Homework \#2, Math 311:02, Fall 2008
 Sample Solutions

0.3 \#24 TASK: Define a function f from \mathbb{N} into \mathbb{N} by

$$
\begin{gathered}
f(1)=1 \quad f(2)=2 \quad f(3)=3 \quad \text { and } \\
\text { whenever } n \geq 4, f(n)=f(n-1)+f(n-2)+f(n-3) .
\end{gathered}
$$

Show that

$$
\text { for all } n \text { in } \mathbb{N}, f(n) \leq 2^{n}
$$

EXPLORATION We check the assertion for several values of n
when $n=1, f(n)=f(1)=1 \leq 2=2^{1}=2^{n}$
when $n=2, f(n)=f(2)=2 \leq 4=2^{2}=2^{n}$
when $n=3, f(n)=f(3)=3 \leq 8=2^{3}=2^{n}$
when $n=4, f(n)=f(4)=f(3)+f(2)+f(1)=3+2+1 \leq 16=2^{4}=2^{n}$
when $n=5, f(n)=f(5)=f(4)+f(3)+f(2)=6+3+2 \leq 32=2^{5}=2^{n}$
PROOF
For each n in \mathbb{N}, let $P(n)$ denote the assertion

$$
\text { for all positive integers } k \text { with } k \leq n, f(k) \leq 2^{k} \text {. }
$$

We have already seen that $P(n)$ is true whenever $n \in\{1,2,3,4\}$.
I now prove by induction that for all integers n with $n \geq 4$ that $P(n)$ is true.

The base case is now the case $n=4 . P(4)$ was proved in the exploration.
Suppose the $n \in\{k$ in $\mathbb{N}: k \geq 4\}$ and $P(n)$ is true. Note that since $n \geq 4, n-1 \in \mathbb{N}$ and $n-2 \in \mathbb{N}$ and $n-3 \in \mathbb{N}$. We will deduce that $P(n+1)$ is also true. $\operatorname{By} P(n)$

$$
f(n) \leq 2^{n} \quad f(n-1) \leq 2^{n-1} \text { and } f(n-2) \leq 2^{n-2}
$$

Thus

$$
\begin{aligned}
f(n+1) & =f(n)+f(n-1)+f(n-2) \\
& \leq 2^{n}+2^{n-1}+2^{n-2}=2^{n-2}\left(2^{2}+2^{1}+1\right) \\
& \leq 2^{n-2}(7)<2^{n-2} \cdot 8=2^{(n-2)+3}=2^{n+1}
\end{aligned}
$$

By the induction hypothesis $P(n)$ we know that $f(k) \leq 2^{k}$ whenever $k \leq n$. We have just shown that $f(k) \leq 2^{k}$ whenever $k=n+1$. Thus $P(n+1)$ follows.
0.4 \#32 TASK: Suppose that $n \in \mathbb{N}$. Let P_{n} denote the set of all polynomials of degree exactly n and integer coefficients. Show that P_{n} is countable. EXPLORATION We will try to use the results of Section 0.4 to avoid doing hard work. So we know that
(Cor 0.15) any subset of a countable set is countable;
(Thm 0.16) the Cartesian product of two countable sets is countable, and thus by a simple induction the cartesian product of any finite number of countable sets is countable;
(Thm 0.17) a countable union of countable sets is countable.
PROOF A polynomial of degree n with integer coefficients is a function of the form

$$
g(x)=\sum_{k=0}^{n} c_{k} x^{k}
$$

where each $c_{k} \in \mathbb{Z}$ and $c_{n} \neq 0$. Thus there is a one-one function f from P_{n} onto $\mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z} \times(\mathbb{Z}-\{0\})$ where we have n copies of \mathbb{Z}. This f is given by

$$
f\left(\sum_{k=0}^{n} c_{k} x^{k}\right)=\left(c_{0}, c_{1}, \ldots, c_{n}\right)
$$

Two polynomials are equal if and only if their ordered strings of coefficients are equal. So this function f is indeed one to one. By definition of degree n the function f is onto. Now the Cartesian product of n copies of \mathbb{Z} and one copy of $\mathbb{Z}-\{0\}$ is a product of a finite number of countable sets, so $P_{n} \sim$ a countable set and is thus countable.
$0.4 \# 38$ TASK Suppose that $a<b$ and $c<d$. Show that $[a, b]^{\sim}[c, d]$.
REMARK The statement is not true in the generality used in the text. The interval $[0,0]$ is certainly not equivalent to the interval $[0,1]$ - the first contains one and only one element, namely 0 ; the second is infinite since it contains the subset $\{1 / k: k \in \mathbb{N}\}$ which is not finite.
PROOF It is easy to construct a polynomial function of degree 1 that maps $[a, b]$ one to one onto $[c, d]$. The graph of this polynomial is the straight line segment with endpoints (a, c) and (b, d). Take

$$
m=\frac{d-c}{b-a} \quad \text { and } \quad f(x)=b+m(x-a)
$$

Since $m>0$ it is easy to see that
whenever $a \leq r<s \leq b$ then $c=f(a) \leq f(r)<f(s) \leq f(b)=d$
and thus that f maps $[a, b]$ one-to-one into $[c, d]$. It remains to show that f is onto. Consider an arbitrary y in $[c, d]$. I need to show that there is an x in $[a, b]$ such that $f(x)=y$. Now for any real x

$$
f(x)=y \Longleftrightarrow m(x-a)+c=y \Longleftrightarrow \frac{y-c}{m}=x-a \Longleftrightarrow x=a+\frac{y-c}{m}
$$

We are done as soon as we see why $a+(y-c) / m \in[a, b]$. Since $y \leq[c, d]$ and $m>0$ we get

$$
\begin{aligned}
c & \leq y \leq d \text { and so } 0 \leq \frac{y-c}{m} \leq \frac{d-c}{m}=b-a \\
\text { and so } a & \leq a+\frac{y-c}{m} \leq b \text { which means } a+\frac{y-c}{m} \in[a, b] .
\end{aligned}
$$

0.5 \#41 TASK Suppose that $0<a<b$. Show that $0<a^{2}<b^{2}$ and $0<\sqrt{a}<\sqrt{b}$.

REMARK For this problem we will assume that every positive real r have a unique positive real square root denoted by \sqrt{r}.

PROOF

Step 1. Show that $0<a^{2}$. This follows by the order axiom that says the product of positive reals is positive.
Step 2. Show that $a^{2}<b^{2}$. By hypothesis, $b-a$ is positive. Now

$$
b^{2}=[a+(b-a)]^{2}=a^{2}+2 \cdot a \cdot(b-a)+(b-a)^{2}
$$

Note that both $2 \cdot a \cdot(b-a)$ and $(b-a)^{2}$ are positive since they are products of positive reals. Thus

$$
2 \cdot a \cdot(b-a)+(b-a)^{2}>0
$$

and

$$
b^{2}=a^{2}+2 \cdot a \cdot(b-a)+(b-a)^{2}>a^{2} .
$$

Step 3 Show that $0<\sqrt{a}<\sqrt{b}$. By the meaning of \sqrt{a} we know $\sqrt{a}>0$. To get the second inequality we appeal to trichotomy.

Suppose $\sqrt{a}=\sqrt{b}$. Then

$$
a=(\sqrt{a})^{2}=(\sqrt{b})^{2}=b, \text { which is false. }
$$

So we learn that $\sqrt{a} \neq \sqrt{b}$.
Suppose that $\sqrt{b}<\sqrt{a}$. Then by the argument of Step 2 we would learn that

$$
b=(\sqrt{b})^{2}<(\sqrt{a})^{2}=a, \text { which is false. }
$$

So we learn that $\sqrt{b} \nless \sqrt{a}$.
We must conclude then that $\sqrt{a}<\sqrt{b}$.
0.5 \#44 TASK Suppose that $x=\operatorname{lub}(S)$. Show that for each positive ε there is an element s in S such that $x-\varepsilon<s \leq x$.

REMARK Implicit in the hypothesis are the assumptions that $\phi \neq S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

PROOF Consider and arbitrary positive ε. Since $x=\min (\mathcal{U B}(S))$ and $x-\varepsilon<x$ we know that $x-\varepsilon$ is not an upper bound for S. Thus there must be an s with the two properties $s \in S$ and $x-\varepsilon<s$. Pick one such and call it s_{o}. Since $s_{o} \in S$, we also know that s_{o} has the property that $s_{o} \leq x$. Thus there is an element in S, namely s_{o}, such that $x-\varepsilon<s_{o} \leq x$.

