Homework Sets \# 7 and \#8, Math 311:02, Fall 2008
 Sample Solutions

§3.1 \#2 Task Define function f on $[-4,0]$ by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{2 x^{2}-18}{x+3} & \text { if } & x \neq-3 \\
-12 & \text { if } & x=-3
\end{array}\right.
$$

Show that f is continuous at -3 .
Proof Note that -3 is an accumulation point of $\operatorname{Dom}(f)$ and $-3 \in \operatorname{Dom}(f)$. To prove that f is continuous at -3 in this situation it is sufficient to prove that $\lim _{x \rightarrow-3} f(x)=f(-3)$.

When $x \in \operatorname{Dom}(f)-\{-3\}$ we have

$$
f(x)=\frac{2 x^{2}-18}{x+3}=\frac{2(x-3)(x+3)}{x+3}=2(x-3) \frac{x+3}{x+3}=2 x-6
$$

since $x+3 \neq 0$. The polynomial $2 x-6$ is continuous everywhere, and in particular at -3 . So

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3}(2 x-6)=2(-3)-6=-12
$$

Since $f(-3)=-12$, we have shown

$$
\lim _{x \rightarrow-3} f(x)=-12=f(-3)
$$

and it follows that f is continuous at -3 .
§3.1 \#4 Done in class. Don't grade.
§3.1 \#6 Task Let $f(x)=\sqrt{x}$. Show that f is continuous at each p in $\operatorname{Dom}(f)$.
Proof We know that $\operatorname{Dom}(f)$ is the set of non-negative reals. Suppose that $p \geq 0$. Consider an arbitrary positive ε. We need to provide a positive δ with the property that

$$
\begin{equation*}
\text { for all non-negative } x,|x-p|<\delta \Rightarrow|\sqrt{x}-\sqrt{p}|<\varepsilon \tag{6.1}
\end{equation*}
$$

We treat the case where $p=0$ separately from the case $p>0$.
Case 1: $p=0$
Since $p=0$, we know that, for all non-negative x,

$$
|\sqrt{x}-\sqrt{p}|<\varepsilon \Leftrightarrow \sqrt{x}<\varepsilon \Leftrightarrow 0 \leq \sqrt{x}<\varepsilon \Leftrightarrow 0 \leq x<\varepsilon^{2} .
$$

So we take $\delta=\varepsilon^{2}$. Clearly δ is positive and condition (6.1) is satisfied.
Case 2: $p>0$
For non-negative x we have

$$
\sqrt{x}-\sqrt{p}=\frac{\sqrt{x}-\sqrt{p}}{1} \cdot \frac{\sqrt{x}+\sqrt{p}}{\sqrt{x}+\sqrt{p}}=\frac{x-p}{\sqrt{x}+\sqrt{p}}
$$

From this we get a global Lipschitz condition at p

$$
|\sqrt{x}-\sqrt{p}|=\left|\frac{x-p}{\sqrt{x}+\sqrt{p}}\right| \leq \frac{|x-p|}{\sqrt{p}}=\frac{1}{\sqrt{p}} \cdot|x-p| .
$$

Note that

$$
\frac{1}{\sqrt{p}} \cdot|x-p|<\varepsilon \Leftrightarrow|x-p|<\sqrt{p} \cdot \varepsilon
$$

Take $\delta=\sqrt{p} \cdot \varepsilon$. Now consider arbitrary x in $\operatorname{Dom}(f)$. Assume that $|x-p|<\delta$. Then

$$
|\sqrt{x}-\sqrt{p}| \leq \frac{1}{\sqrt{p}} \cdot|x-p|<\frac{1}{\sqrt{p}} \cdot \delta=\varepsilon
$$

§3.1 \#9 TASK Define f on $(0,1)$ by $f(x)=x \sin (1 / x)$. Can one define $f(0)$ so that f is continuous at 0 ? Explain.
Result Yes, if one defines $f(0)=0$ then the resulting function f with $\operatorname{Dom}(f)$ now equal to the interval $[0,1)$ will be continuous at 0 .
Proof For x in the enlarged domain $[0,1)$ we get the estimate

$$
x \neq 0 \Rightarrow|f(x)-f(0)|=|x \sin (1 / x)-0|=|x| \cdot|\sin (1 / x)| \leq|x|=|x-0|
$$

and thus we get a Lipschitz condition at 0 :

$$
|f(x)-f(0)| \leq 1 \cdot|x-0|
$$

Continuity at 0 follows.
§3.2 \#14 TASK Suppose that f is continuous at p in $\operatorname{Dom}(f)$. Set $g(x)=|f(x)|$. Show that g is continuous at p.

Proof. Consider an arbitrary postive ε. Since f is continuous at p, we can and do pick a postive δ such that, for all x in $\operatorname{Dom}(f)$

$$
\begin{equation*}
|x-p|<\delta \Rightarrow|f(x)-f(p)|<\varepsilon \tag{14.1}
\end{equation*}
$$

Use this δ to work with g. Note that $\operatorname{Dom}(g)=\operatorname{Dom}(f)$.
Consider arbitrary x in $\operatorname{Dom}(g)$. So we know $x \in \operatorname{Dom}(f)$.
Assume that $|x-p|<\delta$.
Recall that for all real a and b

$$
||a|-|b|| \leq|a-b|
$$

Thus

$$
|g(x)-g(p)|=||f(x)|-|f(p)|| \leq|f(x)-f(p)|<\varepsilon
$$

by using (14.1).

