the procedure. Since δ(s, ν) is a property of the underlying graph,
no matter which representation of the graph in terms of adjacency lists that we
choose, this value will not change. Since the d values are equal to this thing
that doesn’t change when we mess with the adjacency lists, it too doesn’t change
when we mess with the adjacency lists.

Now, to show that π does depend on the ordering of the adjacency lists, we
will be using Figure 22.3 as a guide. First, we note that in the given worked out
procedure, we have that in the adjacency list for w, t precedes x. Also, in the
worked out procedure, we have that u.π = t. Now, suppose instead that we had
x preceding t in the adjacency list of w. Then, it would get added to the queue
before t, which means that it would u as it’s child before we have a chance to
process the children of t. This will mean that u.π = x in this different ordering
of the adjacency list for w.

Exercise 22.2-6

Let G be the graph shown in the first picture, G′ = (V,Eπ) be the graph
shown in the second picture, and 1 be the source vertex. Let’s see why Eπ can
never be produced by running BFS on G. Suppose that 2 precedes 5 in the
adjacency list of 1. We’ll dequeue 2 before 5, so 3.π and 4.π must both equal 2.
However, this is not the case. Thus, 5 must have preceded 2 in the adjacency
list. However, this implies that 3.π and 4.π both equal 5, which again isn’t true.
Nonetheless, it is easily seen that the unique simple path in G′ from 1 to any
vertex is a shortest path in G.
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Exercise 22.2-7

This problem is basically just a obfuscated version of two coloring. We will
try to color the vertices of this graph of rivalries by two colors, “babyface” and
“heel”. To have that no two babyfaces and no two heels have a rivalry is the
same as saying that the coloring is proper. To two color, we perform a breadth
first search of each connected component to get the d values for each vertex.
Then, we give all the odd ones one color say “heel”, and all the even d values a
different color. We know that no other coloring will succeed where this one fails
since if we gave any other coloring, we would have that a vertex v has the same
color as v.π since v and v.π must have different parities for their d values. Since
we know that there is no better coloring, we just need to check each edge to see
if this coloring is valid. If each edge works, it is possible to find a designation,
if a single edge fails, then it is not possible. Since the BFS took time O(n+ r)
and the checking took time O(r), the total runtime is O(n+ r).

Exercise 22.2-8

Suppose that a and b are the endpoints of the path in the tree which achieve
the diameter, and without loss of generality assume that a and b are the unique
pair which do so. Let s be any vertex in T . I claim that the result of a single BFS
will return either a or b (or both) as the vertex whose distance from s is greatest.
To see this, suppose to the contrary that some other vertex x is shown to be
furthest from s. (Note that x cannot be on the path from a to b, otherwise we
could extend). Then we have d(s, a) < d(s, x) and d(s, b) < d(s, x). Let c denote
the vertex on the path from a to b which minimizes d(s, c). Since the graph is in
fact a tree, we must have d(s, a) = d(s, c) + d(c, a) and d(s, b) = d(s, c) + d(c, b).
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(If there were another path, we could form a cycle). Using the triangle inequality
and inequalities and equalities mentioned above we must have

d(a, b) + 2d(s, c) = d(s, c) + d(c, b) + d(s, c) + d(c, a) < d(s, x) + d(s, c) + d(c, b).

I claim that d(x, b) = d(s, c) + d(s, b). It not, then by the triangle inequality
we must have a strict less-than. In other words, there is some path from x to
b which does not go through c. This gives the contradiction, because it implies
there is a cycle formed by concatenating these paths. Then we have

d(a, b) < d(a, b) + 2d(s, c) < d(x, b).

Since it is assumed that d(a, b) is maximal among all pairs, we have a con-
tradiction. Therefore, since trees have |V | − 1 edges, we can run BFS a single
time in O(V ) to obtain one of the vertices which is the endpoint of the longest
simple path contained in the graph. Running BFS again will show us where the
other one is, so we can solve the diameter problem for trees in O(V ).

Exercise 22.2-9

First, the algorithm computes a minimum spanning tree of the graph. Note
that this can be done using the procedures of Chapter 23. It can also be done
by performing a breadth first search, and restricting to the edges between v and
v.π for every v. To aide in not double counting edges, fix any ordering ≤ on the
vertices before hand. Then, we will construct the sequence of steps by calling
MAKE − PATH(s) where s was the root used for the BFS.

Algorithm 1 MAKE-PATH(u)

for v adjacent to u in the original graph, but not in the tree such that u ≤ v
do

go to v and back to u
end for
for v adjacent to u in the tree, but not equal to u.π do

go to v
perform the path proscribed by MAKE-PATH(v)

end for
go to u.π

Exercise 22.3-1
For directed graphs:

from\to BLACK GRAY WHITE
BLACK Allkinds Back,Cross Back,Cross
GRAY Tree, Forward,Cross Tree, Forward,Back Back,Cross
WHITE Cross, Tree, Forward Cross,Back allkinds

For undirected graphs, note that the lower diagonal is defined by the upper
diagonal:
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from\to BLACK GRAY WHITE
BLACK Allkinds Allkinds Allkinds
GRAY − Tree, Forward,Back Allkinds
WHITE − − Allkinds

Exercise 22.3-2

The following table gives the discovery time and finish time for each vetex
in the graph.

Vertex Discovered Finished
q 1 16
r 17 20
s 2 7
t 8 15
u 18 19
v 3 6
w 4 5
x 9 12
y 13 14
z 10 11

The tree edges are: (q, s), (s, v), (v, w), (q, t), (t, x), (x, z), (t, y), (r, u). The
back edges are: (w, s), (y, q), (z, x). The forward edge is: (q, w). The cross
edges are: (u, y), (r, y).

Exercise 22.3-3

As pointed out in figure 22.5, the parentheses structure of the DFS of figure
22.4 is (((())()))(()())

Exercise 22.3-4

Treat white vertices as 0 and non-white vertices as 1. Since we never check
whether or not a vertex is black, deleting line 8 doesn’t matter. We need only
know whether a vertex is white to get the same results. Once a vertex has been
colored grey, the non-white condition is satisfied and there is no need to mark
it as black.

Exercise 22.3-5

a. Since we have that u.d < v.d, we know that we have first explored u before
v. This rules out back edges and rules out the possibility that v is on a tree
that has been explored before exploring u’s tree. Also, since we return from v
before returning from u, we know that it can’t be on a tree that was explored
after exploring u. So, This rules out it being a cross edge. Leaving us with
the only possibilities of being a tree edge or forward edge.
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To show the other direction, suppose that (u, v) is a tree or forward edge. In
that case, since v occurs further down the tree from u, we know that we have
to explored u before v, this means that u.d < v.d. Also, since we have to of
finished v before coming back up the tree, we have that v.f < u.f . The last
inequality to show is that v.d < v.f which is trivial.

b. By similar reasoning to part a, we have that we must have v being an ancestor
of u on the DFS tree. This means that the only type of edge that could go
from u to v is a back edge.

To show the other direction, suppose that (u, v) is a back edge. This means
that we have that v is above u on the DFS tree. This is the same as the
second direction of part a where the roles of u and v are reversed. This means
that the inequalities follow for the same reasons.

c. Since we have that v.f < u.d, we know that either v is a descendant of u or
it comes on some branch that is explored before u. Similarly, since v.d < u.d,
we either have that u is a descendant of v or it comes on some branch that
gets explored before u. Putting these together, we see that it isn’t possible
for both to be descendants of each other. So, we must have that v comes on
a branch before u, So, we have that u is a cross edge.

To See the other direction, suppose that (u, v) is a cross edge. This means
that we have explored v at some point before exploring u, otherwise, we
would have taken the edge from u to v when exploring u, which would make
the edge either a forward edge or a tree edge. Since we explored v first, and
the edge is not a back edge, we must of finished exploring v before starting
u, so we have the desired inequalities.

Exercise 22.3-6

By Theorem 22.10, every edge of an undirected graph is either a tree edge
or a back edge. First suppose that v is first discovered by exploring edge (u, v).
Then by definition, (u, v) is a tree edge. Moreover, (u, v) must have been dis-
covered before (v, u) because once (v, u) is explored, v is necessarily discovered.
Now suppose that v isn’t first discovered by (u, v). Then it must be discovered
by (r, v) for some r 6= u. If u hasn’t yet been discovered then if (u, v) is explored
first, it must be a back edge since v is an ancestor of u. If u has been discovered
then u is an ancestor of v, so (v, u) is a back edge.

Exercise 22.3-7

See the algorithm DFS-STACK(G). Note that by a similar justification to
22.2-3, we may remove line 8 from the original DFS-VISIT algorithm without
changing the final result of the program, that is just working with the colors
white and gray.
Exercise 22.3-8
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Algorithm 2 DFS-STACK(G)

for every u ∈ G.V do
u.color = WHITE
u.π = NIL

end for
time = 0
S is an empty stack
while there is a white vertex u in G do

S.push(u)
while S is nonempty do

v = S.pop
time++
v.d = time
for all neighbors w of v do

if w.color == WHITE then
w.color = GRAY
w.π = v
S.push(w)

end if
end for
time++
v.f = time

end while
end while
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Consider a graph with 3 vertices u, v, and w, and with edges (w, u), (u,w),
and (w, v). Suppose that DFS first explores w, and that w’s adjacency list has
u before v. We next discover u. The only adjacent vertex is w, but w is already
grey, so u finishes. Since v is not yet a descendant of u and u is finished, v can
never be a descendant of u.

Exercise 22.3-9

Consider the Directed graph on the vertices {1, 2, 3}, and having the edges
(1, 2), (1, 3), (2, 1) then there is a path from 2 to 3, however, if we start a DFS
at 1 and process 2 before 3, we will have 2.f = 3 < 2 = 2.d which provides a
counterexample to the given conjecture.

Exercise 22.3-10

We need only update DFS-VISIT. If G is undirected we don’t need to make
any modifications. We simply note that lines 11 through 16 will never be exe-
cuted.

Algorithm 3 DFS-VISIT-PRINT(G,u)

1: time = time+ 1
2: u.d = time
3: u.color = GRAY
4: for each v ∈ G.Adj[u] do
5: if v.color == white then
6: Print “(u, v) is a Tree edge”
7: v.π = u
8: DFS-VISIT-PRINT(G, v)
9: else if v.color == grey then

10: Print “(u, v) is a Back edge”
11: else
12: if v.d > u.d then
13: Print “(u, v) is a Forward edge”
14: else
15: Print “(u, v) is a Cross edge”
16: end if
17: end if
18: end for

Exercise 22.3-11

Suppose that we have a directed graph on the vertices {1, 2, 3} and having
edges (1, 2), (2, 3) then, 2 has both incoming and outgoing edges. However, if we
pick our first root to be 3, that will be in it’s own DFS tree. Then, we pick our
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second root to be 2, since the only thing it points to has already been marked
BLACK, we wont be exploring it. Then, picking the last root to be 1, we don’t
screw up the fact that 2 is along in a DFS tree despite the fact that it has both
an incoming and outgoing edge in G.

Exercise 22.3-12

The modifications work as follows: Each time the if-condition of line 8 is
satisfied in DFS-CC, we have a new root of a tree in the forest, so we update
its cc label to be a new value of k. In the recursive calls to DFS-VISIT-CC, we
always update a descendant’s connected component to agree with its ancestor’s.

Algorithm 4 DFS-CC(G)

1: for each vertex u ∈ G.V do
2: u.color = white
3: u.π = NIL
4: end for
5: time = 0
6: k = 1
7: for each vertex u ∈ G.V do
8: if u.color == white then
9: u.cc = k

10: k = k + 1
11: DFS-VISIT-CC(G,u)
12: end if
13: end for

Algorithm 5 DFS-VISIT-CC(G,u)

1: time = time+ 1
2: u.d = time
3: u.color = GRAY
4: for each v ∈ G.Adj[u] do
5: v.cc = u.cc
6: if v.color == white then
7: v.π = u
8: DFS-VISIT-CC(G, v)
9: end if

10: end for
11: u.color = black
12: time = time+ 1
13: u.f = time

Exercise 22.3-13
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This can be done in time O(|V ||E|). To do this, first perform a topological
sort of the vertices. Then, we will contain for each vertex a list of it’s ancestors
with in degree 0. We compute these lists for each vertex in the order starting
from the earlier ones topologically. Then, if we ever have a vertex that has the
same degree 0 vertex appearing in the lists of two of its immediate parents, we
know that the graph is not singly connected. however, if at each step we have
that at each step all of the parents have disjoint sets of degree 0 vertices as
ancestors, the graph is singly connected. Since, for each vertex, the amount of
time required is bounded by the number of vertices times the in degree of the
particular vertex, the total runtime is bounded by O(|V ||E|).

Exercise 22.4-1

Our start and finish times from performing the DFS are

label d f
m 1 20
q 2 5
t 3 4
r 6 19
u 7 8
y 9 18
v 10 17
w 11 14
z 12 13
x 15 16
n 21 26
o 22 25
s 23 24
p 27 28

And so, by reading off the entries in decreasing order of finish time, we have
the sequence p, n, o, s,m, r, y, v, x, w, z, u, q, t.

Exercise 22.4-2

The algorithm works as follows. The attribute u.paths of node u tells the
number of simple paths from u to v, where we assume that v is fixed throughout
the entire process. To count the number of paths, we can sum the number of
paths which leave from each of u’s neighbors. Since we have no cycles, we will
never risk adding a partially completed number of paths. Moreover, we can
never consider the same edge twice among the recursive calls. Therefore, the
total number of executions of the for-loop over all recursive calls is O(V + E).
Calling SIMPLE-PATHS(s, t) yields the desired result.
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Algorithm 6 SIMPLE-PATHS(u,v)

1: if u == v then
2: Return 1
3: else if u.paths 6= NIL then
4: Return u.paths
5: else
6: for each w ∈ Adj[u] do
7: u.paths = u.paths+ SIMPLE-PATHS(w, v)
8: end for
9: Return u.paths

10: end if

Exercise 22.4-3

We can’t just use a depth first search, since that takes time that could be
worst case linear in |E|. However we will take great inspiration from DFS, and
just terminate early if we end up seeing an edge that goes back to a visited ver-
tex. Then, we should only have to spend a constant amount of time processing
each vertex. Suppose we have an acyclic graph, then this algorithm is the usual
DFS, however, since it is a forest, we have |E| ≤ |V | − 1 with equality in the
case that it is connected. So, in this case, the runtime of O(|E| + |V |) O(|V |).
Now, suppose that the procedure stopped early, this is because it found some
edge coming from the currently considered vertex that goes to a vertex that
has already been considered. Since all of the edges considered up to this point
didn’t do that, we know that they formed a forest. So, the number of edges
considered is at most the number of vertices considered, which is O(|V |). So,
the total runtime is O(|V |).

Exercise 22.4-4

This is not true. Consider the graph G consisting of vertices a, b, c, and d.
Let the edges be (a, b), (b, c), (a, d), (d, c), and (c, a). Suppose that we start the
DFS of TOPOLOGICAL-SORT at vertex c. Assuming that b appears before
d in the adjacency list of a, the order, from latest to earliest, of finish times is
c, a, d, b. The “bad” edges in this case are (b, c) and (d, c). However, if we had
instead ordered them by a, b, d, c then the only bad edges would be (c, a). Thus
TOPOLOGICAL-SORT doesn’t always minimizes the number of “bad” edges.

Exercise 22.4-5

Consider having a list for each potential in degree that may occur. We
will also make a pointer from each vertex to the list that contains it. The
initial construction of this can be done in time O(|V | + |E|) because it only
requires computing the in degree of each vertex, which can be done in time
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O(|V | + |E|) (see problem 22.1-3). Once we have constructed this sequence of
lists, we repeatedly extract any element from the list corresponding to having in
degree zero. We spit this out as the next element in the topological sort. Then,
for each of the children c of this extracted vertex, we remove it from the list that
contains it and insert it into the list of in degree one less. Since a deletion and an
insertion in a doubly linked list can be done in constant time, and we only have
to do this for each child of each vertex, it only has to be done |E| many times.
Since at each step, we are outputting some element of in degree zero with respect
to all the vertices that hadn’t yet been output, we have successfully output a
topological sort, and the total runtime is just O(|E|+ |V |). We also know that
we can always have that there is some element to extract from the list of in
degree 0, because otherwise we would have a cycle somewhere in the graph. To
see this, just pick any vertex and traverse edges backwards. You can keep doing
this indefinitely because no vertex has in degree zero. However, there are only
finitely many vertices, so at some point you would need to find a repeat, which
would mean that you have a cycle.

If the graph was not acyclic to begin with, then we will have the problem of
having an empty list of vertices of in degree zero at some point. That is, if the
vertices left lie on a cycle, then none of them will have in degree zero.

Exercise 22.5-1

It can either stay the same or decrease. To see that it is possible to stay
the same, just suppose you add some edge to a cycle. To see that it is possible
to decrease, suppose that your original graph is on three vertices, and is just
a path passing through all of them, and the edge added completes this path
to a cycle. To see that it cannot increase, notice that adding an edge cannot
remove any path that existed before. So, if u and v are in the same connected
component in the original graph, then there are a path from one to the other,
in both directions. Adding an edge wont disturb these two paths, so we know
that u and v will still be in the same SCC in the graph after adding the edge.
Since no components can be split apart, this means that the number of them
cannot increase since they form a partition of the set of vertices.

Exercise 22.5-2

The finishing times of each vertex were computed in exercise 22.3-2. The
forest consists of 5 trees, each of which is a chain. We’ll list the vertices of each
tree in order from root to leaf: r, u, q − y − t, x− z, and s− w − v.

Exercise 22.5-3

Professor Bacon’s suggestion doesn’t work out. As an example, suppose that
our graph is on the three vertices {1, 2, 3} and consists of the edges (2, 1), (2, 3), (3, 2).
Then, we should end up with {2, 3} and {1} as our SCC’s. However, a possible
DFS starting at 2 could explore 3 before 1, this would mean that the finish
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time of 3 is lower than of 1 and 2. This means that when we first perform the
DFS starting at 3. However, a DFS starting at 3 will be able to reach all other
vertices. This means that the algorithm would return that the entire graph is a
single SCC, even though this is clearly not the case since there is neither a path
from 1 to 2 of from 1 to 3.

Exercise 22.5-4

First observe that C is a strongly connected component of G if and only if
it is a strongly connected component of GT . Thus the vertex sets of GSCC and
(GT )SCC are the same, which implies the vertex sets of ((GT )SCC)T and GSCC

are the same. It suffices to show that their edge sets are the same. Suppose
(vi, vj) is an edge in ((GT )SCC)T . Then (vj , vi) is an edge in (GT )SCC . Thus
there exist x ∈ Cj and y ∈ Ci such that (x, y) is an edge of GT , which implies
(y, x) is an edge of G. Since components are preserved, this means that (vi, vj)
is an edge in GSCC . For the opposite implication we simply note that for any
graph G we have (GT )T = G.

Exercise 22.5-5

Given the procedure given in the section, we can compute the set of vertices
in each of the strongly connected components. For each vertex, we will give it an
entry SCC, so that v.SCC denotes the strongly connected component (vertex
in the component graph) that v belongs to. Then, for each edge (u, v) in the
original graph, we add an edge from u.SCC to v.SCC if one does not already
exist. This whole process only takes a time of O(|V |+ |E|). This is because the
procedure from this section only takes that much time. Then, from that point,
we just need a constant amount of work checking the existence of an edge in
the component graph, and adding one if need be.

Exercise 22.5-6

By Exercise 22.5-5 we can compute the component graph in O(V +E) time,
and we may as well label each node with its component as we go (see exercise
22.3-12 for the specifics), as well as creating a list for each component which
contains the vertices in that component by forming an array A such that A[i]
contains a list of the vertices in the ith connected component. Then run DFS
again, and for each edge encountered, check whether or not it connects two
different components. If it doesn’t, delete it. If it does, determine whether it is
the first edge connecting them. If not, delete it. This can be done in constant
time per edge since we can store the component edge information in a k by k
matrix, where k is the number of connected components. The runtime of this
is thus O(V + E). Now the only edges we have are a minimal number which
connect distinct connected components. The last step is place edges within the
connected components in a minimal way. The fewest edges which can be used
to create a connected component with n vertices is n, and this is done with a
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cycle. For each connected component, let v1, v2, . . . , vk be the vertices in that
component. We find these by using the array A created earlier. Add in the
edges (v1, v2), (v2, v3), . . . , (vk, v1). This is linear in the number of vertices, so
the total runtime is O(V + E).

Exercise 22.5-7

First compute the component graph as in 22.5-5. Then, in order to have
that every vertex either has a path to or from every other vertex, we need
that this component graph also has this property. Since this is acyclic, we can
perform a topological sort on it. For this to be the case, we want that there
is a single path through this dag that hits every single vertex. This can only
happen in the DAG if each vertex has an edge going to the vertex that appears
next in the topological ordering. See the algorithm IS-SEMI-CONNECTED(G).

Algorithm 7 IS-SEMI-CONNECTED(G)

Compute the component graph of G, call it G′

Perform a topological sort on G′ to get the ordering of its vertices
v1, v2, . . . , vk.
for i=1..k-1 do

if there is no edge from vi to vi+1 then
return FALSE

end if
end for
return TRUE

Problem 22-1

a) 1. If we found a back edge, this means that there are two vertices, one a
descendant of the other, but there is already a path from the ancestor to
the child that doesn’t involve moving up the tree. This is a contradiction
since the only children in the bfs tree are those that are a single edge
away, which means there cannot be any other paths to that child because
that would make it more than a single edge away. To see that there are
no forward edges, We do a similar procedure. A forward edge would mean
that from a given vertex we notice it has a child that has already been
processed, but this cannot happen because all children are only one edge
away, and for it to of already been processed, it would need to have gone
through some other vertex first.

2. An edge is placed on the list to be processed if it goes to a vertex that has
not yet been considered. This means that the path from that vertex to
the root must be at least the distance from the current vertex plus 1. It
is also at most that since we can just take the path that consists of going
to the current vertex and taking its path to the root.
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3. We know that a cross edge cannot be going to a depth more than one less,
otherwise it would be used as a tree edge when we were processing that
earlier element. It also cannot be going to a vertex of depth more than
one more, because we wouldn’t of already processed a vertex that was
that much further away from the root. Since the depths of the vertices in
the cross edge cannot be more than one apart, the conclusion follows by
possibly interchanging the roles of u and v, which we can do because the
edges are unordered.

b) 1. To have a forward edge, we would need to have already processed a vertex
using more than one edge, even though there is a path to it using a single
edge. Since breadth first search always considers shorter paths first, this
is not possible.

2. Suppose that (u, v) is a tree edge. Then, this means that there is a path
from the root to v of length u.d + 1 by just appending (u, v) on to the
path from the root to u. To see that there is no shorter path, we just
note that we would of processed v sooner, and so wouldn’t currently have
a tree edge if there were.

3. To see this, all we need to do is note that there is some path from the root
to v of length u.d+1 obtained by appending (u, v) to v.d. Since there is a
path of that length, it serves as an upper bound on the minimum length
of all such paths from the root to v.

4. It is trivial that 0 ≤ v.d, since it is impossible to have a path from the
root to v of negative length. The more interesting inequality is v.d ≤ u.d.
We know that there is some path from v to u, consisting of tree edges,
this is the defining property of (u, v) being a back edge. This means that
is v, v1, v2, . . . , vk, u is this path (it is unique because the tree edges form
a tree). Then, we have that u.d = vk.d+1 = vk−1.d+2 = · · · = v1.d+k =
v.d+ k + 1. So, we have that u.d > v.d.

In fact, we just showed that we have the stronger conclusion, that 0 ≤
v.d < u.d.

Problem 22-2

a. First suppose the root r of Gπ is an articulation point. Then the removal of
r from G would cause the graph to disconnect, so r has at least 2 children
in G. If r has only one child v in Gπ then it must be the case that there
is a path from v to each of r’s other children. Since removing r disconnects
the graph, there must exist vertices u and w such that the only paths from
u to w contain r. To reach r from u, the path must first reach one of r’s
children. This child is connect to v via a path which doesn’t contain r. To
reach w, the path must also leave r through one of its children, which is also
reachable by v. This implies that there is a path from u to w which doesn’t
contain r, a contradiction.
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Now suppose r has at least two children u and v in Gπ. Then there is no
path from u to v in G which doesn’t go through r, since otherwise u would
be an ancestor of v. Thus, removing r disconnects the component containing
u and the component containing v, so r is an articulation point.

b. Suppose that v is a nonroot vertex of Gπ and that v has a child s such that
neither s nor any of s’s descendants have back edges to a proper ancestor
of v. Let r be an ancestor of v, and remove v from G. Since we are in the
undirected case, the only edges in the graph are tree edges or back edges,
which means that every edge incident with s takes us to a descendant of s,
and no descendants have back edges, so at no point can we move up the
tree by taking edges. Therefore r is unreachable from s, so the graph is
disconnected and v is an articulation point.

Now suppose that for every child of v there exists a descendant of that child
which has a back edge to a proper ancestor of v. Remove v from G. Every
subtree of v is a connected component. Within a given subtree, find the
vertex which has a back edge to a proper ancestor of v. Since the set T of
vertices which aren’t descendants of v form a connected component, we have
that every subtree of v is connected to T . Thus, the graph remains connected
after the deletion of v so v is not an articulation point.

c. Since v is discovered before all of its descendants, the only back edges which
could affect v.low are ones which go from a descendant of v to a proper an-
cestor of v. If we know u.low for every child u of v, then we can compute
v.low easily since all the information is coded in its descendants. Thus, we
can write the algorithm recursively: If v is a leaf in Gπ then v.low is the
minimum of v.d and w.d where (v, w) is a back edge. If v is not a leaf, v is
the minimum of v.d, w.d where w is a back edge, and u.low, where u is a
child of v. Computing v.low for a vertex is linear in its degree. The sum of
the vertices’ degrees gives twice the number of edges, so the total runtime is
O(E).

d. First apply the algorithm of part (c) in O(E) to compute v.low for all v ∈ V .
If v.low = v.d if and only if no descendant of v has a back edge to a proper
ancestor of v, if and only if v is not an articulation point. Thus, we need
only check v.low versus v.d to decide in constant time whether or not v is an
articulation point, so the runtime is O(E).

e. An edge (u, v) lies on a simple cycle if and only if there exists at least one
path from u to v which doesn’t contain the edge (u, v), if and only if remov-
ing (u, v) doesn’t disconnect the graph, if and only if (u, v) is not a bridge.
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f. A edge (u, v) lies on a simple cycle in an undirected graph if and only if
either both of its endpoints are articulation points, or one of its endpoints
is an articulation point and the other is a vertex of degree 1. Since we can
compute all articulation points in O(E) and we can decide whether or not a
vertex has degree 1 in constant time, we can run the algorithm in part d and
then decide whether each edge is a bridge in constant time, so we can find
all bridges inO(E) time.

g. It is clear that every nonbridge edge is in some biconnected component, so
we need to show that if C1 and C2 are distinct biconnected components,
then they contain no common edges. Suppose to the contrary that (u, v)
is in both C1 and C2. Let (a, b) be any edge in C1 and (c, d) be any edge
in C2. Then (a, b) lies on a simple cycle with (u, v), consisting of the path
a, b, p1, . . . , pk, u, v, pk+1, . . . , pn, a. Similarly, (c, d) lies on a simple cycle with
(u, v) consisting of the path c, d, q1, . . . , qm, u, v, qm+1, . . . , ql, c. This means
a, b, p1, . . . , pk, u, qm, . . . , q1, d, c, ql, . . . , qm+1, v, pk+1, . . . , pn, a is a simple cy-
cle containing (a, b) and (c, d), a contradiction. Thus, the biconnected com-
ponents form a partition.

h. Locate all bridge edges in O(E) time using the algorithm described in part f.
Remove each bridge from E. The biconnected components are now simply
the edges in the connected components. Assuming this has been done, run
the following algorithm, which clearly runs in O(E) where E is the number
of edges originally in G.

Algorithm 8 BCC(G)

1: for each vertex u ∈ G.V do
2: u.color = white
3: end for
4: k = 1
5: for each vertex u ∈ G.V do
6: if u.color == white then
7: k = k + 1
8: VISIT-BCC(G,u, k)
9: end if

10: end for

Problem 22-3

a. First, we’ll show that it is necessary to have in degree equal out degree for
each vertex. Suppose that there was some vertex v for which the two were
not equal, suppose wlog that in-degree - out-degree = a ¿ 0. Note that we
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Algorithm 9 VISIT-BCC(G,u,k)

1: u.color = GRAY
2: for each v ∈ G.Adj[u] do
3: (u, v).bcc = k
4: if v.color == white then
5: VISIT-BCC(G, v, k)
6: end if
7: end for

may assume that in degree is greater because otherwise we would just look
at the transpose graph in which we traverse the cycle backwards. If v is the
start of the cycle as it is listed, just shift the starting and ending vertex to
any other one on the cycle. Then, in whatever cycle we take going though
v, we must pass through v some number of times, in particular, after we
pass through it a times, the number of unused edges coming out of v is zero,
however, there are still unused edges goin in that we need to use. This means
that there is no hope of using those while still being a tour, becase we would
never be able to escape v and get back to the vertex where the tour started.

Now, we show that it is sufficient to have the in degree and out degree equal
for every vertex. To do this, we will generalize the problem slightly so that
it is more amenable to an inductive approach. That is, we will show that
for every graph G that has two vertices v and u so that all the vertices have
the same in and out degree except that the indegree is one greater for u and
the out degree is one greater for v, then there is an Euler path from v to u.
This clearly lines up with the original statement if we pick u = v to be any
vertex in the graph. We now perform induction on the number of edges. If
there is only a single edge, then taking just that edge is an Euler tour. Then,
suppose that we start at v and take any edge coming out of it. Consider the
graph that is obtained from removing that edge, it inductively contains an
Euler tour that we can just post-pend to the edge that we took to get out of v.

b. To actually get the Euler circuit, we can just arbitrarily walk any way that
we want so long as we don’t repeat an edge, we will necessarily end up with
a valid Euler tour. This is implemented in the following algorithm, EULER-
TOUR(G) which takes time O(|E|). It has this runtime because the for loop
will get run for every edge, and takes a constant amount of time. Also, the
process of initializing each edge’s color will take time proportional to the
number of edges.

Problem 22-4

Begin by locating the element v of minimal label. We would like to make
u.min = v.label for all u such that u  v. Equivalently, this is the set of ver-
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Algorithm 10 EULER-TOUR(G)

color all edges white
let (v, u) be any edge
let L be a list containing just v.
while there is some white edge (v, w) coming out of v do

color (v,w) black
v = w
append v to L

end while

tices u which are reachable from v in GT . We can implement the algorithm as
follows, assuming that u.min is initially set equal to NIL for all vertices u ∈ V ,
and simply call the algorithm on GT .

Algorithm 11 REACHABILITY(G)

1: Use counting sort to sort the vertices by label from smallest to largest
2: for each vertex u ∈ V do
3: if u.min == NIL then
4: REACHABILITY-VISIT(u, u.label)
5: end if
6: end for

Algorithm 12 REACHABILITY-VISIT(u, k)

1: u.min = k
2: for v ∈ G.Adj[u] do
3: if v.min == NIL then
4: REACHABILITY-VISIT(v, k)
5: end if
6: end for
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