Homework \# 5 , Math 311:02, Fall 2008
 Sample Solutions

$\S 2.1 \# 2$ TASK Set $D=(-2,0)$ and define f on D by

$$
f(x)=\frac{2 x^{2}+3 x-2}{x+2}
$$

Show that f has a limit at -2 , find the value of the limit, and prove the result.
EXPLORATION. We need to validate two statements

1. -2 is an accumulation point of D
2. There is a real L such that for every positive ε there is a positive δ such that

$$
\text { for all } x \text { in } D, 0<|x-(-2)|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

PROOF (1) Since $-2=\lim \left(-2+\frac{1}{n}\right)$, and all $-2+\frac{1}{n}$ belong to $D-\{-2\},-2$ is indeed an accumulation point of D.
(2) To find a likely L we first try to use the result on limits of quotients. We can't because the limit of the bottom is 0 as $x \rightarrow-2$. So we simplify the formula for f. Note that for x in $\operatorname{Dom}(f), x+2>0$. Thus for x in $\operatorname{Dom}(f)$

$$
f(x)=\frac{2 x^{2}+3 x-2}{x+2}=\frac{(x+2)(2 x-1)}{x+2}=\frac{x+2}{x+2} \cdot(2 x-1)=1 \cdot(2 x-1)
$$

As $x \rightarrow-2,2 x-1 \rightarrow-4-1$. Conjecture that $L=-5$.
Consider an arbitrary positive ε. Keep x in D. Note that

$$
\begin{aligned}
|f(x)-L| & =|(2 x-1)-(-5)|=|2 x+4|=2|x-(-2)| \quad \text { and so } \\
|f(x)-L| & <\varepsilon \Leftrightarrow 2|x-(-2)|<\varepsilon \Leftrightarrow|x-(-2)|<\varepsilon / 2 .
\end{aligned}
$$

Take $\delta=\varepsilon / 2$. Suppose that $x \in D-\{-2\}$ and $0<|x-(-2)|<\delta$. Then

$$
|f(x)-L|=2|x-(-2)|<2 \delta=\varepsilon
$$

$\S 2.1 \# 5$. Suppose that x_{0} is an accumulation point of the domain of function f. Suppose also that

$$
\lim _{x \rightarrow x_{0}} f(x)=L_{1} \quad \text { and } \quad \lim _{x \rightarrow x_{0}} f(x)=L_{2} .
$$

Show that $L_{1}=L_{2}$.
EXPLORATION It is enough to show that for every positive $\varepsilon,\left|L_{1}-L_{2}\right|<\varepsilon$.
PROOF Consider an arbitrary positive ε. Note that $\varepsilon / 2>0$. By the two limit assumptions we get positive δ_{1} and δ_{2} such that

$$
\begin{aligned}
& \text { for all } x \text { in } D, 0<\left|x-x_{0}\right|<\delta_{1} \Rightarrow\left|f(x)-L_{1}\right|<\varepsilon / 2 \\
& \text { for all } x \text { in } D, 0<\left|x-x_{0}\right|<\delta_{2} \Rightarrow\left|f(x)-L_{2}\right|<\varepsilon / 2
\end{aligned}
$$

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Note $\delta>0$. Since x_{0} is an accumulation point of D, we get a real number such that $s \in V_{\delta}\left(x_{0}\right) \cap D-\left\{x_{0}\right\}$. Thus

$$
0<\left|s-x_{0}\right|<\delta_{1} \quad \text { and } \quad 0<\left|s-x_{0}\right|<\delta_{2}
$$

So we get

$$
\left|L_{1}-L_{2}\right|=\left|L_{1}-f(s)+f(s)-L_{2}\right| \leq\left|L_{1}-f(s)\right|+\left|f(s)-L_{2}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

§2.1 \#8. TASK $\operatorname{Set} D=(0,1)$ and define f on D by

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x-1}
$$

Show that f has a limit at 1 .
EXPLORATION We need to validate two statements

1. 1 is an accumulation point of D
2. There is a real L such that for every positive ε there is a positive δ such that

$$
\text { for all } x \text { in } D, 0<|x-1|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

PROOF We have seen that endpoints of intervals are accumulation points. It remains to find an L that satisfies the second statement.

As in \#2, we cannot use the limit-of-a-quotient theorem. Note that the top vanishes if we evaluate it at $x=1$. That means that the top has $(x-1)$ as a factor. Indeed, on D

$$
f(x)=\frac{x^{3}-x^{2}+x-1}{x-1}=\frac{x^{2}(x-1)+(x-1)}{x-1}=\frac{x-1}{x-1} \cdot\left(x^{2}+1\right)=x^{2}+1
$$

since $(x-1) /(x-1)=1$ for all x in D. We conjecture that the limit will be $L=1^{2}+1=2$.
Consider an arbitrary positive ε. For all x in the domain of our function

$$
|f(x)-2|=\left|\left(x^{2}+1\right)-2\right|=\left|x^{2}-1\right|=|x+1| \cdot|x-1|
$$

Keeping $x \in D$ we get

$$
\begin{aligned}
0 & <x<1 \text { and so } 1<x+1<2 \text { and so } \\
|x+1| & =x+1<2 \text { and finally }|f(x)-2|=|x+1| \cdot|x-1|<2 \cdot|x-1| .
\end{aligned}
$$

Note that

$$
2|x-1|<\varepsilon \Leftrightarrow|x-1|<\varepsilon / 2
$$

Choose $\delta=\varepsilon / 2$.
Now suppose that $x \in D$ and $0<|x-1|<\delta$. Then

$$
|f(x)-2|=|x+1| \cdot|x-1|<2 \cdot|x-1|<2 \cdot \varepsilon / 2=\varepsilon
$$

$\S 2.1 \# 12$ TASK Suppose that f is a function, $D=\operatorname{Dom}(f)$, and f has limit L at x_{0}. Show that $|f|$ has limit $|L|$ at x_{0}.
EXPLORATION The hypothesis implicitly tells us that x_{0} is an accumulation point of D. The domain of $|f|$ is the same as the domain of f. So all we need to do is verify the $\varepsilon \delta$-condition for $\lim _{x \rightarrow x_{0}}|f(x)|=|L|$.
PROOF Suppose ε is an arbitrary positive real. By hypothesis we get a δ such that

$$
\text { for all } x \text { in } D, 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

Use this δ in the proof for $|f|$.
Suppose that $x \in D$ and that $0<\left|x-x_{0}\right|<\delta$. Recall that for all real u and v

$$
||u|-|v|| \leq|u-v|
$$

So now

$$
||f(x)|-|L|| \leq|f(x)-L|<\varepsilon
$$

§2.1 \#15. Consider a real-valued function f with $D=\operatorname{Dom}(f) \subseteq \mathbb{R}$. Assume that x_{0} is an accumulation point for D. Show that
IF f satisfies the condition
(C) for each positive ε there is a neighborhood Q of x_{0} such that for all x and y in $Q \cap D-\left\{x_{0}\right\},|f(x)-f(y)|<\varepsilon$.

THEN

$$
\lim _{x \rightarrow x_{0}} f(x) \text { exists. }
$$

EXPLORATION Recall that

$$
Q \text { is a neighborhood of } x_{0} \text { iff there is a positive } r \text { so that } V_{r}\left(x_{0}\right) \subseteq Q
$$

and

$$
V_{r}\left(x_{0}\right)=\left\{s:\left|s-x_{0}\right|<r\right\}
$$

PROOF Assume that f satisfies condition (C). We proceed in two steps. First we find a likely value L for the limit. Then we verify that $\lim _{x \rightarrow x_{0}} f(x)=L$.

We might try $L=f\left(x_{0}\right)$ but we have no reason to believe that x_{0} even belongs to D. Instead I will take a sequence of legal inputs for f converging to x_{0} and show that the corresponding sequence of outputs converges. Then I will take L to be that limit of outputs.

By assumption x_{0} is an accumulationpoint of D. That means we get a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $D-\left\{x_{0}\right\}$ with $\lim \left(x_{n}\right)=x_{0}$. For each n, set $w_{n}=f\left(x_{n}\right)$. To show that $\lim \left(w_{n}\right)$ exists, it is enough to show that $\left(w_{n}\right)_{n \in \mathbb{N}}$ is Cauchy. So consider an arbitrary positive ε. Use (C) to get a neighborhood Q of x_{0} with the property that

$$
\text { for all } u, v \text { in } Q \cap D-\left\{x_{0}\right\},|f(u)-f(v)|<\varepsilon
$$

Since this Q is a neighborhood of x_{0} we get a positive r such that

$$
V_{r}\left(x_{0}\right) \subseteq Q
$$

Since $\lim \left(x_{n}\right)=x_{0}$ and $r>0$ we get N in \mathbb{N} such that

$$
\text { whenever } n \geq N \text {, then }\left|x_{n}-x_{0}\right|<r \text {. }
$$

Now keep both $m \geq N$ and $n \geq N$. Since we have

$$
\begin{array}{rll}
x_{m} & \in & V_{r}\left(x_{0}\right) \cap D-\left\{x_{0}\right\} \subseteq Q \cap D-\left\{x_{0}\right\} \quad \text { and } \\
x_{n} & \in \quad V_{r}\left(x_{0}\right) \cap D-\left\{x_{0}\right\} \subseteq Q \cap D-\left\{x_{0}\right\} &
\end{array}
$$

we get

$$
\left|w_{m}-w_{n}\right|=\left|f\left(x_{m}\right)-f\left(x_{n}\right)\right|<\varepsilon .
$$

This shows that the sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ is Cauchy and thus convergent. Set $L=\lim \left(w_{n}\right) \in \mathbb{R}$.
Next I show that $\lim _{x \rightarrow x_{0}} f(x)=L$.
Consider an arbitrary positive ε. Note that $\varepsilon / 2>0$. Use (C) to get a neighborhood Q of x_{0} this time with the property that

$$
\text { for all } u, v \text { in } Q \cap D-\left\{x_{0}\right\},|f(u)-f(v)|<\varepsilon / 2
$$

Since Q is a neighborhood of x_{0} we get positive r such that $V_{r}\left(x_{0}\right) \subseteq Q$. Set $\delta=r$. Use the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from the first step, converging to x_{0}. Get an N_{1} so that

$$
\text { whenever } n \geq N_{1},\left|w_{n}-L\right|<\varepsilon / 2
$$

Get an N_{2} so that

$$
\text { whenever } n \geq N_{2},\left|x_{n}-x_{0}\right|<r \text {. }
$$

Choose $N_{3}=\max \left(N_{1}, N_{2}\right)$,
Now suppose that $x \in D$ and $0<\left|x-x_{0}\right|<\delta=r$. We have

$$
\begin{aligned}
x & \in V_{r}\left(x_{0}\right) \cap D-\left\{x_{0}\right\} \subseteq Q \cap D-\left\{x_{0}\right\} \quad \text { and } \\
x_{N_{3}} & \in V_{r}\left(x_{0}\right) \cap D-\left\{x_{0}\right\} \subseteq Q \cap D-\left\{x_{0}\right\}
\end{aligned}
$$

Thus by (C)

$$
\left|f(x)-f\left(x_{N_{3}}\right)\right|<\varepsilon / 2
$$

But also

$$
\left|f\left(x_{N_{3}}\right)-L\right|=\left|w_{N_{3}}-L\right|<\varepsilon / 2
$$

So

$$
|f(x)-L| \leq\left|f(x)-f\left(x_{N_{3}}\right)\right|+\left|f\left(x_{N_{3}}\right)-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

TASK $\S 1.1 \# 7$ Suppose that $\left(a_{n}\right)_{1}^{\infty}$ is a sequence in \mathbb{R} and $A \in \mathbb{R}$. Show that

$$
\left(a_{n}\right)_{1}^{\infty} \text { converges to } A \quad \text { iff } \quad\left(a_{n}-A\right)_{1}^{\infty} \text { converges to } 0
$$

PROOF It will be convenient to define, for each index $n, b_{n}=a_{n}-A$.
Step 1. Assume that $\left(a_{n}\right)_{1}^{\infty}$ converges to A and deduce that $\left(b_{n}\right)_{1}^{\infty}$ converges to 0 . Consider an arbitrary positive ε. We need to find an N with the property that
whenever $n \geq N$ then also $\left|b_{n}-0\right|<\varepsilon$.
Note that for any index $n,\left|b_{n}-0\right|<\varepsilon \Longleftrightarrow\left|a_{n}-A\right|<\varepsilon$. By the convergence assumed for $\left(a_{n}\right)_{1}^{\infty}$ we get an N_{a} with the property that

$$
\text { whenever } n \geq N_{a} \text { then also }\left|a_{n}-A\right|<\varepsilon
$$

Thus it is enough to take $N=N_{a}$.
Step 2. Assume that $\left(b_{n}\right)_{1}^{\infty}$ converges to 0 and deduce that $\left(a_{n}\right)_{1}^{\infty}$ converges to A.
Consider an arbitrary positive ε. We need to find an N with the property that

$$
\text { whenever } n \geq N \text { then also }\left|a_{n}-A\right|<\varepsilon \text {. }
$$

Note that for any index $n,\left|b_{n}-0\right|<\varepsilon \Longleftrightarrow\left|a_{n}-A\right|<\varepsilon$. By the convergence assumed for $\left(b_{n}\right)_{1}^{\infty}$ we get an N_{b} with the property that

$$
\text { whenever } n \geq N_{b} \text { then also }\left|b_{n}-0\right|<\varepsilon
$$

Thus it is enough to take $N=N_{b}$.

