
Chapter 19

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 19.2-1

First, we take the subtrees rooted at 24, 17, and 23 and add them to the
root list. Then, we set H.min to 18. Then, we run consolidate. First this has
its degree 2 set to the subtree rooted at 18. Then the degree 1 is the subtree
rooted at 38. Then, we get a repeated subtree of degree 2 when we consider the
one rooted at 24. So, we make it a subheap by placing the 24 node under 18.
Then, we consider the heap rooted at 17. This is a repeat for heaps of degree 1,
so we place the heap rooted at 38 below 17. Lastly we consider the heap rooted
at 23, and then we have that all the different heaps have distinct degrees and
are done, setting H.min to the smallest, that is, the one rooted at 17.

The three heaps that we end up with in our root list are:

23

17

38

41

30

and

1



18

24

26

35

46

21

52

39

Exercise 19.3-1

A root in the heap became marked because it at some point had a child
whose key was decreased. It doesn’t add the potential for having to do any
more actual work for it to be marked. This is because the only time that
markedness is checked is in line 3 of cascading cut. This however is only ever
run on nodes whose parent is non NIL. Since every root has NIL as it parent,
line 3 of cascading cut will never be run on this marked root. It will still cause
the potential function to be larger than needed, but that extra computation
that was paid in to get the potential function higher will never be used up later.

Exercise 19.3-2

Recall that the actual cost of FIB-HEAP-DECREASE-KEY is O(c), where
c is the number of calls made to CASCADING-CUT. If ci is the number of
calls made on the ith key decrease, then the total time of n calls to FIB-HEAP-
DECREASE-KEY is

∑n
i=1O(ci). Next observe that every call to CASCADING-

CUT moves a node to the root, and every call to a root node takes O(1). Since
no roots ever become children during the course of these calls, we must have
that

∑n
i=1 ci = O(n). Therefore the aggregate cost is O(n), so the average, or

amortized, cost is O(1).

Exercise 19.4-1

Add three nodes then delete one. This gets us a chain of length 1. Then, add
three nodes, all with smaller values than the first three, and delete one of them.
Then, delete the leaf that is only at depth 1. This gets us a chain of length
2. Then, make a chain of length two using this process except with all smaller
keys. Then, upon a consolidate being forced, we will have that the remaining
heap will have one path of length 3 and one of length 2, with a root that is
unmarked. So, just run decrease key on all of the children along the shorter
path, starting with those of shorter depth. Then, extract min the appropriate
number of times. Then what is left over will be just a path of length 3. We can

2



continue this process ad infinitum. It will result in a chain of arbitrarily long
length where all but the leaf is marked. It will take time exponential in n, but
that’s none of our concern.

More formally, we will make the following procedure linear(n, c) that makes
heap that is a linear chain of n nodes and has all of its keys between c and c+2n.
Also, as a precondition of running linear(n, c), we have all the keys currently in
the heap are less than c. As a base case, define linear(1, c) to be the command
insert(c). Define linear(n+ 1, c) as follows, where the return value list of nodes
that lie on the chain but aren’t the root

S1 = linear(n, c)
S2 = linear(n, c+ 2n)
x.key = −∞
insert(x)
extractmin()
for each entry in S1, delete that key
The heap now has the desired structure, return S2

Exercise 19.4-2

Following the proof of lemma 19.1, if x is any node if a Fibonacci heap,
x.degree = m, and x has children y1, y2, . . . , ym, then y1.degree ≥ 0 and
yi.degree ≥ i − k. Thus, if sm denotes the fewest nodes possible in a node
of degree m, then we have s0 = 1, s1 = 2, . . . , sk−1 = k and in general,

sm = k+
∑m−k
i=0 si. Thus, the difference between sm and sm−1 is sm−k. Let {fm}

be the sequence such that fm = m + 1 for 0 ≤ m < k and fm = fm−1 + fm−k
for m ≥ k. If F (x) is the generating function for fm then we have F (x) =

1−xk

(1−x)(1−x−xk)
. Let α be a root of xk = xk−1 + 1. We’ll show by induction that

fm+k ≥ αm. For the base cases:

fk = k + 1 ≥ 1 = α0

fk+1 = k + 3 ≥ α1

...

fk+k = k +
(k + 1)(k + 2)

2
= k + k + 1 +

k(k + 1)

2
≥ 2k + 1 + αk−1 ≥ αk.

In general, we have

fm+k = fm+k−1 + fm ≥ αm−1 + αm−k = αm−k(αk−1 + 1) = αm.

Next we show that fm+k = k +
∑m
i=0 fi. The base case is clear, since

fk = f0 + k = k + 1. For the induction step, we have

fm+k = fm−1−k + fm = k +

m−1∑
i=0

fi + fm = k +

m∑
i=0

fi.

3



Observe that si ≥ fi+k for 0 ≤ i < k. Again, by induction, for m ≥ k we
have

sm = k +

m−k∑
i=0

si ≥ k +

m−k∑
i=0

fi+k ≥ k +

m∑
i=0

fi = fm+k

so in general, sm ≥ fm+k. Putting it all together, we have:

size(x) ≥ sm

≥ k +

m∑
i=k

si−k

≥ k +

m∑
i=k

fi

≥ fm+k

≥ αm.

Taking logs on both sides, we have

logα n ≥ m.

In other words, provided that α is a constant, we have a logarithmic bound on
the maximum degree.

Problem 19-1

a. It can take actual time proportional to the number of children that x had
because for each child, when placing it in the root list, their parent pointer
needs to be updated to be NIL instead of x.

b. Line 7 takes actual time bounded by x.degree since updating each of the
children of x only takes constant time. So, if c is the number of cascading
cuts that are done, the actual cost is O(c+ x.degree).

c. From the cascading cut, we marked at most one more node, so, m(H ′) ≤
1 + m(H) regardless of the number of calls to cascading cut, because only
the highest thing in the chain of calls actually goes from unmarked to marked.
Also, the number of children increases by the number of children that x had,
that is t(H ′) = x.degree+ t(H). Putting these together, we get that

Φ(H ′) ≤ t(H) + x.degree+ 2(1 +m(H))

d. The asymptotic time is Θ(x.degree) = Θ(lg(n)) which is the same asyptotic
time that was required for the original deletion method.

Problem 19-2

4



a. We proceed by induction to prove all four claims simultaneously. When
k = 0, B0 has 20 = 1 node. The height of B0 is 0. The only possible depth
is 0, at which there are

(
0
0

)
= 1 node. Finally, the root has degree 0 and

it has no children. Now suppose the claims hold for k. Bk+1 is formed by
connecting two copies of Bk, so it has 2k + 2k = 2k+1 nodes. The height of
the tree is the height of Bk plus 1, since we have added an extra edge con-
necting the root of Bk to the new root of the tree, so the height is k+ 1. At
depth i we get a contribution of

(
k
i−1
)

from the first tree, and a contribution

of
(
k
i

)
from the second. Summing these and applying a common binomial

identity gives
(
k+1
i

)
. Finally, the degree of the root is the sum of 1, and the

degree of the root of Bk, which is 1 + k. If we number the children left to
right by k, k − 1, . . . , 0, then the first child corresponds to the root of Bk by
definition. The remaining children correspond to the proper roots of subtrees
by the induction hypothesis.

b. Let n.b denote the binary expansion of n. The fact that we can have at most
one of each binomial tree corresponds to the fact that we can have at most
1 as any digit of n.b. Since each binomial tree has a size which is a power of
2, the binomial trees required to represent n nodes are uniquely determined.
We include Bk if and only if the kth position of n.b is 1. Since the binary
representation of n has at most blg nc+1 digits, this also bounds the number
of trees which can be used to represent n nodes.

c. Given a node x, let x.key, x.p, x.c, and x.s represent the attributes key,
parent, left-most child, and sibling to the right, respectively. The pointer
attributes have value NIL when no such node exists. The root list will be
stored in a singly linked list. MAKE-HEAP() is implemented by initializing
an empty list for the root list and returning a pointer to the head of the
list, which contains NIL. This takes constant time. To insert: Let x be a
node with key k , to be inserted. Scan the root list to find the first m such
that Bm is not one of the trees in the binomial heap. If there is no B0, sim-
ply create a single root node x. Otherwise, union x,B0, B1, . . . , Bm−1 into
a Bm tree. Remove all root nodes of the unioned trees from the root list,
and update it with the new root. Since each join operation is logarithmic in
the height of the tree, the total time is O(lg n). MINIMUM just scans the
root list and returns the minimum in O(lg n), since the root list has size at
most O(lg n). EXTRACT-MIN finds and deletes the minimum, then splits
the tree Bm which contained the minimum into its component binomial trees
B0, B1, . . . , Bm−1 in O(lg n) time. Finally, it unions each of these with any
existing trees of the same size in O(lg n) time. To implement UNION, sup-
pose we have two binomial heaps consisting of trees Bi1 , Bi2 , . . . , Bik and
Bj1 , Bj2 , . . . , Bjm respectively. Simply union corresponding trees of the same
size between the two heaps, then do another check and join any newly cre-
ated trees which have caused additional duplicates. Note: we will perform at

5



most one union on any fixed size of binomial tree so the total running time
is still logarithmic in n, where we assume that n is sum of the sizes of the
trees which we are unioning. To implement DECREASE-KEY, simply swap
the node whose key was decreased up the tree until it satisfies the min-heap
property. To implement DELETE, note that every binomial tree consists of
two copies of a smaller binomial tree, so we can write the procedure recur-
sively. If the tree is a single node, simply delete it. If we wish to delete from
Bk, first split the tree into its constituent copies of Bk−1, and recursively call
delete on the copy of Bk−1 which contains x. If this results in two binomial
trees of the same size, simply union them.

d. The Fibonacci heap will look like a binomial heap, except that multiple copies
of a given binomial tree will be allowed. Since the only trees which will ap-
pear are binomial trees and Bk has 2k nodes, we must have 2k ≤ n, which
implies k ≤ blg nc. Since the largest root of any binomial tree occurs at the
root, and on Bk it is degree k, this also bounds the largest degree of a node.

e. INSERT and UNION will no longer have amortized O(1) running time be-
cause CONSOLIDATE has runtime O(lg n). Even if no nodes are consoli-
dated, the runtime is dominated by the check that all degrees are distinct.
Since calling UNION on a heap and a single node is the same as insertion, it
must also have runtime O(lg n). The other operations remain unchanged.

Problem 19-3

a. If k < x.key just run the decrease key procedure. If k > x.key, delete the
current value x and insert x again with a new key. Both of these cases only
need O(lg(n)) amortized time to run.

b. Suppose that we also had an additional cost to the potential function that
was proportional to the size of the structure. This would only increase when
we do an insertion, and then only by a constant amount, so there aren’t any
worries concerning this increased potential function raising the amortized
cost of any operations. Once we’ve made this modification, to the potential
function, we also modify the heap itself by having a doubly linked list along
all of the leaf nodes in the heap. To prune we then pick any leaf node, re-
move it from it’s parent’s child list, and remove it from the list of leaves.
We repeat this min(r,H.n) times. This causes the potential to drop by an
amount proportional to r which is on the order of the actual cost of what just
happened since the deletions from the linked list take only constant amounts
of time each. So, the amortized time is constant.

Problem 19-4

6



a. Traverse a path from root to leaf as follows: At a given node, examine the
attribute x.small in each child-node of the current node. Proceed to the child
node which minimizes this attribute. If the children of the current node are
leaves, then simply return a pointer to the child node with smallest key. Since
the height of the tree is O(lg n) and the number of children of any node is at
most 4, this has runtime O(lg n).

b. Decrease the key of x, then traverse the simple path from x to the root by
following the parent pointers. At each node y encountered, check the at-
tribute y.small. If k < y.small, set y.small = k. Otherwise do nothing and
continue on the path.

c. Insert works the same as in a B-tree, except that at each node it is assumed
that the node to be inserted is “smaller” than every key stored at that node,
so the runtime is inherited. If the root is split, we update the height of the
tree. When we reach the final node before the leaves, simply insert the new
node as the leftmost child of that node.

d. As with B-TREE-DELETE, we’ll want to ensure that the tree satisfies the
properties of being a 2-3-4 tree after deletion, so we’ll need to check that
we’re never deleting a leaf which only has a single sibling. This is handled in
much the same way as in chapter 18. We can imagine that dummy keys are
stored in all the internal nodes, and carry out the deletion process in exactly
the same way as done in exercise 18.3-2, with the added requirement that we
update the height stored in the root if we merge the root with its child nodes.

e. EXTRACT-MIN simply locates the minimum as done in part a, then deletes
it as in part d.

f. This can be done by implementing the join operation, as in Problem 18-2 (b).

7


