Homework \# 4 , Math 311:02, Fall 2008

Sample Solutions

TASK §1.3 \#25 See Workshop \#4
TASK §1.3 \#27 Suppose that $\left(a_{n}\right)_{1}^{\infty}$ and $\left(b_{n}\right)_{1}^{\infty}$ are sequences in \mathbb{R} such that

$$
\lim \left(a_{n}\right)=A \neq 0 \quad \text { and } \lim \left(a_{n} b_{n}\right) \text { exists. }
$$

Show that $\left(b_{n}\right)_{1}^{\infty}$ converges.
PROOF: First let's introduce some notation. For each n set $c_{n}=a_{n} b_{n}$. Set $C=\lim \left(c_{n}\right)$.
Since $A \neq 0$, we know that $|A| / 2>0$. Since $\lim \left(a_{n}\right)=A$ and $|A| / 2>0$ we get an positive integer N_{1} such that
(*) whenever $n \geq N_{1}$ then also $\left|a_{n}-A\right|<|A| / 2$.
Keep $n \geq N_{1}$. Then we have

$$
\left|a_{n}\right|=\left|\left(a_{n}-A\right)+A\right| \geq|A|-\left|a_{n}-A\right|>|A|-|A| / 2=|A| / 2>0
$$

and thus $a_{n} \neq 0$.
Still keeping $n \geq N_{1}$,

$$
b_{n}=\frac{c_{n}}{a_{n}}=
$$

and we expect to prove that

$$
\lim \left(b_{n}\right)=\frac{\lim \left(c_{n}\right)}{\lim \left(a_{n}\right)}=\frac{C}{A}
$$

Note that we can't appeal to the theorem on limits of products since the entries $1 / a_{n}$ might fail to exist for some small values of the index n. So we keep working with $n \geq N_{1}$.

$$
\begin{aligned}
\left|\frac{c_{n}}{a_{n}}-\frac{c}{A}\right| & =\left|\frac{c_{n}}{a_{n}}-\frac{C}{a_{n}}+\frac{C}{a_{n}}-\frac{C}{A}\right| \\
& \leq\left|\frac{c_{n}}{a_{n}}-\frac{C}{a_{n}}\right|+\left|\frac{C}{a_{n}}-\frac{C}{A}\right| \\
& \leq\left|\frac{1}{a_{n}}\right|\left|c_{n}-C\right|+|C|\left|\frac{1}{a_{n}}-\frac{1}{A}\right| \\
& \leq \frac{2}{|A|}\left|c_{n}-C\right|+|C| \frac{1}{\left|a_{n}\right|} \frac{1}{|A|}\left|a_{n}-A\right| \\
& \leq \frac{2}{|A|}\left|c_{n}-C\right|+|C| \frac{2}{|A|} \frac{1}{|A|}\left|a_{n}-A\right|
\end{aligned}
$$

Each of the terms on the right converges to 0 .
Finally we start the " $\varepsilon-N$ endgame". Consider an arbitrary postive ε. Note $\varepsilon / 2>0$. We get positive integers N_{2} and N_{3} such that

$$
\begin{aligned}
\text { whenever } n & \geq N_{2} \text { then } \frac{2}{|A|}\left|c_{n}-C\right|=\left|\frac{2}{|A|}\right| c_{n}-C|-0|<\frac{\varepsilon}{2} \text { and } \\
\text { whenever } n & \geq N_{3} \text { then }|C| \frac{2}{|A|} \frac{1}{|A|}\left|a_{n}-A\right|=\left||C| \frac{2}{|A|} \frac{1}{|A|}\right| a_{n}-A|-0|<\frac{\varepsilon}{2}
\end{aligned}
$$

Thus whenever $n \geq \max \left\{N_{1}, N_{2}, N_{3}\right\}$ it follows that

$$
\left|b_{n}-\frac{C}{A}\right|=\left|\frac{c_{n}}{a_{n}}-\frac{c}{A}\right| \leq \frac{2}{|A|}\left|c_{n}-C\right|+|C| \frac{2}{|A|} \frac{1}{|A|}\left|a_{n}-A\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

TASK $£ \mathbf{1 . 3} \# \mathbf{3 2 a}, \mathbf{c}, \mathbf{e}$. Find the limits. Note no proof is required, but a reasonable computation should be provided and annotated.
a) FIND $L_{a}=\lim \left(\frac{n^{2}+4 n}{n^{5}-5}\right) \quad$ RESULT $L_{a}=0.2$

WORK For each positive integer n

$$
\begin{aligned}
\left(\frac{n^{2}+4 n}{n^{5}-5}\right) & =\frac{1+4 n^{-1}}{1-5 n^{-2}} \text { after dividing top and bottom by } n^{2} \\
& \rightarrow \frac{\lim (1+4 / n)}{\lim \left(1-5 / n^{2}\right)}=\frac{1+4 \cdot 0}{5-5 \cdot 0}=\frac{1}{5} \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

c) FIND $L_{c}=\lim \frac{\sin \left(n^{2}\right)}{\sqrt{n}}$ RESULT $L_{c}=0$

WORK Rewrite the $n^{\text {th }}$ entry $a_{n} b_{n}$ where $a_{n}=\sin \left(n^{2}\right)$ and $b_{n}=1 / \sqrt{n}$. We know the sequence $\left(a_{n}\right)$ is bounded. We will check that the sequence $\left(b_{n}\right)$ converges to 0 .

For every index n in \mathbb{N}, we know that $\sqrt{n} \leq n$ and thus that

$$
\left|\frac{1}{\sqrt{n}}-0\right|=\frac{1}{\sqrt{n}} \leq \frac{1}{n}
$$

Since $\lim (1 / n)=0$, the squeeze theorem tells us that $\lim b_{n}=\lim (1 / \sqrt{n})=0$.
e) FIND $L_{e}=\lim \left(a_{n} b_{n}\right)$ where $a_{n}=\sqrt{4-\frac{1}{n}}-2$ and $b_{n}=n . \quad$ RESULT $L_{e}=-1 / 4$

WORK The sequence $\left(b_{n}\right)$ is not bounded and thus not convergent. We need to anti-simplify a_{n} so that we can get control over the product $a_{n} b_{n}$.

$$
a_{n}=\frac{\sqrt{4-\frac{1}{n}}-2}{1} \cdot \frac{\sqrt{4-\frac{1}{n}}+2}{\sqrt{4-\frac{1}{n}}+2}=\frac{\left(4-\frac{1}{n}\right)-4}{\sqrt{4-\frac{1}{n}}+2}=\frac{-\frac{1}{n}}{\sqrt{4-\frac{1}{n}}+2}
$$

Thus

$$
a_{n} b_{n}=\frac{-\frac{1}{n}}{\sqrt{4-\frac{1}{n}}+2} \cdot n=\frac{-1}{\sqrt{4-\frac{1}{n}}+2}
$$

We have

$$
\lim \left(\sqrt{4-\frac{1}{n}}+2\right)=\lim \sqrt{4-\frac{1}{n}}+2=\sqrt{\lim \left(4-\frac{1}{n}\right)}+2=\sqrt{4-0}+2=2+2
$$

and thus

$$
\lim \left(a_{n} b_{n}\right)=\frac{-1}{\lim \left(\sqrt{4-\frac{1}{n}}+2\right)}=\frac{-1}{2+2}
$$

TASK $\S 1.2$ \#14 Prove that every Cauchy sequence is bounded.
PROOF Suppose that $\left(w_{n}\right)_{1}^{\infty}$ is a Cauchy sequence. We must produce a positive M such that for all indices $\left|w_{n}\right| \leq M$.

Since $\left(w_{n}\right)_{1}^{\infty}$ is Cauchy, we know that for every positive ε there exists at least one positive integer H with the property that

$$
\text { whenever both } m \geq H \text { and } n \geq H \text {, then }\left|w_{n}-w_{m}\right|<\varepsilon .
$$

Set $\varepsilon_{0}=1$. Let H_{0} denote a positive integer such that

$$
\text { whenever both } m \geq H_{0} \text { and } n \geq H_{0} \text {, then }\left|w_{n}-w_{m}\right|<\varepsilon_{0}=1
$$

Consider an arbitrary n with $n \geq H_{0}$.

$$
\left|w_{n}\right|=\left|\left(w_{n}-w_{H}\right)+w_{H}\right| \leq\left|w_{n}-w_{H}\right|+\left|w_{H}\right|<1+\left|w_{H}\right| .
$$

Next set

$$
A=\max \left(\left\{\left|w_{n}\right|: n \leq H\right\}\right)
$$

and

$$
M=\max \left(\left\{A, 1+\left|w_{H}\right|\right\}\right)
$$

Since $M \geq 1+\left|w_{h}\right| \geq 1$, we get $M>0$. It remains to verify that $\left|w_{n}\right| \leq M$ for all indices n. Consider an arbitrary n. If $n \leq H$, then $\left|w_{n}\right| \leq A \leq M$. If $n>H$, then $\left|w_{n}\right| \leq 1+\left|w_{H}\right| \leq M$.

So we did find positive M such that $\left|w_{n}\right| \leq M$ for all indices.

TASK $\S 1.2 \# 16$ Prove, directly from the definition, that the product of Cauchy sequences is Cauchy.
PROOF Suppose that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences. Set $c_{n}=a_{n} b_{n}$.
Consider an arbitrary postive ε. We seek H so that

$$
\text { whenever both } n \geq H \text { and } m \geq H, \text { then }\left|c_{n}-c_{m}\right|<\varepsilon
$$

Consider arbitrary m, n.First we look for an estimate.

$$
\begin{aligned}
\left|c_{n}-c_{m}\right| & =\left|a_{n} b_{n}-a_{m} b_{m}\right|=\left|a_{n}\left(b_{n}-b_{m}\right)+a_{n} b_{m}-a_{m} b_{m}\right| \\
& \leq\left|a_{n}\left(b_{n}-b_{m}\right)\right|+\left|a_{n}-a_{m}\right|\left|b_{m}\right|
\end{aligned}
$$

Since the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy, we know they are bounded by $\S 1.2 \# 14$. Thus we get positive constants M_{a} and M_{b} such that

$$
\text { for all indices, }\left|a_{n}\right| \leq M_{a} \quad \text { and } \quad\left|b_{m}\right| \leq M_{b}
$$

It follows that

$$
\text { for all indices, }\left|c_{n}-c_{m}\right| \leq M_{a}\left|b_{n}-b_{m}\right|+M_{b}\left|a_{n}-a_{m}\right|
$$

Note that $\varepsilon / 2 M_{a}$ and $\varepsilon / 2 M_{b}$ are positive. Since the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy, we get positive integers H_{a} and H_{b} such that

$$
\begin{aligned}
\text { whenever both } n & \geq H_{a} \text { and } m \geq H_{a}, \text { then }\left|a_{n}-a_{m}\right|<\varepsilon / 2 M_{a} \\
\text { whenever both } n & \geq H_{b} \text { and } m \geq H_{b}, \text { then }\left|b_{n}-b_{m}\right|<\varepsilon / 2 M_{b}
\end{aligned}
$$

Now take $H=\max \left(H_{a}, H_{b}\right)$. Suppose both $n \geq H$ and $m \geq H$. Then

$$
\left|a_{n}-a_{m}\right|<\varepsilon / 2 M_{a} \text { and }\left|b_{n}-b_{m}\right|<\varepsilon / 2 M_{b}
$$

$$
\begin{aligned}
\left|c_{n}-c_{m}\right| & \leq M_{a}\left|b_{n}-b_{m}\right|+M_{b}\left|a_{n}-a_{m}\right| \\
& <M_{a} \frac{\varepsilon}{2 M_{a}}+M_{b} \frac{\varepsilon}{2 M_{b}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

TASK $\S 1.2 \# 22 a)$ Suppose that S is a non-empty set in \mathbb{R} which is bounded above. Set $a=l u b(S)$. Show that if a is not an element of S then a must be an accumulation point of S.
$\# \mathbf{2 2 b}$) Suppose that S is a non-empty set in \mathbb{R} which is bounded below. Set $b=g l b(S)$. Show that if b is not an element of S then b must be an accumulation point of S.

EXPLORATION Recall that z is an accumulation point of S if and only if for every positive ε the set $S \cap V_{\varepsilon}(z)$ contains infinitely many elements.

PROOF (a) Assume that $a \notin S$. Consider an arbitrary postive ε. Note that for every n in $\mathbb{N}, \varepsilon / n>0$. Define a sequence $\left(s_{n}\right)_{1}^{\infty}$ as follows.

Since $a-\varepsilon / 1<a$, we know that $a-\varepsilon / 1$ is not an upper bound for S. We can, and do, pick s_{1} in S so that $a-\varepsilon / 1<s_{1} \leq a$. Since $s_{1} \in S$ and $a \notin S$ we note that $s_{1} \neq a$ so

$$
a-\varepsilon / 1<s_{1}<a .
$$

Suppose that $k \in \mathbb{N}$ and that we have found s_{n} for $1 \leq n \leq k$ so that

$$
\begin{aligned}
s_{1} & <s_{2}<\ldots<s_{k} \text { and } \\
\text { whenever } 1 & \leq n \leq k, \text { then } s_{n} \in S \text { and } a-\varepsilon / n<s_{n}<a
\end{aligned}
$$

Thus $\max \left(s_{k}, a-\varepsilon / k+1\right)<a$ and $\max \left(s_{k}, a-\varepsilon / k+1\right)$ cannot be an upper bound for S. Pick s_{k+1} in S so that

$$
\max \left(s_{k}, a-\varepsilon /(k+1)\right)<s_{k+1} \leq a
$$

Note that $s_{k+1} \neq a$ since $s_{k+1} \in S$ and $a \notin S$. Thus we have $s_{k}<s_{k+1}$ and $a-\frac{\varepsilon}{k+1}<s_{k+1}<a$.
Since the sequence $\left(s_{k}\right)_{1}^{\infty}$ is strictly increasing, there are infinitely many elements in the set $\left\{s_{k}: k \in \mathbb{N}\right\}$. For all $k, \varepsilon / k \leq \varepsilon$ and so $a-\varepsilon \leq a-\varepsilon / k<s_{k}<a$ and thus $s_{k} \in V_{\varepsilon}(a)$. For all indices, $s_{k} \in S$. Thus $\left\{s_{k}: k \in \mathbb{N}\right\}$ is an infinite subset of $S \cap V_{\varepsilon}(a)$. Equivalently, there are infinitely many elements of S in $V_{\varepsilon}(a)$. Since ε was arbitrary, a is an accumulation point of S.
(b) Left as an exercise.

TASK $\S 1.2 \# 24$ Consider a sequence $\left(a_{n}\right)_{1}^{\infty}$ which has limit A. Consider the set of entries in that sequence, namely $S=\left\{a_{n}: n \in \mathbb{N}\right\}$. Assume that S is an infinite set. Show that A is an accumulation point of S.

PROOF Consider an arbitrary positive ε. It is necessary to show that there are infinitely many elements of S in $V_{\varepsilon}(A)$. To do this I will display a one-to-one function f from \mathbb{N} into $S \cap V_{\varepsilon}(A)$. The image of this function will be an infinite set of elements of S that are also in $V_{\varepsilon}(A)$. The function f is defined inductively.

Since $\varepsilon>0$ we get N_{1} such that whenever $n \geq N_{1}$ then $\left|a_{n}-A\right|<\varepsilon$. Since $\left\{a_{n}: n<N_{1}\right\}$ is a finite set, the set $\left\{a_{n}: n \geq N_{1}\right\}$ must be an infinite set. So there must be an element in this set different from A. Pick n_{1} so that $n_{1} \geq N_{1}$ and $a_{n_{1}} \neq A$. Set $s_{1}=a_{n_{1}}$.

Set $\varepsilon_{2}=\left|A-s_{1}\right|$. Note that $0<\varepsilon_{2}<\varepsilon$ since $s_{1} \neq A$. We get N_{2} such that whenever $n \geq N_{2}$ then $\left|a_{n}-A\right|<\varepsilon_{2}$. The set $\left\{a_{n}: n \geq N_{2}\right\}$ must be an infinite set. So there must be an element in this set not in $\left\{A, s_{1}\right\}$. Pick n_{2} so that $n_{2} \geq N_{2}$ and $a_{n_{2}} \notin\left\{A, s_{1}\right\}$. Set $s_{2}=a_{n_{2} \text {. Note that we have }}$. N $\varepsilon>\left|A-s_{1}\right|=\varepsilon_{2}>\left|A-s_{2}\right|>0$

Suppose $K \in \mathbb{N}$ and we have already picked positive integers n_{k} for all $k \leq K$ and set $s_{k}=a_{n_{k}}$ so that
The finite sequence $\left(\left|A-s_{k}\right|\right)_{k=1}^{K}$ is strictly decreasing in the positive reals.

Set $\varepsilon_{K+1}=\left|A-s_{K}\right|$. Since $\varepsilon_{K+1}>0$ we can pick N_{K+1} so that whenever $n \geq N_{K+1}$ then $\left|A-a_{n}\right|<\varepsilon_{K+1}$. Since the set $\left\{a_{n}: n \geq N_{K+1}\right\}$ must be an infinite set it must contain an element not in $\left\{A, s_{1}, s_{2}, \ldots, s_{K}\right\}$. Pick n_{K+1} so that $n_{K+1} \geq N_{K+1}$ and $a_{n_{K+1}} \notin\left\{A, s_{1,}, s_{2}, \ldots, s_{K}\right\}$. Set $s_{K+1}=a_{n_{K+1}}$.

Thus we have defined inductively the sequence $\left(s_{k}\right)_{k \in \mathbb{N}}$. Furthermore we know that the distances $\left(\left|A-s_{k}\right|\right)_{k=1}^{\infty}$ are strictly decreasing and positive. Thus if $i<j$ we know that $s_{i} \neq s_{j}$ since $\left|A-s_{j}\right|<$ $\left|A-s_{i}\right|$. Thus the function f defined by $f(k)=s_{k}$ maps \mathbb{N} one-one into S. But we know more. When $n \geq 1$ we have $\left|A-s_{n}\right| \leq\left|A-s_{1}\right|<\varepsilon$. So the image of the one-one function f is in $S \cap V_{\varepsilon}(A)$.

We have shown that for each positive ε there are infinitely many elements of S in $V_{\varepsilon}(A)$ and thus that A is an accumulation point of S.

TASK §1.4 \#37 Show that if a sequence is decreasing and bounded below then it converges.
PROOF This is analogous to the proof of the MCT done in class.

TASK $\S 1.4 \# 38$ Suppose that $c>1$. Show that $(\sqrt[n]{c})_{n=1}^{\infty}$ converges to 1 .
PROOF.
Consider an arbitrary index n. We have $\sqrt[n]{c}>1$ since

$$
\sqrt[n]{c}>1 \Longleftrightarrow c>1^{n}, \text { which is true in this case. }
$$

Note that for all n

$$
\sqrt[n+1]{c}<\sqrt[n]{c} \Longleftrightarrow c<(\sqrt[n]{c})^{n+1} \Longleftrightarrow c<c^{\frac{n+1}{n}}=c^{1+\frac{1}{n}}=c \cdot \sqrt[n]{c}
$$

Since we have seen that $\sqrt[n]{c}>1$ in this case, we conclude that $c<c \cdot \sqrt[n]{c}$ and thus that $\sqrt[n+1]{c}<\sqrt[n]{c}$.
Since our sequence $(\sqrt[n]{c})$ is decreasing and bounded below by 1 , we conclude that our sequence converges and

$$
L=\lim \sqrt[n]{c}=g l b(\sqrt[n]{c}) \geq 1
$$

We can conclude that $L=1$ by showing that $L>1$ implies something false.
Suppose that $L>1$. Set $p=L-1$ so that $p>0$. Now for all n

$$
\sqrt[n]{c} \geq L=1+p \quad \text { and thus } \quad c \geq(1+p)^{n}
$$

But for all n

$$
(1+p)^{n} \geq 1+n p
$$

So for all n

$$
c \geq 1+n p \text { and } \frac{c-1}{p} \geq n
$$

Thus $(c-1) / p$ is an upper bound for \mathbb{N}, which must be false.

TASK $\S 1.4 \# 39$ Suppose that $\lim \left(x_{n}\right)=L=\lim \left(y_{n}\right)$. Define $\left(z_{n}\right)_{1}^{\infty}$ by

$$
z_{2 n}=x_{n} \quad \text { and } \quad z_{2 n-1}=y_{n} \quad \text { for each positive integer } n
$$

or equivalently

$$
z_{k}=\left\{\begin{array}{cc}
x_{k / 2} & \text { for ever } k \text { in } \mathbb{N} \\
y_{(k+1) / 2} & \text { for odd } k \text { in } \mathbb{N}
\end{array}\right.
$$

Show that $\lim \left(z_{n}\right)=L$.
PROOF. Consider a positive ε. We need to find a positive integer K such that
$(*) \quad$ whenever $k \geq K$ then $\left|z_{k}-L\right|<\varepsilon$

By hypothesis we can get positive integers N_{x} and N_{y} such that

$$
\begin{aligned}
\text { whenever } n & \geq N_{x} \text { then }\left|x_{n}-L\right|<\varepsilon \\
\text { whenever } n & \geq N_{y} \text { then }\left|y_{n}-L\right|<\varepsilon
\end{aligned}
$$

Note that for all even k in \mathbb{N}

$$
\begin{aligned}
\left|z_{k}-L\right| & <\varepsilon \Longleftrightarrow\left|x_{k / 2}-L\right|<\varepsilon \\
\text { and }\left|x_{k / 2}-L\right| & <\varepsilon \text { whenever } k / 2 \geq N_{x} \text { and thus whenever } k \geq 2 N_{x}
\end{aligned}
$$

Also note that for all odd k in \mathbb{N}

$$
\left|z_{k}-L\right|<\varepsilon \Longleftrightarrow\left|y_{(k+1) / 2}-L\right|<\varepsilon
$$

and $\left|y_{(k+1) / 2}-L\right|<\varepsilon$ whenever $(k+1) / 2 \geq N_{y}$ and thus whenever $k \geq 2 N_{y}-1$.
To satisfy condition $(*)$ it is sufficient to take

$$
k \geq N=\max \left(2 N_{x}, 2 N_{y}-1\right)
$$

TASK $\S 1.4 \# 40$ Define a sequence $\left(a_{n}\right)_{1}^{\infty}$ inductively by setting

$$
\begin{aligned}
& a_{n}=6 \text { if } n=1 \text { and } \\
& a_{n}=\sqrt{6+a_{n-1}} \text { if } n>1 .
\end{aligned}
$$

Show that this sequence is convergent and find its limit.

RESULT $\lim \left(a_{n}\right)=3$
WORK To get an idea of what is going on compute the first few entries

$$
\begin{aligned}
& a_{1}=6 \\
& a_{2}=\sqrt{6+a_{1}}=\sqrt{12}=2 \sqrt{3} \approx 2 \times 1.732=3.464 \\
& a_{3}=\sqrt{6+a_{2}}=\sqrt{6+2 \sqrt{3}} \approx \sqrt{6+3.464}=\sqrt{9.464} \approx 3.078
\end{aligned}
$$

We will conjecture that this sequence is strictly decreasing and converges to 3 .
PROOF.
Step 1 Verify the monotonicity (by induction). We have already seen that $a_{2}<a_{1}$. Suppose that $n \in \mathbb{N}$ and $a_{n+1}<a_{n}$. Now

$$
a_{n+2}<a_{n+1} \Longleftrightarrow \sqrt{6+a_{n+1}}<\sqrt{6+a_{n}} \Longleftrightarrow 6+a_{n+1}<6+a_{n} \Longleftrightarrow a_{n+1}<a_{n}
$$

This last inequality is true by the induction hypothesis, so the first is also true.
Step 2. Show that for each $n, 3<a_{n}$. Again we use a proof by induction. We have already seen that $a_{1}=6>3$. Suppose that $n \in \mathbb{N}$ and $a_{n}>3$. Now

$$
a_{n+1}>3 \Longleftrightarrow \sqrt{6+a_{n}}>3 \Longleftrightarrow 6+a_{n}>9 \Longleftrightarrow a_{n}>3
$$

The last inequality is true by the induction hypotheses, so the first inequality is also true.
Step 3 Show that $\lim \left(a_{n}\right)=3$. By the monotone convergence theorem and the result of Step 1, we know that $\lim \left(a_{n}\right)$ exists and equals $g l b\left(a_{n}\right)$. Step 2 tells us that 3 is one lower bound for our sequence. Thus $g l b\left(a_{n}\right) \geq 3$. To show that $g l b\left(a_{n}\right)=3$, it is sufficient to show that $g l b\left(a_{n}\right) \ngtr 3$.

Suppose that $g l b\left(a_{n}\right)>3-$ I will derive something false. Set

$$
p=g l b\left(a_{n}\right)-3
$$

and note that $p>0$. So for all n we get the following conclusions

$$
a_{n+1} \geq 3+p \quad \sqrt{6+a_{n}} \geq 3+p \quad 6+a_{n} \geq 9+2 p+p^{2} \quad a_{n} \geq 3+2 p+p^{2}
$$

Thus $3+2 p+p^{2}$ is a lower bound for our sequence $\left(a_{n}\right)$. Thus

$$
\begin{aligned}
3+2 p+p^{2} & \leq g l b\left(a_{n}\right)=3+p \\
2 p+p^{2} & \leq p \\
p^{2} & \leq-p<0
\end{aligned}
$$

but this last inequality must be false since the square of a positive number must be positive.
We need to find a postive integer N such that whenever $n \geq N$ then also $\left|b_{n}-A\right|<\varepsilon$.
By (H1) we get a positive integer N_{a} such that whenever $n \geq N_{a}$ then $\left|a_{n}-A\right|<\varepsilon$. By ($H 1$) we also get a positive integer N_{c} such that whenever $n \geq N_{c}$ then $\left|c_{n}-A\right|<\varepsilon$. Now by (H2) we learn that if both $n \geq N_{a}$ and $n \geq N_{c}$ we get

$$
\begin{aligned}
A-\varepsilon & <a_{n} \leq b_{n} \leq c_{n}<A+\varepsilon, \text { which tells us that } \\
-\varepsilon & <b_{n}-A<\varepsilon \text { and finally }\left|b_{n}-A\right|<\varepsilon .
\end{aligned}
$$

So what positive integer should we take for N ? We want N big enough that whenever $n \geq N$, then also $n \geq N_{a}$ and $n \geq N_{c}$. We can take $N=\max \left(N_{a}, N_{c}\right)$.

