Homework # 5, Math 311:02, Fall 2008
Sample Solutions

§2.1 #2 TASK Set D = (—2,0) and define f on D by

_ 22% 431 -2

fla) = =5

Show that f has a limit at —2, find the value of the limit, and prove the result.
EXPLORATION. We need to validate two statements

1. —2 is an accumulation point of D

2. There is a real L such that for every positive € there is a positive § such that

forallzin D, 0< |z —(-2)|<d=|f(z)—L|<e

PROOF (1) Since —2 = lim (-2 + %), and all —2 4 % belong to D — {—2}, —2 is indeed an accumulation
point of D.

(2) To find a likely L we first try to use the result on limits of quotients. We can’t because the limit
of the bottom is 0 as x — —2. So we simplify the formula for f. Note that for = in Dom(f), = + 2 > 0.
Thus for = in Dom(f)

202 +3x -2 (z+2)(2z—-1) z+2
Tz +2 z+2 =oqo Brol=1-Qe-1)

f(z)

Asx — =2, 2z — 1 — —4 — 1. Conjecture that L = —5.
Consider an arbitrary positive €. Keep x in D. Note that

[f(x)—L| = |2z—1)—(-5)|=2z+4]=2]z—(-2)] andso
|f(z)— L < ee2z—(-2)|<eceelz—(-2)]<e/2

Take § = /2. Suppose that z € D — {—2} and 0 < |z — (—2)| < §. Then

If () — L| =2z — (-2)| < 20 =e.

§2.1 #5. Suppose that xg is an accumulation point of the domain of function f. Suppose also that

lim f(z)=L; and lim f(z)= Ls.

T—x0 T—x0

Show that L = Lo.

EXPLORATION Tt is enough to show that for every positive €, |L; — Lo| < €.

PROOF Consider an arbitrary positive . Note that /2 > 0. By the two limit assumptions we get positive
01 and d5 such that

forallzin D, 0 < |z—=xo| <= |f(z)—Li| <e/2
forallzin D, 0 < |z—xzo| <do=|f(x)— Lo| <e/2

Set § = min (41, d2). Note d > 0. Since z is an accumulation point of D, we get a real number s such that
s € Vs(xg)ND —{x9g}. Thus

0<‘S—$0‘<(51 and 0<|S—£L'()|<52.
So we get

|L1 — La| = |L1 — f(s) + f (s) = La| < |L1 = f(s)| + | f (s) — L2| <e/2+e/2=c¢.



§2.1 #8. TASK Set D =(0,1) and define f on D by

R |

rz—1

flz) =

Show that f has a limit at 1.
EXPLORATION We need to validate two statements
1. 1 is an accumulation point of D
2. There is a real L such that for every positive € there is a positive § such that

forallzin D, 0<|z—1|<d=|f(z)—L|<e

PROOF We have seen that endpoints of intervals are accumulation points. It remains to find an L that
satisfies the second statement.

As in #2, we cannot use the limit-of-a-quotient theorem. Note that the top vanishes if we evaluate it at
2 =1. That means that the top has (z — 1) as a factor. Indeed, on D

pP-2?+r-1 22@-D+@x-1) z-1 ,, 9
z—1 - z—1 :m—l.(x +1)=x 1

flz) =

since (x — 1) /(x — 1) = 1 for all z in D. We conjecture that the limit will be L =12 +1 = 2.
Consider an arbitrary positive €. For all x in the domain of our function

If(@)=2|=]|(=*+1)=2|= | -1 =|z+1] |z —1]
Keeping z € D we get

0 < <1 andso 1<z+1<2 andso
lt+1 = 2+4+1<2 andfinally |f(z)—2|=|z+1| |z -1 <2 |z—1].

Note that
2 —1ll<ee |z -1 <eg/2
Choose § = ¢/2.
Now suppose that z € D and 0 < |z — 1| < §. Then

lf(x)=2|=z+1] - |Jz—-1]<2-jz—1]<2-¢/2=¢.



§2.1 #12 TASK Suppose that f is a function, D = Dom(f), and f has limit L at 2g. Show that |f| has
limit |L| at 0.

EXPLORATION The hypothesis implicitly tells us that z( is an accumulation point of D. The domain of
|f] is the same as the domain of f. So all we need to do is verify the ed-condition for lim,_.,, | f (x) | = |L].
PROOF Suppose € is an arbitrary positive real. By hypothesis we get a ¢ such that

forallzin D, 0 < |z —xo| <d=|f(x) - L|<e.

Use this § in the proof for |f].
Suppose that € D and that 0 < | — zg| < . Recall that for all real v and v

|l = ol | < fu—2f.

So now
[ f(@)] = [L] | < |f(z) - Ll <e

§2.1 #15. Consider a real-valued function f with D = Dom(f) C R. Assume that z is an accumulation
point for D. Show that
IF f satisfies the condition

(C)  for each positive ¢ there is a neighborhood @ of xy such that
forall z and y in QN D — {zo}, |f (z) — f (v)] < e.

THEN
lim f(z) exists.

T—T0

EXPLORATION Recall that
@ is a neighborhood of z iff there is a positive r so that V. (z¢) C Q

and
Vi(zo) ={s:|s—xo| <7}.

PROOF Assume that f satisfies condition (C'). We proceed in two steps. First we find a likely value L
for the limit. Then we verify that lim,_,, f (z) = L.

We might try L = f(z¢) but we have no reason to believe that xo even belongs to D. Instead I will
take a sequence of legal inputs for f converging to xo and show that the corresponding sequence of outputs
converges. Then I will take L to be that limit of outputs.

By assumption g is an accumulationpoint of D. That means we get a sequence (), .y in D — {20}
with lim (z,,) = xg. For each n, set w, = f(x,). To show that lim (w,,) exists, it is enough to show that
(Wn),en 18 Cauchy. So consider an arbitrary positive e. Use (C) to get a neighborhood @ of x with the
property that

for all u,vin QN D — {zo}, |f(u)— f ()| <e.

Since this @ is a neighborhood of xy we get a positive r such that
Vi (w0) € Q.
Since lim (z,,) = zp and r > 0 we get N in N such that
whenever n > N, then |z, — zo| < 7.
Now keep both m > N and n > N. Since we have

Tm € Vi(xzo)ND—{z0} CQND—{zp} and
Tn € Vi(zo)ND—{z0} CQND—{z0}



we get
‘wm - wn‘ = |f($m) - f(xTL)' <e.
This shows that the sequence (wy,),, oy is Cauchy and thus convergent. Set L = lim (w,) € R.
Next I show that lim,_,,, f () = L.
Consider an arbitrary positive . Note that €/2 > 0. Use (C) to get a neighborhood @ of z( this time

with the property that
for all u,v in QN D — {zo}, |f(u)— f(v)] <e/2.

Since @ is a neighborhood of zy we get positive r such that V,. (xg) C Q. Set 6 = r. Use the sequence
(Tn), ey from the first step, converging to zo. Get an N; so that
whenever n > Ny, |w, — L| < &/2.
Get an Ny so that
whenever n > Na, |z, — 0| < 7.
Choose N3 = max (N7, Na),
Now suppose that z € D and 0 < |z — zo| < § = 7. We have
x € Vi(xo)ND—{xo} CQND—{xg} and
Ty, € Vi(zo)ND—{zo} CQND —{x0}

Thus by (C)
]f(x) —f (mN3)| <¢e/2
But also
|f(a;N3) —-L|= ‘sz —L| <eg/2
So

f (@) = LI < |f (@) = f (23,) [ +|F (2n,) —L| <e/24e/2=¢



TASK §1.1 #7 Suppose that (a,)]" is a sequence in R and A € R. Show that
(an)]” converges to A iff  (a, — A)]" converges to 0.

PROOF It will be convenient to define, for each index n, b, = a,, — A.
Step 1. Assume that (a,)]° converges to A and deduce that (b,)]° converges to 0.
Consider an arbitrary positive e. We need to find an N with the property that

whenever n > N then also |b, — 0] < ¢.

o0

Note that for any index n, [b, —0| <& <= |a, — A| < e. By the convergence assumed for (a,);” we get
an N, with the property that

whenever n > N, then also |a,, — A| < e.

Thus it is enough to take N = N,.
Step 2. Assume that (b,)]° converges to 0 and deduce that (a,)]° converges to A.
Consider an arbitrary positive €. We need to find an N with the property that

whenever n > N then also |a, — A| < e.

Note that for any index n, |b, —0| <& <= |a, — A| < e. By the convergence assumed for (b,);° we get
an N, with the property that

whenever n > Ny, then also |b, — 0] <e.

Thus it is enough to take N = Nj.



