
Chapter 13

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 13.1-1

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

We shorten NIL to N so that it can be more easily displayed in the document.
The following has black height 2.

8

4

2

1

N N

3

N N

6

5

N N

7

N N

12

10

9

N N

11

N N

14

13

N N

15

N N

The following has black height 3

1

8

4

2

1

N N

3

N N

6

5

N N

7

N N

12

10

9

N N

11

N N

14

13

N N

15

N N

Lastly, the following has black height 4.

8

4

2

1

N N

3

N N

6

5

N N

7

N N

12

10

9

N N

11

N N

14

13

N N

15

N N

Exercise 13.1-2

If the inserted node is red then it won’t be a red-black tree because 35 will
be the parent of 36, which is also colored red. If the inserted node is black it
will also fail to be a red-black tree because there will be two paths from node
38 to T.nil which contain different numbers of black nodes, violating property
5. In the picture of the tree below, the NIL nodes have been omitted for space
reasons.

2

26

17

14

10

7

3

12

16

15

41

30

28 38

35

36

39

47

Exercise 13.1-3

It will. There was no red node introduced, so 4 will still be satisfied. Since
the root is in every path from the root to the leaves, but no others. 5 will be
satisfied because the only paths we will be changing the number of black nodes
in are those coming from the root. All of these will increase by 1, and so will
all be equal. 3 is trivially preserved, as no new leaves are introduced. 1 is also
trivially preserved as only one node is changed and it is not changed to some
mysterious third color.

Exercise 13.1-4

The possible degrees are 0 through 5, based on whether or not the black
node was a root and whether it had one or two red children, each with either
one or two black children. The depths could shrink by at most a factor of 1/2.

Exercise 13.1-5

Suppose we have the longest simple path (a1, a2, . . . as) and the shortest sim-
ple path (b1, b2, . . . , bt). Then, by property 5 we know they have equal numbers
of black nodes. By property 4, we know that neither contains a repeated red
node. This tells us that at most b s−12 c of the nodes in the longest path are red.

3

This means that at least d s+1
2 e are black, so, t ≥ d s+1

2 e. So, if, by way of con-
tradiction, we had that s > t∗2, then t ≥ d s+1

2 e ≥ d
2t+2
2 e = t+1 a contradiction.

Exercise 13.1-6

In a path from root to leaf we can have at most one red node between any
two black nodes, so maximal height of such a tree is 2k+1, where each path from
root to leaf is alternating red and black nodes. To maximize internal nodes, we
make the tree complete, giving a total of 22k+1−1 internal nodes. The smallest
possible number of internal nodes comes from a complete binary tree, where
every node is black. This has 2k+1 − 1 internal nodes.

Exercise 13.1-7

Since each red node needs to have two black children, our only hope at
getting a large number of internal red nodes relative to our number of black
internal nodes is to make it so that the parent of every leaf is a red node. So,
we would have a ratio of 2

3 if we have the tree with a black root which has red
children, and all of it’s grandchildren be leaves. We can’t do better than this
because as we make the tree bigger, the ratio approaches 1

2 .
The smallest ratio is achieved by having a complete tree that is balanced

and black as a raven’s feather. For example, see the last tree presented in the
solution to 13.1-1.

Exercise 13.2-1

See the algorithm for RIGHT-ROTATE.

Algorithm 1 RIGHT-ROTATE(T,x)

y = x.left
x.left = y.right
if y.right 6= T.nil then

t.right.p = x
end if
y.p = x.p
if x.p == T.nil then

T.root = y
else if x == x.p.left then

x.p.left = y
else

x.p.right = y
end if
y.right =x
x.p =y

4

Exercise 13.2-2

We proceed by induction. In a tree with only one node, the root has nei-
ther a left nor a right child, so no rotations are valid. Suppose that a tree on
n ≥ 0 nodes has exactly n− 1 rotations. Let T be a binary search tree on n+ 1
nodes. If T.root has no right child then the root can only be involved in a right
rotation, and the left child of T has n vertices, so it has exactly n− 1 rotations,
yielding a total of n for the whole tree. The argument is identical if T.root has
no left child. Finally, suppose T.root has two children, and let k denote the
number of nodes in the left subtree. Then the root can be either left or right
rotated, contributing 2 to the count. By the induction hypothesis, T.left has
exactly k− 1 rotations and T.right has exactly n− k− 1− 1 rotations, so there
are a total of 2+k−1+n−k−1−1 = n possible rotations, completing the proof.

Exercise 13.2-3

the depth of c decreases by one, the depth of b stays the same, and the depth
of a increases by 1.

Exercise 13.2-4

Consider transforming an arbitrary n-node BT into a right-going chain as
follows: Let the root and all successive right children of the root be the elements
of the chain initial chain. For any node x which is a left child of a node on the
chain, a single right rotation on the parent of x will add that node to the chain
and not remove any elements from the chain. Thus, we can convert any BST to
a right chain with at most n−1 right rotations. Let r1, r2, . . . , rk be the sequence
of rotations required to convert some BST T1 into a right-going chain, and let
s1, s2, . . . , sm be the sequence of rotations required to convert some other BST
T2 to a right-going chain. Then k < n and m < n, and we can convert T1 to
T2 be performing the sequence r1, r2, . . . , rk, s

′
ms
′
m−1, . . . , s

′
1 where s′i is the op-

posite rotation of si. Since k+m < 2n, the number of rotations required is O(n).

Exercise 13.2-5

Consider the BST for T2 to be

8

4

NIL NIL

NIL

5

And let T1 be

8

NIL 4

NIL NIL

Then, there are no nodes for which its valid to call right rotate in T1. Even
though it is possible to right convert T2 into T1, the reverse is not possible.

For any BST T, define the quantity f(T) to be the sum over all the nodes of
the number of left pointers that are used in a simple path from the root to that
node. Note that the contribution from each node is O(n). Since there are only n
nodes, we have that f(T) is O(n2). Also, when we call RIGHT-ROTATE(T,x),
then the contribution from x decreases by one, and the contribution from all
other elements remain the same. Since f(T) is a quantity that decreases by
exactly one with every call of RIGHT-ROTATE, and begins O(n2), and never
goes negative, we know that there can only be at most O(n2) calls of RIGHT-
ROTATE on a BST.

Exercise 13.3-1

If we chose to set the color of z to black then we would be violating property
5 of being a red-black tree. Because any path from the root to a leaf under z
would have one more black node than the paths to the other leaves

Exercise 13.3-2

41

N N

41

38

N N

N

6

38

31

N N

41

N N

38

31

12

N N

N

41

N N

38

19

12

N N

31

N N

41

N N

7

38

19

12

8

N N

N

31

N N

41

N N

Exercise 13.3-3

For the z being a right child case, we append the black height of each node to

get

C:k

A:k

α B:k

β γ

D:k

δ ε

which goes to

8

C:k+1

A:k

α B:k

β γ

D:k

δ ε

note that while the black depths of the nodes may of changed, they are still
well defined, and so they still satisfy condition 5 of being a red-black tree. Sim-
ilar trees for when z is a left child.

Exercise 13.3-4

First observe that RB-INSERT-FIXUP only modifies the child of a node if
it is already red, so we will never modify a child which is set to T.nil. We just
need to check that the parent of the root is never set to red. Since the root and
the parent of the root are automatically black, if z is at depth less than 2, the
while loop will be broken. We only modify colors of nodes at most two levels
above z, so the only case we need to worry about is if z is at depth 2. In this
case we risk modifying the root to be red, but this is handled in line 16. When
z is updated, it will either the root or the child of the root. Either way, the
root and the parent of the root are still black, so the while condition is violated,
making it impossibly to modify T.nil to be red.

Exercise 13.3-5

Suppose we just added the last element. Then, prior to calling RB-INSERT-
FIXUP, we have that it is red. In all of the fixup cases for an execution of the
while loop, we have that the resulting tree fragment contains a red non-root
node. This node will not be later made black on line 16 because it isn’t the
root.

Exercise 13.3-6

We need to remove line 8 from RB-INSERT and modify RB-INSERT-FIXUP.
At any point in RB-INSERT-FIXUP we need only keep track of at most 2 an-
cestors: z.p and z.p.p. We can find and store each of these nodes in log n time
and use them for the duration of the call to RB-INSERT-FIXUP. This won’t
change the running time of RB-INSERT.

9

Exercise 13.4-1

There are two ways we may of left the while loop of RB-DELETE-FIXUP.
The first is that we had x = T.root. In this case, we set x.color = BLACK on
line 23. So, we must have that the root is black. The other case is that we ended
the while loop because we had x.color == RED, but had that x 6= T.root. This
rules out case 4, because that has us setting x = T.root. In case 3, we don’t set
x to be red, or change x at all, so it couldn’t of been the last case run. In case
2, we set nothing new to be RED, so this couldn’t lead to exiting the while
loop for this reason. In case 1, we make the sibling black and rotate it into the
position of the parent. So, it wouldn’t be possible to make the root red in this
step because the only node we set to be red, we then placed a black node above.
Exercise 13.4-2

Suppose that both x and x.p are red in RB-DELETE. This can only happen
in the else-case of line 9. Since we are deleting from a red-black tree, the other
child of y.p which becomes x′s sibling in the call to RB-TRANSPLANT on line
14 must be black, so x is the only child of x.p which is red. The while-loop
condition of RB-DELETE-FIXUP(T,x) is immediately violated so we simply
set x.color = black, restoring property 4.

Exercise 13.4-3

38

19

12

8

N N

N

31

N N

41

N N

10

38

19

12

N N

31

N N

41

N N

38

19

N 31

N N

41

N N

38

31

N N

41

N N

38

N 41

N N

11

41

N N

N

Exercise 13.4-4

Since it is possible that w is T.nil, any line of RB-DELETE-FIXUP(T,x)
which examines or modifies w must be included. However, as described on page
317, x will never be T.nil, so we need not include those lines.

Exercise 13.4-5

Our count will include the root (if it is black).
Case 1: The count to each subtree is 2 both before and after
Case 2: The count to the subtrees α and β is 1+count(c) in both cases,

and the count for the rest of the subtrees goes from 2+count(c) to 1+count(c).
This decrease in the count for the other subtreese is handled by then having x
represent an additional black.

Case 3: The count to ε and ζ is 2+count(c) both before and after, for all the
other subtrees, it is 1+count(c) both before and after

Case 4: For α and β, the count goes from 1+count(c) to 2+count(c). For
γ and δ, it is 1+count(c)+count(c’) both before and after. For ε and ζ, it is
1+ count(c) both before and after. This increase in the count for α and β is
because x before indicated an extra black.

Exercise 13.4-6

At the start of case 1 we have set w to be the sibling of x. We check on line
4 that w.color == red, which means that the parent of x and w cannot be red.
Otherwise property 4 is violated. Thus, their concerns are unfounded.

Exercise 13.4-7

Suppose that we insert the elements 3, 2, 1 in that order, then, the resulting
tree will look like

12

2

1

NIL NIL

3

NIL NIL

Then, after deleting 1, which was the last element added, the resulting tree is

2

NIL 3

NIL NIL

however, the tree we had before we inserted 1 in the first place was

3

2

NIL NIL

NIL

These two red black trees are clearly different
Problem 13-1

a. We need to make a new version of every node that is an ancestor of the node
that is inserted or deleted.

b. See the algorithm, PERSISTENT-TREE-INSERT

c. Since the while loop will only run at most h times, since the distance from
x to the root is increasing by 1 each time and bounded by the height. Also,
since each iteration only takes a constant amount of time and uses a constant
amount of additional space, we have that both the time and space complexity
are O(h).

d. When we insert an element, we need to make a new version of the root. So,
any nodes that point to the root must have a new copy made so that they

13

Algorithm 2 PERSISTENT-TREE-INSERT(T,k)

x = T.root
if x==NIL then

T.root = new node(key =k)
end if
while x 6= NIL do

y=x
if k¡x.key then

x= x.left
y.left = copyof(x)

else
x= x.right
y.right = copyof(x)

end if
end while
z = new node(key = k, p = y)
if k ¡ y.key then

y.left = z
else

y.right = z
end if

point to the new root. So, all nodes of depth 1 must be copied. Similarly,
all nodes that point to those must have new copies so that have the correct
version. So, all nodes of depth 2 must be copied. Similarly, all nodes must
be copied. So, we have that we need at least Ω(n) time and additional space.

e. Since the rebalancing operations can only change ancestors, and children of
ancestors we only have to allocate at most 2h new nodes for each insertion,
since the rest of the tree will be unchanged. This is of course assuming
that we don’t keep track of the parent pointers. This can be achieved by
following the suggestions in 13.3-6 applied to both insert and delete. That is,
we perform a search for the element where we store the O(h) elements that
are either ancestors or children of ancestors. Since these are the only nodes
under consideration when doing the insertion and deletion procedure, then
we can know their parents even though we aren’t keeping track of the parent
pointers for each node. Since the height stays O(lg(n)), then, we have that
everything can be done in O(lg(n)).

Problem 13-2

a. When we call insert or delete we modify the black-height of the tree by at
most 1 and we can modify it according to which case we’re in, so no addi-
tional storage is required. When descending through T , we can determine
the black-height of each node we visit in O(1) time per node visited. Start by

14

determining the black height of the root in O(log n) time. As we move down
the tree, we need only decrement the height by 1 for each black node we
see to determine the new height which can be done in O(1). Since there are
O(log n) nodes on the path from root to leaf, the time per node is constant.

b. Find the black-height of T1 in O(log n) time. Then find the black-height of
T2 in O(log n) time. Finally, set z = T1.root. While the black height of z
is strictly greater than T2.bh, update z to be z.right if such a child exists,
otherwise update z to be z.left. Once the height of z is equal to T2.bh, set y
equal to z. The runtime of the algorithm is O(log n) since the height of T1,
and hence the number of iterations of the while-loop, is at most O(log n).

c. Let T denote the desired tree. Set T.root = x, x.left = y, y.p = x,
x.right = T2.root and T2.root.p = x. Every element of Ty is in T1 which
contains only elements smaller than x and every element of T2 is larger than
x. Since Ty and T2 each have the binary search tree property, T does as well.

d. Color x red. Find y in T1, as in part b, and form T = Ty ∪ {x} ∪ T2 as
in part c in constant time. Call T’ = RB-TRANSPLANT(T,y,x). We have
potentially violated the red black property if y’s parent was red. To remedy
this, call RB-INSERT-FIXUP(T’, x).

e. In the symmetric situation, simply reverse the roles of T1 and T2 in parts b
through d.

f. If T1.bh ≥ T2.bh, run the steps outlined in part d. Otherwise, reverse the
roles of parts T1 and T2 in d and then proceed as before. Either way, the
algorithm takes O(log n) time because RB-INSERT-FIXUP is O(log n).

Problem 13-3

a. Let T (h) denote the minimum size of an AVL tree of height h. Since it is
height h, it must have the max of it’s children’s heights is equal to h−1. Since
we are trying to get as few notes total as possible, suppose that the other
child has as small of a height as is allowed. Because of the restriction of AVL
trees, we have that the smaller child must be at least one less than the larger
one, so, we have that T (h) ≥ T (h−1) +T (h−2) + 1 where the +1 is coming
from counting the root node. We can get inequality in the opposite direction
by simply taking a tree that achieves the minimum number of number of
nodes on height h − 1 and on h − 2 and join them together under another
node. So, we have that T (h) = T (h − 1) + T (h − 2) + 1. Also, T (0) = 0,

15

T (1) = 1. This is both the same recurrence and initial conditions as the
Fibonacci numbers. So, recalling equation (3.25), we have that

T (h) =

⌊
φh√

5
+

1

2

⌋
≤ n

Rearranging for h, we have

φh√
5
− 1

2
≤ n

φh ≤
√

5

(
n+

1

2

)
h ≤

lg(
√

5) + lg(n+ 1
2)

lg(φ)
∈ O(lg(n))

b. Let UNBAL(x) denote x.left.h - x.right.h. Then, the algorithm BALANCE
does what is desired. Note that because we are only rotating a single element
at a time, the value of UNBAL(x) can only change by at most 2 in each step.
Also, it must eventually start to change as the tree that was shorter becomes
saturated with elements. We also fix any breaking of the AVL property that
rotating may of caused by our recursive calls to the children.

Algorithm 3 BALANCE(x)

while |UNBAL(x)| > 1 do
if UNBAL(x) > 0 then

RIGHT-ROTATE(T,x)
else

LEFT-ROTATE(T,x)
end if
BALANCE(x.left)
BALANCE(x.right)

end while

c. For the given algorithm AVL-INSERT(x,z), it correctly maintains the fact
that it is a BST by the way we search for the correct spot to insert z. Also, we
can see that it maintains the property of being AVL, because after inserting
the element, it checks all of the parents for the AVL property, since those
are the only places it could of broken. It then fixes it and also updates the
height attribute for any of the nodes for which it may of changed.

d. Since both for loops only run for O(h) = O(lg(n)) iterations, we have that
that is the runtime. Also, only a single rotation will occur in the second while
loop because when we do it, we will be decreasing the height of the subtree
rooted there, which means that it’s back down to what it was before, so all
of it’s ancestors will have unchanged heights, so, no further balancing will be
required.

16

Algorithm 4 AVL-INSERT(x,z)
w = x
while w 6= NIL do

y = w
if z.key > y.key then

w= w.right
else

w = w.left
end if

end while

if z.key > y.key then
y.right = z
if y.left = NIL then

y.h = 1
end if

else
y.left = z
if y.right = NIL then

y.h = 1
end if

end if
while y 6= x do

y.h = 1 + max{y.left.h, y.right.h}
if y.left.h > y.right.h+ 1 then

RIGHT-ROTATE(T,y)
end if
if y.right.h > y.left.h+ 1 then

LEFT-ROTATE(T,y)
y= y.p

end if
end while

17

Problem 13-4

a. The root r is uniquely determined because it must contain the smallest prior-
ity. Then we partition the set of nodes into those which have key values less
than r and those which have values greater than r. We must make a treap
out of each of these and make them the left and right children of r. By in-
duction on the number of nodes, we see that the treap is uniquely determined.

b. Since choosing random priorities corresponds to inserting in a random order,
the expected height of a treap is the same as the expected height of a ran-
domly built binary search tree, Θ(log n).

c. First insert a node as usual using the binary-search-tree insertion procedure.
Then perform left and right rotations until the parent of the inserted node
no longer has larger priority.

d. The expected runtime of TREAP-INSERT is Θ(log n) since the expected
height of a treap is Θ(log n).

e. To insert x, we initially run the BST insert procedure, so x is a leaf node.
Every time we perform a left rotation, we increase the length of the right
spine of the left subtree by 1. Every time we perform a right rotation, we
increase the length of the left spine of the right subtree by 1. Since we only
perform left and right rotations, the claim follows.

f. If Xik = 1 then the properties must hold by the binary-search-tree property
and the definition of treap. On the other hand, suppose y.key < z.key <
x.key implies y.priority < z.priority. If y wasn’t a child of x then taking
z to be the lowest common ancestor of x and y would violate this. Since
y.priority > x.priority,y must be a child of x. Since y.key < x.key, y is in
the left subtree of x. If y is not in the right spine of the left subtree of x then
there must exist some z such that y.priority > z.priority > x.priority and
y.key < z.key < x.key, a contradiction.

g. We need to compute the probability that the conditions of part f are satisfied.
For all z ∈ [i + 1, k − 1] we must have x.priority < y.priority < z.priority.
There are (k− i−1)! ways to permute the priorities corresponding to these z,
out of (k−i+1)! ways to permute the priorities corresponding to all elements
in [i, k]. Cancellation gives P{Xik} = 1

(k−i+1)(k−i) .

18

h. We use part g then simplify the telescoping series:

E[C] =

k−1∑
j=1

E[Xjk]

=

k−1∑
j=1

1

(k − j + 1)(k − j)

=

k−1∑
j=1

1

j(j + 1)

=

k−1∑
j=1

1

j
− 1

j + 1

= 1− 1

k
.

i. A node y is in the left spine of the right subtree of x if and only if it would
be in the right spine of the left subtree of x in the treap where every node
with key k is replaced by a node with key n− k. Replacing k by n− k in the
expectation computation of part h gives the result.

j. By part e, the number of rotations is C + D. By linearity of expectation,
E[C +D] = 2− 1

k −
1

n−k+1 ≤ 2 for any choice of k.

19

