Homework Sets \# 10 , Math 311:02, Fall 2008
 Sample Solutions

§4.1 \#16 Task Define f on $[0,2]$ by $f(x)=\sqrt{2 x-x^{2}}$. (a) Verify the hypotheses of Rolle's theorem and (b) find a c with $0<c<2$ and $f^{\prime}(c)=0$.

Proof (a): Set $r(s)=\sqrt{s}$ for non-negative s. Set $P(x)=2 x-x^{2}$ for real x. Note that $P(x)=x(2-x)$, which gives non-negative outputs when $x \in[0,2]$. Thus we see that P maps the domain of f into the domain of r and that $f=r \circ P$. Since f is the composition of two continuous functions f is continuous on its domain. Since r is differentiable on positive values of s and since P maps the open interval $(0,2)$ into the positive reals, the Chain Rule Theorem tells us that f is differentiable on $(0,2)$ where

$$
f^{\prime}(x)=r^{\prime}(P(x)) P^{\prime}(x)=\frac{1}{2}\left(2 x-x^{2}\right)^{-1 / 2}(2-2 x) .
$$

Finally we note that

$$
f(0)=\sqrt{0}=0 \text { and } f(2)=\sqrt{0}=0 \text { so } f(0)=f(2) .
$$

In summary (i) f is continous on $[0,2]$; (ii) f is differentiable on (0,2); and (iii) $f(0)=f(2)$. These are the three hypotheses for Rolle's theorem for f on $[0,2]$.
Result (b) $c=1$
Work for (b) Note that for $0<c<2$

$$
\begin{aligned}
f^{\prime}(c) & =0 \Longleftrightarrow \frac{1}{2}\left(2 c-c^{2}\right)^{-1 / 2}(2-2 c)=0 \\
& \Leftrightarrow \frac{1}{2} \frac{2-2 c}{\sqrt{2 c-c^{2}}}=0 \Longleftrightarrow 2=2 c \Longleftrightarrow c=1 .
\end{aligned}
$$

§4.1 \#17 Task Define f on \mathbb{R} by $f(x)=1 /\left(1+x^{2}\right)$. Show that the range of f has a maximum value and find the input(s) that produce that maximum output.
Result $\max (\{f(x): x \in \mathbb{R}\})=1$. The only input to produce maximum output is 0 .
Proof By the quotient rule we can show that, for all x,

$$
f^{\prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}} .
$$

Since this derivative is non-negative on $(-\infty, 0]$ the function is increasing on that interval. In particular, whenever $x \leq 0$, we have $f(x) \leq f(0)=1$. Since this derivative is non-positive on $[0,+\infty)$ the function is decreasing on $[0 .+\infty)$. In particular, whenever $0 \leq x$ we have $f(x) \leq f(0)=1$. So for all real x, $f(x) \leq f(0)=1$. Note also that whenever $x \neq 0,1+x^{2}>1$ and $f(x)=1 /\left(1+x^{2}\right)<1$.
§4.1 \#19 Task Show that the equation

$$
\cos (x)=x^{3}+x^{2}+4 x
$$

has exactly one solution in $[0, \pi / 2]$.
Proof Consider the function defined on $[0, \pi / 2]$ by

$$
f(x)=\left(x^{3}+x^{2}+4 x\right)-\cos (x) .
$$

Our equation has solution at x if and only if $f(x)=0$.
Compute the derivative of f :

$$
f^{\prime}(x)=\left(3 x^{2}+2 x+4\right)-(-\sin (x))=\left(3 x^{2}+2 x+4\right)+\sin (x) .
$$

In the interval $[0, \pi / 2]$ we note that

$$
3 x^{2} \geq 0 \quad 2 x \geq 0 \quad 4>0 \quad \sin (x) \geq 0
$$

so $f^{\prime}(x) \geq 4>0$. The fact that the derivative is strictly positive in the interval $[0, \pi / 2]$ means that the function is strictly increasing there and must be one-to-one there.

Note also that

$$
\begin{aligned}
f(0) & =0-\cos (0)=-1<0 \\
f(\pi / 2) & =(\pi / 2)^{3}+(\pi / 2)^{2}+4 \cdot(\pi / 2)-\cos (\pi / 2)=(\pi / 2)^{3}+(\pi / 2)^{2}+4 \cdot(\pi / 2)>0
\end{aligned}
$$

since $\cos (\pi / 2)=0$.
The intermediate value theorem tells us that $f(x)=0$ must have at least one solution between 0 and $\pi / 2$. The fact that f is strictly increasing between 0 and $\pi / 2$ tells us that there cannot be more than one such solution.
§4.1 \#20 Task Suppose that f maps $[0,2]$ into \mathbb{R}, that f is differentiable, and that

$$
f(0)=0 \quad f(1)=2 \quad f(2)=2 .
$$

Show that
(i) there is a c_{1} where $f^{\prime}\left(c_{1}\right)=0$
(ii) there is a c_{2} where $f^{\prime}\left(c_{2}\right)=2$
(iii) there is a c_{3} where $f^{\prime}\left(c_{3}\right)=3 / 2$.

Proof

(i) Apply Rolle's Theorem to f on $[1,2]$. There is at least one c such that $1<c<2$ and $f^{\prime}(c)=0$. Pick one and call it c_{1}.
(ii) Apply the Mean Value Theorem to f on $[0,1]$ There is at least one c such that $0<c<1$ and $f^{\prime}(c)=(f(1)-f(0)) /(1-0)=(2-0) / 1=2$. Pick one and call it c_{2}.
(iii) The derivative f^{\prime} has the intermediate value property on $\left[c_{2}, c_{1}\right]$. We have seen that

$$
f^{\prime}\left(c_{2}\right)=2 \text { and } f^{\prime}\left(c_{1}\right)=0
$$

We note that $3 / 2$ is between 0 and 2. Thus there must be a c between c_{1} and c_{2} such that $f^{\prime}(c)=3 / 2$. Pick one and call it c_{3}.
$\S 4.1 \# 28$ Task Consider the function defined by $f(x)=2 x^{3}+3 x^{2}-36 x+5$ on $[-1,1]$.
(a) Show that f is one-to-one on $[-1,1]$.
(b) Is f increasing or decreasing?

Result f is strictly decreasing and thus is one-to-one.
Proof Compute the derivative

$$
f^{\prime}(x)=6 x^{2}+6 x-36=6\left(x^{2}+x-6\right)=6(x+3)(x-2)
$$

and note that on our interval

$$
x+3 \geq-1+3>0 \quad \text { and } \quad x-2 \leq 1-2<0 .
$$

So our derivative is always negative in $[-1,1]$ and our function is strictly decreasing and thus one-to-one.
§4.1 \#29 Task Show that the function $f(x)=x^{3}-3 x^{2}+17$ is not one-to-one on $[-1,1]$
Proof Compute the derivative

$$
f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)
$$

This derivative is positive when $-1 \leq x<0$ and negative when $0<x \leq 1$.
Note that $f(-1)=13 \quad f(0)=17 \quad f(1)=15$.
As x increases from -1 to 0 , the function outputs increase from 13 to 17 .
As x increases from 0 to 1 , the function outputs decrease from 17 to 15 .
Thus the function has output 15 twice, once for an input between -1 and 0 and once at imput 1 . This is sufficient to show that f is not one-to-one.

