
Homework #2, Math 311:02, Fall 2008
Sample Solutions

0.3 #24 TASK: De�ne a function f from N into N by

f (1) = 1 f (2) = 2 f (3) = 3 and

whenever n � 4; f(n) = f(n� 1) + f(n� 2) + f(n� 3):

Show that
for all n in N; f(n) � 2n

EXPLORATION We check the assertion for several values of n

when n = 1; f(n) = f(1) = 1 � 2 = 21 = 2n

when n = 2; f(n) = f(2) = 2 � 4 = 22 = 2n

when n = 3; f(n) = f(3) = 3 � 8 = 23 = 2n

when n = 4; f(n) = f(4) = f(3) + f(2) + f(1) = 3 + 2 + 1 � 16 = 24 = 2n

when n = 5; f(n) = f(5) = f(4) + f(3) + f(2) = 6 + 3 + 2 � 32 = 25 = 2n

PROOF
For each n in N, let P (n) denote the assertion

for all positive integers k with k � n; f(k) � 2k:

We have already seen that P (n) is true whenever n 2 f1; 2; 3; 4g :
I now prove by induction that for all integers n with n � 4 that P (n) is

true.
The base case is now the case n = 4: P (4) was proved in the exploration.
Suppose the n 2 fk in N : k � 4g and P (n) is true. Note that since

n � 4; n�1 2 N and n�2 2 N and n�3 2 N:We will deduce that P (n+1)
is also true. By P (n)

f(n) � 2n f(n� 1) � 2n�1 and f(n� 2) � 2n�2:
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Thus

f(n+ 1) = f(n) + f(n� 1) + f(n� 2)
� 2n + 2n�1 + 2n�2 = 2n�2

�
22 + 21 + 1

�
� 2n�2 (7) < 2n�2 � 8 = 2(n�2)+3 = 2n+1

By the induction hypothesis P (n) we know that f(k) � 2k whenever k � n:
We have just shown that f(k) � 2k whenever k = n + 1: Thus P (n + 1)
follows.
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0.4 #32 TASK: Suppose that n 2 N: Let Pn denote the set of all polynomials
of degree exactly n and integer coe¢ cients. Show that Pn is countable.
EXPLORATION We will try to use the results of Section 0.4 to avoid doing
hard work. So we know that

(Cor 0.15) any subset of a countable set is countable;
(Thm 0.16) the Cartesian product of two countable sets is countable,

and thus by a simple induction the cartesian product of any �nite number of
countable sets is countable;

(Thm 0.17) a countable union of countable sets is countable.
PROOF A polynomial of degree n with integer coe¢ cients is a function of
the form

g(x) =

nX
k=0

ck x
k

where each ck 2 Z and cn 6= 0: Thus there is a one-one function f from Pn
onto Z�Z� :::�Z� (Z� f0g) where we have n copies of Z: This f is given
by

f

 
nX
k=0

ck x
k

!
= (c0; c1; :::; cn)

Two polynomials are equal if and only if their ordered strings of coe¢ cients
are equal. So this function f is indeed one to one. By de�nition of degree
n the function f is onto. Now the Cartesian product of n copies of Z and
one copy of Z�f0g is a product of a �nite number of countable sets, so Pn~
a countable set and is thus countable.
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0.4 #38 TASK Suppose that a < b and c < d: Show that [a; b]~[c; d]:

REMARK The statement is not true in the generality used in the text. The
interval [0; 0] is certainly not equivalent to the interval [0; 1] � the �rst
contains one and only one element, namely 0; the second is in�nite since it
contains the subset f1=k : k 2 Ng which is not �nite.
PROOF It is easy to construct a polynomial function of degree 1 that maps
[a; b] one to one onto [c; d]: The graph of this polynomial is the straight line
segment with endpoints (a; c) and (b; d): Take

m =
d� c
b� a and f(x) = b+m(x� a)

Since m > 0 it is easy to see that

whenever a � r < s � b then c = f(a) � f(r) < f(s) � f(b) = d

and thus that f maps [a; b] one-to-one into [c; d]: It remains to show that f
is onto. Consider an arbitrary y in [c; d]: I need to show that there is an x
in [a; b] such that f(x) = y: Now for any real x

f(x) = y () m(x� a) + c = y () y � c
m

= x� a () x = a+
y � c
m

We are done as soon as we see why a + (y � c) =m 2 [a; b]: Since y � [c; d]
and m > 0 we get

c � y � d and so 0 � y � c
m

� d� c
m

= b� a

and so a � a+
y � c
m

� b which means a+ y � c
m

2 [a; b]:
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0.5 #41 TASK Suppose that 0 < a < b: Show that 0 < a2 < b2 and
0 <

p
a <

p
b:

REMARK For this problem we will assume that every positive real r have
a unique positive real square root denoted by

p
r:

PROOF
Step 1. Show that 0 < a2: This follows by the order axiom that says the
product of positive reals is positive.
Step 2. Show that a2 < b2: By hypothesis, b� a is positive. Now

b2 = [a+ (b� a)]2 = a2 + 2 � a � (b� a) + (b� a)2

Note that both 2 � a � (b� a) and (b� a)2 are positive since they are products
of positive reals. Thus

2 � a � (b� a) + (b� a)2 > 0

and
b2 = a2 + 2 � a � (b� a) + (b� a)2 > a2:

Step 3 Show that 0 <
p
a <

p
b: By the meaning of

p
a we know

p
a > 0:

To get the second inequality we appeal to trichotomy.
Suppose

p
a =

p
b: Then

a =
�p
a
�2
=
�p
b
�2
= b; which is false.

So we learn that
p
a 6=

p
b:

Suppose that
p
b <

p
a: Then by the argument of Step 2 we would learn

that
b =

�p
b
�2
<
�p
a
�2
= a, which is false.

So we learn that
p
b �

p
a:

We must conclude then that
p
a <

p
b:
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0.5 #44 TASK Suppose that x = lub(S): Show that for each positive "
there is an element s in S such that x� " < s � x:

REMARK Implicit in the hypothesis are the assumptions that � 6= S � R
and x 2 R:

PROOF Consider and arbitrary positive ": Since x = min(UB(S)) and
x� " < x we know that x� " is not an upper bound for S: Thus there must
be an s with the two properties s 2 S and x� " < s: Pick one such and
call it so: Since so 2 S, we also know that so has the property that so � x:
Thus there is an element in S, namely so; such that x� " < so � x:
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