Homework #1, Math 311:02, Fall 2008 Sample Solutions

0.1#6 TASK Suppose that A, B, C are sets.

(a) Prove that

If $A \subseteq B$, then $C - B \subseteq C - A$.

(b) Either prove the converse or provide a counterexample.

PROOF

(a) Assume that $A \subseteq B$. [Note: Our book uses \subset for the weak inclusion. I am using \subseteq to emphasize that we are not limiting ourselves to the strong inclusion, the one that rules out equality.] I must show that

for all
$$x, x \in C - B \Longrightarrow x \in C - A$$
.

So consider an arbitrary x and assume $x \in C - B$. This means $x \in C$ and $x \notin B$. Since $A \subseteq B$ and $x \notin B$, we learn that $x \notin A$. Thus $x \in C - A$. \Box

(b) The converse says

If
$$C - B \subseteq C - A$$
, then $A \subseteq B$.

This need not be true. Consider the example

$$A = \{1\}, B = C = \phi$$

Then we have

$$C - A = \phi$$
 and $C - B = \phi$, so $C - B \subseteq C - A$ but $A \subsetneq B$

0.1#10 TASK b. Give a concise description of the set $B \doteq \bigcup_{n=1}^{\infty} (-n, n)$. RESULT $B = \mathbb{R}$ REASONING By definition

$$B = \{x : \exists n \text{ in } \mathbb{N}, x \in (-n, n)\}$$

B is a union of subsets of \mathbb{R} , so *B* is a subset of \mathbb{R} . To show the reverse inclusion, consider an arbitrary real *r*. We can find a positive integer n_r such that $-n_r < r < n_r$. So *r* belongs to the interval $(-n_r, n_r)$. Thus there is an index *n*, namely $n = n_r$, such that $r \in (-n, n)$. This shows that $r \in B$. \Box

TASK d. Give a concise description of the set $D \doteq \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n}\right)$. RESULT

$$D = \left(-\frac{1}{1}, 2 + \frac{1}{1}\right) = (-1, 3)$$

REASONING By definition

$$D = \left\{ x : \exists n, x \in \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \right\}.$$

Suppose that $x \in D$. Then we can and do pick a positive integer, call it n_o ,

$$x \in \left(-\frac{1}{n_o} , \ 2 + \frac{1}{n_0}\right)$$

Since $n_o \ge 1$, we get

$$\frac{1}{n_o} \le 1 \text{ so } -1 \le -\frac{1}{n_o} < x < 2 + \frac{1}{n_o} < 2 + 1 \text{ and } x \in (-1,3).$$

This shows that

 $D\subseteq \left(-1,3\right) .$

Now suppose that $x \in (-1, 3)$. Then with $n = n_1 = 1$ we get

$$x \in (-1,3) = \left(-\frac{1}{n_1}, 2 + \frac{1}{n_1}\right)$$
 so $x \in D$.

0.3 # 20 TASK Prove that

 $\forall n \text{ in } \mathbb{N}, \ 1+3+...+(2n-1)=n^2$

PROOF This calls for a proof by induction. For each positive integer n, let P(n) denote the assertion

The sum of the first n odd integers is n^2

Base Step. Consider n = 1. The sum of the first n odd integers is just 1. Also $n^2 = 1$. So the assertion P(1) is true.

Induction Step. Suppose that n is an arbitrary positive integer and that P(n) is true. We must deduce the truth of P(n+1).

The sum of the first n+1 odd integers is the sum of the first n odd integers plus the $(n+1)^{st}$. This sum is, by the induction hypothesis just $n^2 + (2n+1)$. But

$$n^2 + (2n+1) = (n+1)^2$$

and this gives us

The sum of the first n + 1 odd integers is $(n + 1)^2$

which is exactly P(n+1).