Homework Sets \# 9 , Math 311:02, Fall 2008

Sample Solutions
§4.1 \#1 Task Consider the function defined by $f(x)=x^{2}$ and an arbitrary point $\left(x_{0}, y_{0}\right)$ on the graph of f subject only to the condition $x_{0} \neq 0$. Without using the notion of derivative find the equation of a straight line that intersects this graph only at $\left(x_{0}, y_{0}\right)$.
Result: $y=\left(2 x_{0}\right)\left(x-x_{0}\right)+\left(x_{0}\right)^{2}$.
Work: Since $\left(x_{0}, y_{0}\right)$ is on the graph of f we know $y_{0}=\left(x_{0}\right)^{2}$. Thus, for each real m, the line $y=$ $m\left(x-x_{0}\right)+\left(x_{0}\right)^{2}$ intersects the graph of f at $\left(x_{0}, y_{0}\right)$. We need to find m so that the line cannot intersect the graph of f anywhere else. So we look for m such that the quadratic equation

$$
x^{2}-\left(m\left(x-x_{0}\right)+\left(x_{0}\right)^{2}\right)=0
$$

has only the one (repeated) real solution x_{0}. Put this quadratic equation into standard form

$$
x^{2}+[-m] x+\left[m x_{0}-\left(x_{0}\right)^{2}\right]=0
$$

The quadratic equation gives solutions

$$
\frac{-[-m] \pm \sqrt{[-m]^{2}-4 \cdot 1 \cdot\left[m x_{0}-\left(x_{0}\right)^{2}\right]}}{2 \cdot 1}
$$

To get a repeated root x_{0} we need

$$
x_{0}=\frac{m}{2} \quad \text { and } \quad m^{2}-4 m x_{0}+4\left(x_{0}\right)^{2}=0
$$

or equivalently

$$
m=2 x_{0} \quad \text { and } \quad\left(m-2 x_{0}\right)^{2}=0
$$

which reduces to the condition we knew we needed namely, $m=2 x_{0}$.

§4.1 \#2 Task Suppose that

f is a function; c is an accumulationpoint of $\operatorname{dom}(f) ; c \in \operatorname{dom}(f) ; L \in \mathbb{R}$
Prove the equivalence of the statements

$$
\text { (1) } \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=L \quad \text { and } \quad \text { (2) } \quad \lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=L
$$

Proof Define the function Q by

$$
Q(h)=\frac{f(c+h)-f(c)}{h}
$$

and note that

$$
\operatorname{Dom}(Q)=\{h: c+h \in \operatorname{Dom}(f) \text { and } h \neq 0\}
$$

Step 1 Show that (1) implies (2)
Assume (1). Since c is an accumulation point of $\operatorname{Dom}(f)$ we get a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Dom}(f)-\{c\}$ such that. $\lim \left(x_{n}\right)=c$. For each n define $h_{n}=x_{n}-c$. Note that for all $n, h_{n} \in \operatorname{Dom}(Q)-\{0\}$ and $\lim \left(h_{n}\right)=0$. This verifies that 0 is an accumulation point of $\operatorname{Dom}(Q)$.

Now we can use the sequential criterion for functional convergence to verify the limit statement (2). Consider an arbitrary sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Dom}(Q)-\{0\}$ and assume that $\lim \left(z_{n}\right)=0$. It is easy to check that the sequence $\left(c+z_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\operatorname{Dom}(f)-\{c\}$ and that $\lim \left(c+z_{n}\right)=c$. By (1) and some arithmetic in the bottom of the fractions, we know that

$$
\lim \frac{f\left(c+z_{n}\right)-f(c)}{z_{n}}=\lim \frac{f\left(c+z_{n}\right)-f(c)}{\left(c+z_{n}\right)-c}=L
$$

This is just what we need to conclude that

$$
\text { (2) } \lim \frac{f(c+h)-f(c)}{h}=L
$$

Step 2 Show that (2) implies (1)
Assume (2). Note that in this direction our hypothesis takes explicit care of the domain and accumulation point issues. We use an $\varepsilon \delta$-proof to finish (1). Consider an arbitrary positive ε. Use (2) to pick a positive δ with the property that

$$
\text { for all } h \text { in } \operatorname{Dom}(Q), \quad 0<|h-0|<\delta \Rightarrow|Q(h)-L|<\varepsilon .
$$

Now consider an arbitrary x in $\operatorname{Dom}(f)$ and assume that $0<|x-c|<\delta$. We immediately get

$$
\left|\frac{f(x)-f(c)}{x-c}-L\right|=|Q(x-c)-L|<\varepsilon .
$$

So (1) is verified.
$\S 4.1 \# 4$ Task Let $g(x)=x^{2}$. Consider arbitrary real c. Use the definition of derivative to compute $g^{\prime}(c)$. Proof There is no problem with verifying that c is in the domain of g and that c is an accumulation point of the domain of g. Now compute for $x \neq c$.

$$
\frac{g(x)-g(c)}{x-c}=\frac{x^{2}-c^{2}}{x-c}=\frac{x-c}{x-c} \frac{x+c}{1}=x+c \rightarrow 2 c \quad \text { as } x \rightarrow c
$$

§4.1 \#5 Task Set

$$
h(x)=\left\{\begin{array}{ccc}
x^{3} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

Use the computational rules of derivatives from Calc I and II.
a) Find the derivative of h
b) Show that h^{\prime} is continuous on \mathbb{R}
c) Show that there is one real c such that h^{\prime} is differentiable on $\mathbb{R}-\{c\}$ but not at .

Result (a)

$$
h^{\prime}(x)=\left\{\begin{array}{cl}
3 x^{2} \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Work for (a) Using the algebra of derivatives we get $h^{\prime}(=c)$ easily for non-zero c

$$
h^{\prime}(c)=3 c^{2} \sin \left(\frac{1}{c}\right)-c^{3} \cos \left(\frac{1}{c}\right) c^{-2}
$$

For $c=0$ it is convenient to use the alternate defintion

$$
h^{\prime}(0)=\lim _{t \rightarrow 0} \frac{h(0+t)-h(0)}{t}=\lim _{t \rightarrow 0} t^{2} \sin \left(\frac{1}{t}\right)=0
$$

since the factor t^{2} has limit 0 and the second factor is bounded.
Proof for (b) Freshman calculus gives us a derivative for h^{\prime} at every non-zero c. So h^{\prime} must be continuous at every non-zero c. To see that h^{\prime} is continuous at 0 note that

$$
\begin{gathered}
h^{\prime}(x)-h^{\prime}(0)=h^{\prime}(x)=x[3 x \sin (1 / x)]-\cos (1 / x) \\
\left|h^{\prime}(x)-h^{\prime}(0)\right|=|x| \cdot|3 x \sin (1 / x)-\cos (1 / x)| \leq|x-0| \cdot(3|x|+1)
\end{gathered}
$$

Thus

$$
0 \leq \lim _{x \rightarrow 0}\left|h^{\prime}(x)-h^{\prime}(0)\right| \leq \lim _{x \rightarrow 0}|x-0| \cdot(3|x|+1)=0
$$

and we get the continuity at zero by the Squeeze Theorem.
Result and Proof for (c) As noted above h^{\prime} will be differentiable at every non-zero c, where

$$
\begin{aligned}
& h^{\prime}(c)=3 c^{2} \sin \left(\frac{1}{c}\right)-c^{3} \cos \left(\frac{1}{c}\right) c^{-2}=3 c^{2} \sin \left(\frac{1}{c}\right)-c \cos \left(\frac{1}{c}\right) \\
& h^{\prime \prime}(c)=\left[6 c \sin (1 / c)-3 c^{2} \cos (1 / c) c^{-2}\right]-\left[\cos (1 / c)-c \sin (1 / c) c^{-2}\right] \\
& =\left[6 c+c^{-1}\right] \sin (1 / c)-[3-1] \cos (1 / c)
\end{aligned}
$$

We must try to take a limit of the difference quotient at zero explicitly

$$
\begin{aligned}
\frac{h^{\prime}(x)-h^{\prime}(0)}{x-0} & =\frac{(x[3 x \sin (1 / x)]-\cos (1 / x))-0}{x} \\
& =\left(3 x \sin (1 / x)-\frac{\cos (1 / x)}{x}\right)
\end{aligned}
$$

The first term converges to 0 as x runs to 0 . But the second term is not bounded in any neighborhood of 0 so the second term cannot converge. If $h^{\prime \prime}(0)$ exists then the second term must converge. So $h^{\prime \prime}(0)$ cannot exist.
§4.1 \#7 Task Suppose that f is defined on (a, b). We say that

$$
\text { " } f \text { satisfies a Lipschitz condition at } c \text { in }(a, b) "
$$

iff
there is a positive M and a positive r such that

$$
\text { for all } x \text { in }(a, b) \quad|x-c|<r \Rightarrow|f(x)-f(c)|<M|x-c|
$$

NOTE that I have translated this definition so that it agrees with the definition I gave earlier for "local Lipschitz condition".
a) Give an example of a function that is continous at c but fails to satisfy a Lipschitz condition at c
b) Show that if a function is differentiable at c then it does satisfy a Lipschitz condition.
a) In light of (b) we look for a continuous function that fails to have a derivative at c. The absolute value function is tempting, but does satisfy a Lipschitz condition. So try $f(x)=x^{1 / 3}$ on the interval $(a, b)=(-1,1)$. Since f is the inverse of a strictly increasing function, it must be continuous everywhere.

Suppose, for the sake of contradiction, that f does satisfy a Lipschitz condition at 0 with M and r as in the defintion. Then for all x near 0 but not equal to 0

$$
M>\left|\frac{f(x)-f(0)}{x-0}\right|=\left|\frac{x^{1 / 3}-0}{x-0}\right|=\left|\frac{1}{x^{2 / 3}}\right|
$$

Now look at the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
x_{n}=\frac{r}{2} \frac{1}{n^{3 / 2}}=\frac{r}{2} n^{-3 / 2}
$$

Since we have for all indices

$$
-1<0<x_{n}<\frac{r}{2} \frac{1}{n^{1}}<\min (r, 1)
$$

So for all indices

$$
M>\left|\frac{1}{\left(x_{n}\right)^{2 / 3}}\right|=\left|\frac{1}{\left(\frac{r}{2} \cdot n^{-3 / 2}\right)^{2 / 3}}\right|=\left(\frac{r}{2}\right)^{-2 / 3} \cdot n
$$

which says that $(r / 2)^{2 / 3} M$ is an upper bound for \mathbb{N}, which is false.
§4.1 \#11 Task Define f on $(0,1)$ by

$$
f(x)=\sqrt{2 x^{2}-3 x+6}
$$

show that f is differentiable at every point of its domain. Find the derivative.
Proof Let r denote the square root function, $r(u)=\sqrt{u}$. We know that r is defined on $[0,+\infty)$ and is differentiable on $(0,+\infty)$ with $r^{\prime}(x)=x^{-1 / 2}$ for positive x.

Let P denote the polynomial $P(x)=2 x^{2}-3 x+6$. We know that P is continuous and differentiable everywhere.

Note that $f=r \circ P$. We check to see if we can apply the Chain Rule.
Suppose c is in $(0,1)$. Then c is both in the domain of f and is an accumulation point for the domain of f. Our "inside function" P is differentiable at c. Our "outside function" r is differentiable at c provided that $P(c)>0$. Note that

$$
\begin{aligned}
P(c) & =2 c^{2}-3 c+6 \\
& >-3 c+6 \text { since } c>0 \text { and thus } 2 c^{2}>0 \\
& >6-3=3>0 \text { since } c<1 \text { and thus }-3 c>-3
\end{aligned}
$$

So the Chain Rule Theorem tells us that f^{\prime} exists and that

$$
f^{\prime}(c)=r^{\prime}(P(c)) P^{\prime}(c)=\frac{1}{2}\left(2 c^{2}-3 c+6\right)(4 c-3)
$$

$\S 4.1$ \#13 Task Suppose that function f maps $[a, b]$ into $[c, d]$ and function g maps $[c, d]$ into \mathbb{R}. Suppose further that f and f^{\prime} are differentiable on $[a, b]$ and that g and g^{\prime} are differentiable on $[c . d]$. Show that $g \circ f$ is differentiable, that $(g \circ f)^{\prime}$ is also differentiable and compute the derivatives.
Results and Proof The hypotheses are sufficient to satisfy the hypotheses of the Chain Rule Theorem applied to $g \circ f$. Thus on $[a, b]$

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

Next we need to see why $(g \circ f)^{\prime}$ has a derivative. First note that $(g \circ f)^{\prime}$ is a product of two functions. To apply the product rule we need to check that each factor is differentiable.

By hypotheses the second factor f^{\prime} is differentiable. The first factor is the composition of g^{\prime} following f. We are told that f maps $[a, b]$ differentiably into $[c, d]$ and that g^{\prime} maps $[c, d]$ differentiably into \mathbb{R}. So by the Chain Rule Theorem, $\left(g^{\prime} \circ f\right)$ is differentiable and

$$
\left(g^{\prime} \circ f\right)^{\prime}(x)=g^{\prime \prime}(f(x)) \cdot f^{\prime}(x)
$$

Now we know that we can apply the product rule to get

$$
\begin{aligned}
(g \circ f)^{\prime \prime}(x)= & {\left[\left(g^{\prime} \circ f\right)^{\prime}(x)\right] \cdot f^{\prime}(x)+\left(g^{\prime} \circ f\right)(x) \cdot\left[f^{\prime \prime}(x)\right] } \\
& {\left[g^{\prime \prime}(f(x)) \cdot f^{\prime}(x)\right] \cdot f^{\prime}(x)+g^{\prime}(f(x)) \cdot\left[f^{\prime \prime}(x)\right] }
\end{aligned}
$$

$\S 4.1$ \#14 Task Suppose that f is differentiable on \mathbb{R} and that g is defined by

$$
g(x)=x^{2} f\left(x^{3}\right)
$$

Show that g is differentiable and find $g^{\prime}(x)$.
Result $\quad g^{\prime}(x)=2 x f\left(x^{3}\right)+3 x^{4} f^{\prime}\left(x^{3}\right)$.
Proof. We use our usual notation for power functions

$$
P_{n}(x)=x^{n} .
$$

Then we see that g is the product of the function P_{2} and the composition $f \circ P_{3}$. Since f and P_{3} are both differentiable on \mathbb{R} we get

$$
\left(f \circ P_{3}\right)^{\prime}(x)=f^{\prime}\left(P_{3}(x)\right) \cdot P_{3}^{\prime}(x)=f^{\prime}\left(x^{3}\right) \cdot 3 x^{2}
$$

We also know that

$$
P_{2}^{\prime}(x)=2 x
$$

Thus

$$
\begin{aligned}
g^{\prime}(x) & =P_{2}^{\prime}(x) \cdot\left(f \circ P_{3}\right)(x)+P_{2}(x) \cdot\left(f \circ P_{3}\right)^{\prime}(x) \\
& =2 x \cdot f\left(x^{3}\right)+x^{2} \cdot\left[f^{\prime}\left(x^{3}\right) \cdot 3 x^{2}\right] \\
& =2 x \cdot f\left(x^{3}\right)+3 x^{4} \cdot f^{\prime}\left(x^{3}\right)
\end{aligned}
$$

