Homework \# 6 , Math 311:02, Fall 2008
 Sample Solutions

$\S 2.1 \# 16$ Task Define f by $\operatorname{Dom}(f)=(0,1)$ and

$$
f(x)=\frac{x^{3}+6 x^{2}+x}{x^{2}-6 x}
$$

Prove that f has a limit at 0 and find that limit.
Result $\lim _{x \rightarrow 0} f(x)=-1 / 6$.
Proof For x in the domain, we know $x \neq 0$ and $x \neq 6$, so that

$$
f(x)=\frac{x\left(x^{2}+6 x+1\right)}{x(x-6)}=\frac{x\left(x^{2}+6 x+1\right)}{x(x-6)}=\frac{x}{x} \frac{x^{2}+6 x+1}{x-6}=\frac{x^{2}+6 x+1}{x-6}
$$

Apply the theorem on limits of polynomials

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(x^{2}+6 x+1\right) & =0+0+1=1 \\
\lim _{x \rightarrow 0}(x-6) & =0-6=-6
\end{aligned}
$$

Note that $-6 \neq 0$. Apply the theorem on limits of quotients

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{2}+6 x+1}{x-6}=\frac{\lim _{x \rightarrow 0}\left(x^{2}+6 x+1\right)}{\lim _{x \rightarrow 0}(x-6)}=\frac{1}{-6}=-\frac{1}{6}
$$

$\S 2.1$ \#19 Task Define f by $\operatorname{Dom}(f)=(0,1)$ and

$$
f(x)=\frac{\sqrt{9-x}-3}{x}
$$

Prove that f has a limit at 0 and find that limit.
Result $\lim _{x \rightarrow 0} f(x)=-1 / 6$.
Proof We cannot immediately apply the theorem on limits of quotients since the limit of the bottom is zero. We try to re-express this function so that we can see a factor of x on top. This is the "rationalize the numerator" game.

$$
f(x)=\frac{\sqrt{9-x}-3}{x} \frac{\sqrt{9-x}+3}{\sqrt{9-x}+3}=\frac{(9-x)-9}{x(\sqrt{9-x}+3)}=\frac{x}{x} \frac{-1}{\sqrt{9-x}+3}=\frac{-1}{\sqrt{9-x}+3}
$$

Now we have an expression for f as a quotient where the bottom does not have limit zero at 0 . Apply the theorem on limits of quotients to get

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}+3}=\frac{\lim _{x \rightarrow 0}(-1)}{\lim _{x \rightarrow 0}(\sqrt{9-x}+3)}=\frac{-1}{\sqrt{9}+3}
$$

§2.1 \#22 Task a) Give an example of a real c and functions f and g such that
neither $\lim _{x \rightarrow c} f(x)$ nor $\lim _{x \rightarrow c} g(x)$ exist, but $\lim _{x \rightarrow c}[f(x)+g(x)]$ does exist.
b) Give an example of a real c and functions f and g such that

$$
\text { neither } \lim _{x \rightarrow c} f(x) \text { nor } \lim _{x \rightarrow c} g(x) \text { exist, but } \lim _{x \rightarrow c}[f(x) \cdot g(x)] \text { does exist. }
$$

c) Give an example of a real c and functions f and g such that

$$
\text { neither } \lim _{x \rightarrow c} f(x) \text { nor } \lim _{x \rightarrow c} g(x) \text { exist, but } \lim _{x \rightarrow c}[f(x) / g(x)] \text { does exist. }
$$

Results

a) Take $c=0, f(x)=1 / x$, and $g(x)=-1 / x$.
b) Take $c=0$,

$$
f(x)=\left\{\begin{array}{ccc}
1 & \text { if } & x<0 \\
-1 & \text { if } & x>0
\end{array}, \text { and } g(x)=f(x)\right.
$$

b) Take $c=0, f$ and g as in (b)

Verification

a) If $\lim _{x \rightarrow 0} f(x)$ exists, call it L. Since $\lim (1 / n)=0$ the sequential criterion for functional limits would force us to have $\lim _{x \rightarrow 0} f(x)=\lim (f(1 / n))=\lim (n)=L$. This is impossible since the sequence $(n)_{n=1}^{\infty}$ is unbounded. Similary, g cannot have a limit at 0 . But $f+g$ is defined on the non-zero reals and has constant output 0 . so $f+g$ has limit 0 at 0 .
b) Both f and g have jumps at 0 . So neither has a limit at 0 . On the other hand $f g$ is a constant function, with output 1 for all x in its domain. Thus $f g$ does have a limit at 0 .
c) As in (b) the functions f and g fail to have limits at 0 . Here the quotient function f / g has constant output 1 on its domain, so it has a limit at 0 .

Ch 2. \#25 The solution is subtle. I will post an elegant solution eventually. I have asked the grader to look for reasonable attacks based on my solution in its current inelegant form.

