Homework # 4, Math 311:02, Fall 2008 Sample Solutions

TASK §1.3 #25 See Workshop #4

TASK §1.3 #27 Suppose that $(a_n)_1^{\infty}$ and $(b_n)_1^{\infty}$ are sequences in \mathbb{R} such that

 $\lim (a_n) = A \neq 0$ and $\lim (a_n b_n)$ exists.

Show that $(b_n)_1^{\infty}$ converges.

PROOF: First let's introduce some notation. For each n set $c_n = a_n b_n$. Set $C = \lim (c_n)$.

Since $A \neq 0$, we know that |A|/2 > 0. Since $\lim(a_n) = A$ and |A|/2 > 0 we get an positive integer N_1 such that

> whenever $n \ge N_1$ then also $|a_n - A| < |A|/2$. (*)

Keep $n \geq N_1$. Then we have

$$|a_n| = |(a_n - A) + A| \ge |A| - |a_n - A| > |A| - |A|/2 = |A|/2 > 0$$

and thus $a_n \neq 0$. Still keeping $n \geq N_1$,

$$b_n = \frac{c_n}{a_n} =$$

and we expect to prove that

$$\lim (b_n) = \frac{\lim (c_n)}{\lim (a_n)} = \frac{C}{A}$$

Note that we can't appeal to the theorem on limits of products since the entries $1/a_n$ might fail to exist for some small values of the index n. So we keep working with $n \ge N_1$.

$$\begin{aligned} \frac{c_n}{a_n} - \frac{c}{A} \bigg| &= \left| \frac{c_n}{a_n} - \frac{C}{a_n} + \frac{C}{a_n} - \frac{C}{A} \right| \\ &\leq \left| \frac{c_n}{a_n} - \frac{C}{a_n} \right| + \left| \frac{C}{a_n} - \frac{C}{A} \right| \\ &\leq \left| \frac{1}{a_n} \right| |c_n - C| + |C| \left| \frac{1}{a_n} - \frac{1}{A} \right| \\ &\leq \frac{2}{|A|} |c_n - C| + |C| \frac{1}{|a_n|} \frac{1}{|A|} |a_n - A| \\ &\leq \frac{2}{|A|} |c_n - C| + |C| \frac{2}{|A|} \frac{1}{|A|} |a_n - A| \end{aligned}$$

Each of the terms on the right converges to 0.

Finally we start the " $\varepsilon - N$ endgame". Consider an arbitrary postive ε . Note $\varepsilon/2 > 0$. We get positive integers N_2 and N_3 such that

whenever
$$n \geq N_2$$
 then $\frac{2}{|A|}|c_n - C| = \left|\frac{2}{|A|}|c_n - C| - 0\right| < \frac{\varepsilon}{2}$ and
whenever $n \geq N_3$ then $|C|\frac{2}{|A|}\frac{1}{|A|}|a_n - A| = \left||C|\frac{2}{|A|}\frac{1}{|A|}|a_n - A| - 0\right| < \frac{\varepsilon}{2}$

Thus whenever $n \ge \max\{N_1, N_2, N_3\}$ it follows that

$$\left|b_n - \frac{C}{A}\right| = \left|\frac{c_n}{a_n} - \frac{c}{A}\right| \le \frac{2}{|A|} \left|c_n - C\right| + |C| \frac{2}{|A|} \frac{1}{|A|} \left|a_n - A\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

TASK §1.3 #32a,c,e. Find the limits. Note no proof is required, but a reasonable computation should be provided and annotated.

a) FIND
$$L_a = \lim \left(\frac{n^2 + 4n}{n^5 - 5}\right)$$
 RESULT $L_a = 0.2$

WORK For each positive integer n

$$\begin{pmatrix} n^2 + 4n \\ \overline{n^5 - 5} \end{pmatrix} = \frac{1 + 4n^{-1}}{1 - 5n^{-2}} \text{ after dividing top and bottom by } n^2$$
$$\rightarrow \frac{\lim (1 + 4/n)}{\lim (1 - 5/n^2)} = \frac{1 + 4 \cdot 0}{5 - 5 \cdot 0} = \frac{1}{5} \text{ as } n \to \infty$$

c) FIND $L_c = \lim \frac{\sin(n^2)}{\sqrt{n}}$ RESULT $L_c = 0$

WORK Rewrite the n^{th} entry $a_n b_n$ where $a_n = \sin(n^2)$ and $b_n = 1/\sqrt{n}$. We know the sequence (a_n) is bounded. We will check that the sequence (b_n) converges to 0.

For every index n in N, we know that $\sqrt{n} \leq n$ and thus that

$$\left|\frac{1}{\sqrt{n}} - 0\right| = \frac{1}{\sqrt{n}} \le \frac{1}{n}$$

Since $\lim (1/n) = 0$, the squeeze theorem tells us that $\lim b_n = \lim (1/\sqrt{n}) = 0$.

e) FIND
$$L_e = \lim(a_n b_n)$$
 where $a_n = \sqrt{4 - \frac{1}{n}} - 2$ and $b_n = n$. RESULT $L_e = -1/4$

WORK The sequence (b_n) is not bounded and thus not convergent. We need to anti-simplify a_n so that we can get control over the product $a_n b_n$.

$$a_n = \frac{\sqrt{4 - \frac{1}{n}} - 2}{1} \cdot \frac{\sqrt{4 - \frac{1}{n}} + 2}{\sqrt{4 - \frac{1}{n}} + 2} = \frac{\left(4 - \frac{1}{n}\right) - 4}{\sqrt{4 - \frac{1}{n}} + 2} = \frac{-\frac{1}{n}}{\sqrt{4 - \frac{1}{n}} + 2}$$

Thus

$$a_n b_n = \frac{-\frac{1}{n}}{\sqrt{4 - \frac{1}{n} + 2}} \cdot n = \frac{-1}{\sqrt{4 - \frac{1}{n} + 2}}$$

We have

$$\lim\left(\sqrt{4-\frac{1}{n}}+2\right) = \lim\sqrt{4-\frac{1}{n}}+2 = \sqrt{\lim\left(4-\frac{1}{n}\right)}+2 = \sqrt{4-0}+2 = 2+2$$

and thus

$$\lim (a_n b_n) = \frac{-1}{\lim \left(\sqrt{4 - \frac{1}{n}} + 2\right)} = \frac{-1}{2 + 2}$$

TASK $\S1.2 \#14$ Prove that every Cauchy sequence is bounded.

PROOF Suppose that $(w_n)_1^{\infty}$ is a Cauchy sequence. We must produce a positive M such that for all indices $|w_n| \leq M$.

Since $(w_n)_1^{\infty}$ is Cauchy, we know that for every positive ε there exists at least one positive integer H with the property that

whenever both
$$m \ge H$$
 and $n \ge H$, then $|w_n - w_m| < \varepsilon$

Set $\varepsilon_0 = 1$. Let H_0 denote a positive integer such that

whenever both
$$m \ge H_0$$
 and $n \ge H_0$, then $|w_n - w_m| < \varepsilon_0 = 1$.

Consider an arbitrary n with $n \ge H_0$.

$$|w_n| = |(w_n - w_H) + w_H| \le |w_n - w_H| + |w_H| < 1 + |w_H|$$

Next set

$$A = \max\left(\{|w_n| : n \le H\}\right)$$

and

$$M = \max(\{A, 1 + |w_H|\}).$$

Since $M \ge 1 + |w_h| \ge 1$, we get M > 0. It remains to verify that $|w_n| \le M$ for all indices n. Consider an arbitrary n. If $n \le H$, then $|w_n| \le A \le M$. If n > H, then $|w_n| \le 1 + |w_H| \le M$.

So we did find positive M such that $|w_n| \leq M$ for all indices.

TASK §1.2 #16 Prove, directly from the definition, that the product of Cauchy sequences is Cauchy.

PROOF Suppose that (a_n) and (b_n) are Cauchy sequences. Set $c_n = a_n b_n$. Consider an arbitrary positive ε . We seek H so that

whenever both $n \ge H$ and $m \ge H$, then $|c_n - c_m| < \varepsilon$.

Consider arbitrary m, n. First we look for an estimate.

$$|c_n - c_m| = |a_n b_n - a_m b_m| = |a_n (b_n - b_m) + a_n b_m - a_m b_m|$$

$$\leq |a_n (b_n - b_m)| + |a_n - a_m| |b_m|$$

Since the sequences (a_n) and (b_n) are Cauchy, we know they are bounded by §1.2 #14. Thus we get positive constants M_a and M_b such that

for all indices, $|a_n| \leq M_a$ and $|b_m| \leq M_b$.

It follows that

for all indices,
$$|c_n - c_m| \leq M_a |b_n - b_m| + M_b |a_n - a_m|$$

Note that $\varepsilon/2M_a$ and $\varepsilon/2M_b$ are positive. Since the sequences (a_n) and (b_n) are Cauchy, we get positive integers H_a and H_b such that

whenever both $n \geq H_a$ and $m \geq H_a$, then $|a_n - a_m| < \varepsilon/2M_a$ whenever both $n \geq H_b$ and $m \geq H_b$, then $|b_n - b_m| < \varepsilon/2M_b$

Now take $H = \max(H_a, H_b)$. Suppose both $n \ge H$ and $m \ge H$. Then

$$|a_n - a_m| < \varepsilon/2M_a$$
 and $|b_n - b_m| < \varepsilon/2M_b$

so

$$\begin{aligned} |c_n - c_m| &\leq M_a |b_n - b_m| + M_b |a_n - a_m| \\ &< M_a \frac{\varepsilon}{2M_a} + M_b \frac{\varepsilon}{2M_b} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

TASK §1.2 #22a) Suppose that S is a non-empty set in \mathbb{R} which is bounded above. Set a = lub(S). Show that if a is not an element of S then a must be an accumulation point of S.

#22b) Suppose that S is a non-empty set in \mathbb{R} which is bounded below. Set b = glb(S). Show that if b is not an element of S then b must be an accumulation point of S.

EXPLORATION Recall that z is an accumulation point of S if and only if for every positive ε the set $S \cap V_{\varepsilon}(z)$ contains infinitely many elements.

PROOF (a) Assume that $a \notin S$. Consider an arbitrary postive ε . Note that for every n in \mathbb{N} , $\varepsilon/n > 0$. Define a sequence $(s_n)_1^{\infty}$ as follows.

Since $a - \varepsilon/1 < a$, we know that $a - \varepsilon/1$ is not an upper bound for S. We can, and do, pick s_1 in S so that $a - \varepsilon/1 < s_1 \leq a$. Since $s_1 \in S$ and $a \notin S$ we note that $s_1 \neq a$ so

$$a - \varepsilon / 1 < s_1 < a.$$

Suppose that $k \in \mathbb{N}$ and that we have found s_n for $1 \leq n \leq k$ so that

$$s_1 < s_2 < \dots < s_k$$
 and
whenever $1 \leq n \leq k$, then $s_n \in S$ and $a - \varepsilon/n < s_n < a$

Thus $\max(s_k, a - \varepsilon/k + 1) < a$ and $\max(s_k, a - \varepsilon/k + 1)$ cannot be an upper bound for S. Pick s_{k+1} in S so that

$$\max(s_k, a - \varepsilon/(k+1)) < s_{k+1} \le a$$

Note that $s_{k+1} \neq a$ since $s_{k+1} \in S$ and $a \notin S$. Thus we have $s_k < s_{k+1}$ and $a - \frac{\varepsilon}{k+1} < s_{k+1} < a$.

Since the sequence $(s_k)_1^{\infty}$ is strictly increasing, there are infinitely many elements in the set $\{s_k : k \in \mathbb{N}\}$. For all $k, \varepsilon/k \le \varepsilon$ and so $a - \varepsilon \le a - \varepsilon/k < s_k < a$ and thus $s_k \in V_{\varepsilon}(a)$. For all indices, $s_k \in S$. Thus $\{s_k : k \in \mathbb{N}\}$ is an infinite subset of $S \cap V_{\varepsilon}(a)$. Equivalently, there are infinitely many elements of S in $V_{\varepsilon}(a)$. Since ε was arbitrary, a is an accumulation point of S.

(b) Left as an exercise.

TASK §1.2 #24 Consider a sequence $(a_n)_1^{\infty}$ which has limit A. Consider the set of entries in that sequence, namely $S = \{a_n : n \in \mathbb{N}\}$. Assume that S is an infinite set. Show that A is an accumulation point of S.

PROOF Consider an arbitrary positive ε . It is necessary to show that there are infinitely many elements of S in $V_{\varepsilon}(A)$. To do this I will display a one-to-one function f from N into $S \cap V_{\varepsilon}(A)$. The image of this function will be an infinite set of elements of S that are also in $V_{\varepsilon}(A)$. The function f is defined inductively.

Since $\varepsilon > 0$ we get N_1 such that whenever $n \ge N_1$ then $|a_n - A| < \varepsilon$. Since $\{a_n : n < N_1\}$ is a finite set, the set $\{a_n : n \ge N_1\}$ must be an infinite set. So there must be an element in this set different from A. Pick n_1 so that $n_1 \ge N_1$ and $a_{n_1} \ne A$. Set $s_1 = a_{n_1}$.

Set $\varepsilon_2 = |A - s_1|$. Note that $0 < \varepsilon_2 < \varepsilon$ since $s_1 \neq A$. We get N_2 such that whenever $n \geq N_2$ then $|a_n - A| < \varepsilon_2$. The set $\{a_n : n \geq N_2\}$ must be an infinite set. So there must be an element in this set not in $\{A, s_1\}$. Pick n_2 so that $n_2 \geq N_2$ and $a_{n_2} \notin \{A, s_1\}$. Set $s_2 = a_{n_2}$. Note that we have $\varepsilon > |A - s_1| = \varepsilon_2 > |A - s_2| > 0$

Suppose $K \in \mathbb{N}$ and we have already picked positive integers n_k for all $k \leq K$ and set $s_k = a_{n_k}$ so that

The finite sequence $(|A - s_k|)_{k=1}^K$ is strictly decreasing in the positive reals.

Set $\varepsilon_{K+1} = |A - s_K|$. Since $\varepsilon_{K+1} > 0$ we can pick N_{K+1} so that whenever $n \ge N_{K+1}$ then $|A - a_n| < \varepsilon_{K+1}$. Since the set $\{a_n : n \ge N_{K+1}\}$ must be an infinite set it must contain an element not in $\{A, s_1, s_2, ..., s_K\}$. Pick n_{K+1} so that $n_{K+1} \ge N_{K+1}$ and $a_{n_{K+1}} \notin \{A, s_1, s_2, ..., s_K\}$. Set $s_{K+1} = a_{n_{K+1}}$.

Thus we have defined inductively the sequence $(s_k)_{k \in \mathbb{N}}$. Furthermore we know that the distances $(|A - s_k|)_{k=1}^{\infty}$ are strictly decreasing and positive. Thus if i < j we know that $s_i \neq s_j$ since $|A - s_j| < |A - s_i|$. Thus the function f defined by $f(k) = s_k$ maps \mathbb{N} one-one into S. But we know more. When $n \geq 1$ we have $|A - s_n| \leq |A - s_1| < \varepsilon$. So the image of the one-one function f is in $S \cap V_{\varepsilon}(A)$.

We have shown that for each positive ε there are infinitely many elements of S in $V_{\varepsilon}(A)$ and thus that A is an accumulation point of S.

TASK §1.4 #37 Show that if a sequence is decreasing and bounded below then it converges. PROOF This is analogous to the proof of the MCT done in class.

TASK §1.4 #38 Suppose that c > 1. Show that $(\sqrt[n]{c})_{n=1}^{\infty}$ converges to 1.

PROOF.

Consider an arbitrary index n. We have $\sqrt[n]{c} > 1$ since

 $\sqrt[n]{c} > 1 \iff c > 1^n$, which is true in this case.

Note that for all n

$${}^{n+1}\sqrt{c} < \sqrt[n]{c} \iff c < \left(\sqrt[n]{c}\right)^{n+1} \iff c < c^{\frac{n+1}{n}} = c^{1+\frac{1}{n}} = c \cdot \sqrt[n]{c}$$

Since we have seen that $\sqrt[n]{c} > 1$ in this case, we conclude that $c < c \cdot \sqrt[n]{c}$ and thus that $\sqrt[n+1]{c} < \sqrt[n]{c}$.

Since our sequence $(\sqrt[n]{c})$ is decreasing and bounded below by 1, we conclude that our sequence converges and

$$L = \lim \sqrt[n]{c} = glb\left(\sqrt[n]{c}\right) \ge 1.$$

We can conclude that L = 1 by showing that L > 1 implies something false. Suppose that L > 1. Set p = L - 1 so that p > 0. Now for all n

$$\sqrt[n]{c} \ge L = 1 + p$$
 and thus $c \ge (1 + p)^n$

But for all
$$n$$

$$(1+p)^n \ge 1+np.$$

So for all n

$$c \ge 1 + np$$
 and $\frac{c-1}{p} \ge n$.

Thus (c-1)/p is an upper bound for \mathbb{N} , which must be false. \Box

TASK §1.4 #39 Suppose that $\lim (x_n) = L = \lim (y_n)$. Define $(z_n)_1^{\infty}$ by

 $z_{2n} = x_n$ and $z_{2n-1} = y_n$ for each positive integer n

or equivalently

$$z_k = \begin{cases} x_{k/2} & \text{for ever } k \text{ in } \mathbb{N} \\ y_{(k+1)/2} & \text{for odd } k \text{ in } \mathbb{N} \end{cases}$$

Show that $\lim (z_n) = L$.

PROOF. Consider a positive ε . We need to find a positive integer K such that

(*) whenever $k \ge K$ then $|z_k - L| < \varepsilon$

By hypothesis we can get positive integers N_x and N_y such that

whenever $n \ge N_x$ then $|x_n - L| < \varepsilon$ whenever $n \ge N_y$ then $|y_n - L| < \varepsilon$

Note that for all even k in \mathbb{N}

$$|z_k - L| < \varepsilon \iff |x_{k/2} - L| < \varepsilon$$

and $|x_{k/2} - L| < \varepsilon$ whenever $k/2 \ge N_x$ and thus whenever $k \ge 2N_x$

Also note that for all odd k in \mathbb{N}

$$\begin{aligned} |z_k - L| &< \varepsilon \iff |y_{(k+1)/2} - L| < \varepsilon \\ \text{and } |y_{(k+1)/2} - L| &< \varepsilon \text{ whenever } (k+1)/2 \ge N_y \text{ and thus whenever } k \ge 2N_y - 1. \end{aligned}$$

To satisfy condition (*) it is sufficient to take

$$k \ge N = \max\left(2N_x \ , \ 2N_y - 1\right) \qquad \Box$$

TASK §1.4 #40 Define a sequence $(a_n)_1^{\infty}$ inductively by setting

$$a_n = 6$$
 if $n = 1$ and
 $a_n = \sqrt{6 + a_{n-1}}$ if $n > 1$.

Show that this sequence is convergent and find its limit.

RESULT $\lim (a_n) = 3$

WORK To get an idea of what is going on compute the first few entries

$$a_{1} = 6$$

$$a_{2} = \sqrt{6 + a_{1}} = \sqrt{12} = 2\sqrt{3} \approx 2 \times 1.732 = 3.464$$

$$a_{3} = \sqrt{6 + a_{2}} = \sqrt{6 + 2\sqrt{3}} \approx \sqrt{6 + 3.464} = \sqrt{9.464} \approx 3.078$$

We will conjecture that this sequence is strictly decreasing and converges to 3.

PROOF.

Step 1 Verify the monotonicity (by induction). We have already seen that $a_2 < a_1$. Suppose that $n \in \mathbb{N}$ and $a_{n+1} < a_n$. Now

$$a_{n+2} < a_{n+1} \iff \sqrt{6 + a_{n+1}} < \sqrt{6 + a_n} \iff 6 + a_{n+1} < 6 + a_n \iff a_{n+1} < a_n$$

This last inequality is true by the induction hypothesis, so the first is also true.

Step 2. Show that for each $n, 3 < a_n$. Again we use a proof by induction. We have already seen that $a_1 = 6 > 3$. Suppose that $n \in \mathbb{N}$ and $a_n > 3$. Now

$$a_{n+1} > 3 \iff \sqrt{6+a_n} > 3 \iff 6+a_n > 9 \iff a_n > 3$$

The last inequality is true by the induction hypotheses, so the first inequality is also true.

Step 3 Show that $\lim(a_n) = 3$. By the monotone convergence theorem and the result of Step 1, we know that $\lim(a_n)$ exists and equals $glb(a_n)$. Step 2 tells us that 3 is one lower bound for our sequence. Thus $glb(a_n) \ge 3$. To show that $glb(a_n) = 3$, it is sufficient to show that $glb(a_n) \neq 3$.

Suppose that $glb(a_n) > 3$ – I will derive something false. Set

$$p = glb\left(a_n\right) - 3$$

and note that p > 0. So for all n we get the following conclusions

$$a_{n+1} \ge 3+p$$
 $\sqrt{6+a_n} \ge 3+p$ $6+a_n \ge 9+2p+p^2$ $a_n \ge 3+2p+p^2$

Thus $3 + 2p + p^2$ is a lower bound for our sequence (a_n) . Thus

$$3 + 2p + p^{2} \leq glb(a_{n}) = 3 + p$$
$$2p + p^{2} \leq p$$
$$p^{2} \leq -p < 0$$

but this last inequality must be false since the square of a positive number must be positive.

We need to find a postive integer N such that whenever $n \ge N$ then also $|b_n - A| < \varepsilon$.

By (H1) we get a positive integer N_a such that whenever $n \ge N_a$ then $|a_n - A| < \varepsilon$. By (H1) we also get a positive integer N_c such that whenever $n \ge N_c$ then $|c_n - A| < \varepsilon$. Now by (H2) we learn that if **both** $n \ge N_a$ and $n \ge N_c$ we get

$$\begin{array}{rcl} A - \varepsilon & < & a_n \leq b_n \leq c_n < A + \varepsilon, \text{ which tells us that} \\ -\varepsilon & < & b_n - A < \varepsilon \text{ and finally } |b_n - A| < \varepsilon. \end{array}$$

So what positive integer should we take for N? We want N big enough that whenever $n \ge N$, then also $n \ge N_a$ and $n \ge N_c$. We can take $N = \max(N_a, N_c)$.