Homework \#1, Math 311:02, Fall 2008
 Sample Solutions

0.1\#6 TASK Suppose that A, B, C are sets.
(a) Prove that

$$
\text { If } A \subseteq B \text {, then } C-B \subseteq C-A \text {. }
$$

(b) Either prove the converse or provide a counterexample.

PROOF

(a) Assume that $A \subseteq B$. [Note: Our book uses \subset for the weak inclusion. I am using \subseteq to emphasize that we are not limiting ourselves to the strong inclusion, the one that rules out equality.] I must show that

$$
\text { for all } x, x \in C-B \Longrightarrow x \in C-A \text {. }
$$

So consider an arbitrary x and assume $x \in C-B$. This means $x \in C$ and $x \notin B$. Since $A \subseteq B$ and $x \notin B$, we learn that $x \notin A$. Thus $x \in C-A$.
(b) The converse says

$$
\text { If } C-B \subseteq C-A \text {, then } A \subseteq B
$$

This need not be true. Consider the example

$$
A=\{1\}, B=C=\phi
$$

Then we have

$$
C-A=\phi \text { and } C-B=\phi, \text { so } C-B \subseteq C-A \text { but } A \varsubsetneqq B
$$

0.1\#10 TASK b. Give a concise description of the set $B \doteqdot \bigcup_{n=1}^{\infty}(-n, n)$.

RESULT $B=\mathbb{R}$
REASONING By definition

$$
B=\{x: \exists n \text { in } \mathbb{N}, x \in(-n, n)\}
$$

B is a union of subsets of \mathbb{R}, so B is a subset of \mathbb{R}. To show the reverse inclusion, consider an arbitrary real r. We can find a positive integer n_{r} such that $-n_{r}<r<n_{r}$. So r belongs to the interval $\left(-n_{r}, n_{r}\right)$. Thus there is an index n, namely $n=n_{r}$, such that $r \in(-n, n)$. This shows that $r \in B$.

TASK d. Give a concise description of the set $D \doteqdot \bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, 2+\frac{1}{n}\right)$.
RESULT

$$
D=\left(-\frac{1}{1}, 2+\frac{1}{1}\right)=(-1,3)
$$

REASONING By definition

$$
D=\left\{x: \exists n, x \in\left(-\frac{1}{n}, 2+\frac{1}{n}\right)\right\} .
$$

Suppose that $x \in D$. Then we can and do pick a positive integer, call it n_{o},

$$
x \in\left(-\frac{1}{n_{o}}, 2+\frac{1}{n_{0}}\right)
$$

Since $n_{o} \geq 1$, we get

$$
\frac{1}{n_{o}} \leq 1 \text { so }-1 \leq-\frac{1}{n_{o}}<x<2+\frac{1}{n_{o}}<2+1 \text { and } x \in(-1,3)
$$

This shows that

$$
D \subseteq(-1,3)
$$

Now suppose that $x \in(-1,3)$. Then with $n=n_{1}=1$ we get

$$
x \in(-1,3)=\left(-\frac{1}{n_{1}}, 2+\frac{1}{n_{1}}\right) \quad \text { so } \quad x \in D .
$$

0.3 \#20 TASK Prove that

$$
\forall n \text { in } \mathbb{N}, \quad 1+3+\ldots+(2 n-1)=n^{2}
$$

PROOF This calls for a proof by induction. For each positive integer n, let $P(n)$ denote the assertion

The sum of the first n odd integers is n^{2}
Base Step. Consider $n=1$. The sum of the first n odd integers is just 1 . Also $n^{2}=1$. So the assertion $P(1)$ is true.

Induction Step. Suppose that n is an arbitrary positive integer and that $P(n)$ is true. We must deduce the truth of $P(n+1)$.

The sum of the first $n+1$ odd integers is the sum of the first n odd integers plus the $(n+1)^{\text {st }}$. This sum is, by the induction hypothesis just $n^{2}+(2 n+1)$. But

$$
n^{2}+(2 n+1)=(n+1)^{2}
$$

and this gives us
The sum of the first $n+1$ odd integers is $(n+1)^{2}$
which is exactly $P(n+1)$.

