
Homework Sets # 9 , Math 311:02, Fall 2008
Sample Solutions

§4.1 #1 Task Consider the function de�ned by f(x) = x2 and an arbitrary point (x0; y0) on the graph
of f subject only to the condition x0 6= 0: Without using the notion of derivative �nd the equation of a
straight line that intersects this graph only at (x0; y0) :
Result: y = (2x0) (x� x0) + (x0)2 :
Work: Since (x0; y0) is on the graph of f we know y0 = (x0)

2: Thus, for each real m, the line y =
m(x� x0) + (x0)2 intersects the graph of f at (x0; y0) : We need to �nd m so that the line cannot intersect
the graph of f anywhere else. So we look for m such that the quadratic equation

x2 �
�
m(x� x0) + (x0)2

�
= 0

has only the one (repeated) real solution x0: Put this quadratic equation into standard form

x2 + [�m]x+
�
mx0 � (x0)2

�
= 0

The quadratic equation gives solutions

� [�m]�
r
[�m]2 � 4 � 1 �

h
mx0 � (x0)2

i
2 � 1

To get a repeated root x0 we need

x0 =
m

2
and m2 � 4mx0 + 4 (x0)2 = 0

or equivalently
m = 2x0 and (m� 2x0)2 = 0

which reduces to the condition we knew we needed namely, m = 2x0:
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§4.1 #2 Task Suppose that

f is a function; c is an accumulationpoint of dom(f); c 2 dom(f); L 2 R

Prove the equivalence of the statements

(1) lim
x!c

f(x)� f(c)
x� c = L and (2) lim

h!0

f(c+ h)� f(c)
h

= L

Proof De�ne the function Q by

Q (h) =
f(c+ h)� f(c)

h

and note that
Dom(Q) = fh : c+ h 2 Dom(f) and h 6= 0g

Step 1 Show that (1) implies (2)
Assume (1). Since c is an accumulation point of Dom(f) we get a sequence (xn)n2N in Dom (f)� fcg

such that.lim (xn) = c: For each n de�ne hn = xn � c: Note that for all n; hn 2 Dom(Q) � f0g and
lim(hn) = 0: This veri�es that 0 is an accumulation point of Dom(Q):
Now we can use the sequential criterion for functional convergence to verify the limit statement (2).

Consider an arbitrary sequence (zn)n2N in Dom(Q)� f0g and assume that lim (zn) = 0: It is easy to check
that the sequence (c+ zn)n2N is a sequence in Dom (f) � fcg and that lim (c+ zn) = c: By (1) and some
arithmetic in the bottom of the fractions, we know that

lim
f(c+ zn)� f (c)

zn
= lim

f(c+ zn)� f (c)
(c+ zn)� c

= L

This is just what we need to conclude that

(2) lim
f(c+ h)� f (c)

h
= L

Step 2 Show that (2) implies (1)
Assume (2). Note that in this direction our hypothesis takes explicit care of the domain and accumulation

point issues. We use an "�-proof to �nish (1). Consider an arbitrary positive ": Use (2) to pick a positive
� with the property that

for all h in Dom(Q), 0 < jh� 0j < � ) jQ(h)� Lj < ":

Now consider an arbitrary x in Dom(f) and assume that 0 < jx� cj < �: We immediately get����f(x)� f(c)x� c � L
���� = jQ(x� c)� Lj < ":

So (1) is veri�ed.

2



§4.1 #4 Task Let g(x) = x2: Consider arbitrary real c: Use the de�nition of derivative to compute g0(c).
Proof There is no problem with verifying that c is in the domain of g and that c is an accumulation point
of the domain of g: Now compute for x 6= c:

g(x)� g(c)
x� c =

x2 � c2
x� c =

x� c
x� c

x+ c

1
= x+ c! 2c as x! c:

§4.1 #5 Task Set

h(x) =

�
x3 sin

�
1
x

�
if x 6= 0

0 if x = 0

Use the computational rules of derivatives from Calc I and II.
a) Find the derivative of h
b) Show that h0 is continuous on R
c) Show that there is one real c such that h0 is di¤erentiable on R� fcg but not at .

Result (a)

h0(x) =

�
3x2 sin

�
1
x

�
� x cos( 1x ) if x 6= 0
0 if x = 0

Work for (a) Using the algebra of derivatives we get h0(= c) easily for non-zero c

h0(c) = 3c2 sin

�
1

c

�
� c3 cos(1

c
)c�2

For c = 0 it is convenient to use the alternate de�ntion

h0 (0) = lim
t!0

h(0 + t)� h(0)
t

= lim
t!0

t2 sin

�
1

t

�
= 0

since the factor t2 has limit 0 and the second factor is bounded.
Proof for (b) Freshman calculus gives us a derivative for h0 at every non-zero c. So h0 must be continuous
at every non-zero c: To see that h0 is continuous at 0 note that

h0(x)� h0(0) = h0(x) = x [3x sin(1=x)]� cos(1=x)

jh0(x)� h0(0)j = jxj � j3x sin(1=x)� cos(1=x)j � jx� 0j � (3 jxj+ 1)
Thus

0 � lim
x!0

jh0(x)� h0 (0)j � lim
x!0

jx� 0j � (3 jxj+ 1) = 0

and we get the continuity at zero by the Squeeze Theorem.

Result and Proof for (c) As noted above h0 will be di¤erentiable at every non-zero c; where
h0(c) = 3c2 sin

�
1
c

�
� c3 cos( 1c )c

�2 = 3c2 sin
�
1
c

�
� c cos( 1c )

h00(c) =
�
6c sin(1=c)� 3c2 cos(1=c)c�2

�
�
�
cos(1=c)� c sin(1=c)c�2

�
=

�
6c+ c�1

�
sin(1=c)� [3� 1] cos(1=c)

We must try to take a limit of the di¤erence quotient at zero explicitly

h0(x)� h0 (0)
x� 0 =

(x [3x sin(1=x)]� cos(1=x))� 0
x

=

�
3x sin (1=x)� cos (1=x)

x

�
The �rst term converges to 0 as x runs to 0: But the second term is not bounded in any neighborhood of 0
so the second term cannot converge. If h00(0) exists then the second term must converge. So h00(0) cannot
exist.
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§4.1 #7 Task Suppose that f is de�ned on (a; b). We say that

"f satis�es a Lipschitz condition at c in (a; b)"

i¤
there is a positive M and a positive r such that

for all x in (a; b) jx� cj < r ) jf (x)� f (c) j < M jx� cj

NOTE that I have translated this de�nition so that it agrees with the de�nition I gave earlier for "local
Lipschitz condition".
a) Give an example of a function that is continous at c but fails to satisfy a Lipschitz condition at c
b) Show that if a function is di¤erentiable at c then it does satisfy a Lipschitz condition.

a) In light of (b) we look for a continuous function that fails to have a derivative at c: The absolute
value function is tempting, but does satisfy a Lipschitz condition. So try f(x) = x1=3 on the interval
(a; b) = (�1; 1): Since f is the inverse of a strictly increasing function, it must be continuous everywhere.
Suppose, for the sake of contradiction, that f does satisfy a Lipschitz condition at 0 with M and r as in

the de�ntion. Then for all x near 0 but not equal to 0

M >

����f(x)� f(0)x� 0

���� = ����x1=3 � 0x� 0

���� = ���� 1x2=3
����

Now look at the sequence (xn)n2N de�ned by

xn =
r

2

1

n3=2
=
r

2
n�3=2

Since we have for all indices
�1 < 0 < xn <

r

2

1

n1
< min(r; 1):

So for all indices

M >

����� 1

(xn)
2=3

����� =
����� 1�
r
2 � n�3=2

�2=3
����� = �r2��2=3 � n

which says that (r=2)2=3M is an upper bound for N; which is false.
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§4.1 #11 Task De�ne f on (0; 1) by

f(x) =
p
2x2 � 3x+ 6

show that f is di¤erentiable at every point of its domain. Find the derivative.
Proof Let r denote the square root function, r(u) =

p
u: We know that r is de�ned on [0;+1) and is

di¤erentiable on (0;+1) with r0(x) = x�1=2 for positive x:
Let P denote the polynomial P (x) = 2x2 � 3x + 6: We know that P is continuous and di¤erentiable

everywhere.
Note that f = r � P: We check to see if we can apply the Chain Rule.
Suppose c is in (0; 1) : Then c is both in the domain of f and is an accumulation point for the domain

of f: Our "inside function" P is di¤erentiable at c: Our "outside function" r is di¤erentiable at c provided
that P (c) > 0:Note that

P (c) = 2c2 � 3c+ 6
> �3c+ 6 since c > 0 and thus 2c2 > 0

> 6� 3 = 3 > 0 since c < 1 and thus � 3c > �3

So the Chain Rule Theorem tells us that f 0 exists and that

f 0 (c) = r0(P (c))P 0(c) =
1

2

�
2c2 � 3c+ 6

�
(4c� 3)

§4.1 #13 Task Suppose that function f maps [a; b] into [c; d] and function g maps [c; d] into R: Suppose
further that f and f 0 are di¤erentiable on [a; b] and that g and g0 are di¤erentiable on [c:d]. Show that
g � f is di¤erentiable, that (g � f)0 is also di¤erentiable and compute the derivatives.
Results and Proof The hypotheses are su¢ cient to satisfy the hypotheses of the Chain Rule Theorem
applied to g � f: Thus on [a; b]

(g � f)0 (x) = g0(f(x)) � f 0(x):

Next we need to see why (g � f)0 has a derivative. First note that (g � f)0 is a product of two functions. To
apply the product rule we need to check that each factor is di¤erentiable.
By hypotheses the second factor f 0 is di¤erentiable. The �rst factor is the composition of g0 following

f: We are told that f maps [a; b] di¤erentiably into [c; d] and that g0 maps [c; d] di¤erentiably into R: So
by the Chain Rule Theorem, (g0 � f) is di¤erentiable and

(g0 � f)0 (x) = g00(f(x)) � f 0(x)

Now we know that we can apply the product rule to get

(g � f)0 0 (x) =
h
(g0 � f)0 (x)

i
� f 0(x) + (g0 � f) (x) � [f 0 0 (x)]

[g0 0(f(x)) � f 0(x)] � f 0 (x) + g0(f(x)) � [f 0 0 (x)]
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§4.1 #14 Task Suppose that f is di¤erentiable on R and that g is de�ned by

g(x) = x2f(x3)

Show that g is di¤erentiable and �nd g0(x):
Result g0(x) = 2xf(x3) + 3x4f 0(x3):
Proof. We use our usual notation for power functions

Pn (x) = x
n:

Then we see that g is the product of the function P2 and the composition f � P3: Since f and P3 are both
di¤erentiable on R we get

(f � P3)0 (x) = f 0 (P3(x)) � P 03 (x) = f 0 �x3� � 3x2
We also know that

P 02 (x) = 2x

Thus

g0 (x) = P 02 (x) � (f � P3) (x) + P2 (x) � (f � P3)
0
(x)

= 2x � f(x3) + x2 �
�
f 0 �x3� � 3x2�

= 2x � f(x3) + 3x4 � f 0 �x3�
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