
1 Math 311:02 Fall 2008 The Exponential Series

1.1 Introduction

An "in�nite series" is a formal sum of in�nitely many terms. A series can be expressed as

1X
k=0

tk = t0 + t1 + t2 + :::+ tk + :::

1X
k=1

tk = t1 + t2 + t3 + :::+ tk + :::

1X
k=K

tk = tK + tK+1 + tK+2 + :::+ tk + :::

The "terms" in the series are the numbers being added � just as the factors in a product are the numbers
being multiplied. So each series has a sequence in individual terms. In the �rst series above, the sequence
of terms is (tk)

1
k=0 : In the other two series, the sequence of terms is indexed on di¤erent index sets. We

can always relabel the terms to index on the non-negative integers. Note that

1X
k=K

tk = tK+0
+ t

K+1
+ t

K+2
+ :::+ tk + ::: =

1X
`=0

t
K+`

You can think of this process as making a change of index setting ` = k �K:
Next we need to make analytic sense of the formal series � to say when the formal sum actually

represents a well-de�ned real number.

De�nitions Consider the formal series
P1

k=0 tk:
The "nth partial sum" for this series is the �nite sum

Sn =
nX
k=0

tk

Recall that the summation notation has the inductive de�nition

S1 =

1X
k=0

tk = t0 + t1 and Sn+1 = Sn + tn+1

We say that "the series
P1

k=0 tk converges to real number S" if and only if

the sequence of partial sums converges to S

or equivalently

lim (Sn) = lim

 
nX
k=0

tk

!
= S:

When the series does converge to S we write

1X
k=0

tk = S:

We say that an in�nite series is "convergent" if and only if there is a real S to which the series converges.
We say the series "diverges" if and only if the series does not converge to any real sum.
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1.2 Homework and Workshop Problems

These problems establish the basic arithmetic of convergent series.

1. Suppose that
1X
k=0

tk = S and r 2 R:

Then (a) the sequence of individual terms must converge to zero, that is

lim (tk) = 0

and (b)
1X
k=0

rtk = rS = r

 1X
k=0

tk

!
:

2. Suppose that
1X
k=0

tk = S and
1X
k=0

rk = R:

Then (a)

for all indices n,
nX
k=0

(tk + rk) = :

 
nX
k=0

tk

!
+

 
nX
k=0

rk

!
and (b)

1X
k=0

(tk + rk) = :

 1X
k=0

tk

!
+

 1X
k=0

rk

!

3. Consider the formal series
1X
k=0

tk and
1X
k=0

rk:

(a) Show that if tk � rk for all the indices k, then for all positive integers n
nX
k=0

tk �
nX
k=0

rk

(b) Show that if 0 � tk � rk for all indices AND the formal series of larger terms converges then so does
the sum of the smaller terms and

0 �
1X
k=0

tk �
1X
k=0

rk:

(c) Show that if 0 � tk � rk for all indices AND the sum of the smaller terms diverges so does the sum of
the larger terms.

(d) Give examples to show that the part of the hypothesis "0 � tk for all k" is necessary in (b) and (c).

4. Consider the formal series
1X
k=0

1

k!

Show that for all n in N
nX
k=0

1

k!
� 1 +

nX
`=0

�
1

2

�`
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We concentrate on the following series
1X
k=0

xk

k!

Note that there is a real variable x in each of the terms. Thus for each di¤erent real x we have a di¤erent
series to consider.
We emphasize the following two conventions for this topic

x0 denotes the number 1 regardless of the value of x

0! denotes the integer 1:

Since the terms in the series depend on x, so do the partial sums. We write

Sn(x) =

nX
k=0

xk

k!

1.3 Convergence

Theorem For each real x there is a real number, which we will denote by E(x); such that our series converges
to E (x) :

Proof: We proceed by cases.

Case 1: x = 0 In this case we see that

S1(0) =
1X

k=0

0k

k!
= 1 + 0 = 1

S2(0) =
2X

k=0

0k

k!
= 1 + 0 + 0 = 1

Sn+1(0) =
n+1X
k=0

0k

k!
=

nX
k=0

0k

k!
+

0n+1

(n+ 1)!
= Sn (0) + 0 = 1

Thus for all positive n
Sn(0) = 1:

Thus the sequence of partial sums is the sequence with all terms equal to 1 and

1X
k=0

0k

k!
= lim (Sn(0)) = lim (1; 1; 1; :::) = 1

So we have

E(0) =
1X
k=0

0k

k!
= 1:

Case 2: x > 0 Consider a �xed positive x.
Since x is positive, so are all integer powers of x. Thus we see

Sn+1 (x) = Sn (x) +
xn+1

(n+ 1)!
> Sn(x):

Our sequence of partial sums in increasing. By the Monotone Convergence Theorem, to show that it
converges, it will be enough to �nd an upper bound for the sequence of partial sums. Since x is �xed, our
upper bound will probably depend in some way on that �xed x:
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Before doing the general case I will practice with two particular positive values for x: The �rst has
particular importance for calculus and probability.

Subcase: x = 1 By the Homework problem 4 above we know that, for each positive n;

Sn(1) = 1 +
nX
k=1

1k

k!
� 1 +

nX
k=1

�
1

2

�k�1
= 1 +

n�1X
`=0

�
1

2

�`
By earlier work with �nite geometric series we know, for n � 1; that

n�1X
`=0

�
1

2

�`
=
1� (1=2)n

1� (1=2) <
1

1� (1=2) = 2:

Thus we have
Sn(1) < 1 + 2 = 3 for all the n in N:

So we have our upper bound for the increasing sequence of partial sums. Thus we get the existence of

E (1) =
1X
k=0

1k

k!

and further we get the estimates

2:5 = S2(1) � E(1) = lub (fSn (1)g) � 3:

Subcase x = 7 This case has no interest in its own right, but it illustrates the method we use in the general
case.
We know that the sequence of partial sums (Sn (7))

1
1 is increasing. So we need only �nd an upper

bound. Suppose that n is much bigger than 7:

Sn(7) =
nX
k=0

7k

k!
=

7X
k=0

7k

k!| {z }
Call this A

+
nX
k=8

7k

k!

Note that A is independent of n: Now for k � 8

7k

k!
=

77 � 7k�7
1 � 2 � ::: � 7 � 8 � 9::: � k =

77

7!
� 7k�7

8 � 9 � ::: � k
Note that the expression 8 � 9 � ::: � k has exactly 7� k factors, each of which is at least 8: Thus

8 � 9 � ::: � k � 8k�7 and
1

8 � 9 � ::: � k �
1

8k�7
:

It follows that

7k

k!
=

77

7!
� 7k�7

8 � 9 � ::: � k �
77

7!
�
�
7

8

�k�7
nX
k=8

7k

k!
�

nX
k=8

77

7!
�
�
7

8

�k�7
=
77

7!
�
nX
k=8

�
7

8

�k�7
Note that

77

7!
�
nX
k=8

�
7

8

�k�7
=

77

7!
�
"�
7

8

�1
+

�
7

8

�2
+ :::+

�
7

8

�n�7#

� 77

7!
�
"�
7

8

�0
+

�
7

8

�1
+

�
7

8

�2
+ :::+

�
7

8

�n�7#

� 77

7!
�
�

1

1� (7=8)

�
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So we see that for large n; say n � 10; we have the bound

Sn(7) � A+
77

7!
�
�

1

1� (7=8)

�
Of course for smaller n we have

Sn(7) � S10(7) � A+
77

7!
�
�

1

1� (7=8)

�
Thus our increasing sequence of partial sums is bounded from above and must converge. The limit is our

E(7) =
1X
k=0

7k

k!
:

Treating arbitrary positive x: First we pick a integer M such that x �M: For all n we get

Sn(x) =
nX
k=0

xk

k!
�

nX
k=0

Mk

k!
= Sn(M):

Here we used one of those homework problems. An upper bound for the partial sums Sn (M) will thus be
an upper bound for the partial sums Sn(x):
We know that the sequence of partial sums (Sn (M))

1
1 is increasing. So we need only �nd an upper

bound. Suppose that n is bigger than M:

Sn(M) =

nX
k=0

Mk

k!
=

MX
k=0

Mk

k!| {z }
Call this A

+

nX
k=M+1

Mk

k!

Note that A is independent of n: Now for k > M

Mk

k!
=

MM �Mk�M

1 � 2 � :::M � (M + 1) � (M + 2) � ::: � k =
MM

M !
� Mk�7

(M + 1) � (M + 2)::: � k

Note that the expression (M + 1) � (M + 2) � ::: � k has exactly M � k factors, each of which is bigger than
M: Thus

(M + 1) � (M + 2) � ::: � k � (M + 1)
m�7 and

1

(M + 1) � (M + 2) � ::: � k � 1

(M + 1)
k�7 :

It follows that
Mk

k!
=
MM

M !
� Mk�M

(M + 1) � (M + 2) � ::: � k �
MM

M !
�
�

M

M + 1

�k�M
and

nX
k=M+1

Mk

k!
�

nX
k=8

MM

M !
�
�

M

M + 1

�k�M
=
MM

M !
�

nX
k=M+1

�
M

M + 1

�k�M
:

Set r =M=(M + 1): Note that 0 < r < 1 and

nX
k=M+1

�
M

M + 1

�k�M
= �

h
(r)

1
+ (r)

2
+ :::+ (r)

n�M
i

�
h
(r)

0
+ (r)

1
+ (r)

2
+ :::+ (r)

n�M
i

�
�

1

1�M=(M + 1)

�
=
M + 1

M
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So we see that for large n; say n �M + 1; we have the bound

Sn(M) � A+
MM

M !
�
�
M + 1

M

�
Of course for n �M we have

Sn(M) � SM+1(7) � A+
MM

M !
�
�
M + 1

M

�
Thus our increasing sequence of partial sums Sn (M) is bounded from above and must converge.

E(M) =
1X
k=0

Mk

k!
:

But since now E(M) is an upper bound for all the Sn(x) we also have

E(x) =
1X
k=0

xk

k!
= lim (Sn(x)) � lim (Sn (M)) = E(M) =

1X
k=0

Mk

k!
:

Case 3 x < 0 The main di¢ culty in this case is that the partial sums are not monotone. One way to
proceed is to use the Nested Interval Theorem. Another is to make a no-frills arugument using only
Monotone Convergence Theorem and an auxilliary series. A third method uses the theorem that all Cauchy
sequences are convergent.

Applying the Nested Interval Theorem.
I will illustrate the Nested Interval Theorem method in the case �1 < x < 0: It is more complicated to

make the argument for general negative x: We will rely on the other two methods for the general case.
Assume that x is a �xed arbitrary real such that �1 < x < 0:

Claim 1: The subsequence of partial sums with even subscripts is decreasing, i.e.,

for all positive integers m, S2m(x) > S2m+2(x)

Proof: Consider an arbitrary m in N: It is su¢ cient to show that S2m+2(x)� S2m(x) < 0: Now

S2m+2(x)� S2m(x) =
2m+2X

k=2m+1

xk

k!
=

x2m+1

(2m+ 1)!
+

x2m+2

(2m+ 2)!

=
x2m+1

(2m+ 1)!

�
1 +

x

2m+ 2

�
=
�jxj2m+1
(2m+ 1)!

�
1 +

x

2m+ 2

�
The �rst factor is negative. The second factor, the one in square brackets is positive because �1 < x < 0
and thus �

1 +
x

2m+ 2

�
= 1� jxj

2m+ 2
> 1� 1

2m+ 2
> 1� 1

2
=
1

2
> 0:

Thus the di¤erence S2m+2(x)� S2m(x) is indeed negative.

Claim 2: The subsequence of partial sums with odd subscripts is increasing, i.e.,

for all positive integers m, S2m+1(x) > S2m�1(x)

Proof: Consider an arbitrary m in N: It is su¢ cient to show that S2m+1(x)� S2m�1(x) > 0: Now
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S2m+1(x)� S2m�1(x) =
2m+1X
k=2m

xk

k!
=

x2m

(2m)!
+

x2m+1

(2m+ 1)!

=
x2m

(2m)!

�
1 +

x

2m+ 1

�
=
jxj2m
(2m)!

�
1 +

x

2m+ 1

�
The �rst factor is positive. The second factor, the one in square brackets is positive because �1 < x < 0
and thus �

1 +
x

2m+ 1

�
= 1� jxj

2m
> 1� 1

2m
� 1� 1

2
=
1

2
> 0:

Thus the di¤erence S2m+1(x)� S2m�1(x) is indeed positive.

Claim 3 For every m in N, S2m�1 < S2m:
Proof: Consider arbitrary positive m:

S2m � S2m�1 =
x2m

(2m)!
> 0

since x < 0 and thus x2m > 0:

Claim 4 For all m and ` in N; S2m�1 (x) < S2` (x) :
Proof: We work by cases.
If m = `, then we simply appeal to Claim 3.
If m < `, then we appeal to Claims 2 and 3:

S2m�1 (x) < S2`�1 (x) < S2` (x) :

If ` < m; then we appeal to Claims 1 and 3

S2m�1 (x) < S2m (x) < S2` (x) :

Claim 5 lim (Sn(x)) exits.
Proof: We use the method of proof of the Nested Interval Theorem. Since our x is �xed, we write Sn to
abbreviate Sn(x):

Since we know that the partial sums for odd subscripts are increasing and bounded above by S2

lim (S2m�1) exists and equals lubfS2m�1 : m 2 Ng:

Since we know that the partial sums for even subscripts are decreasing and are bounded below by S1

lim (S2m) exists and equals glb fS2m : m 2 Ng :

Since S2m = S2m�1 + (�1)2m=(2m)! and lim2m!1(�1)2m=(2m)! = 0

lim (S2m�1) = lim (S2m) :

Let�s write
L = lim (S2m�1) = lim (S2m) :

Thus for all m

S2m�1 � L � S2m = S2m�1 +
x2m

(2m)!

We now can �nish by showing that
L = lim (Sn)
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Consider an arbitrary positive ": We will display a positive integer N such that

whenver n � N then also jSn � Lj < ":

From the convergence of the subsequences discussed above, we get N1 and N2 such that

whenever m � N1 then also jS2m�1 � Lj < "
whenever m � N2 then also jS2m � Lj < "

Set N = 2�max(N1; N2): Suppose that n � N:
If n is even, we write n = 2m and note that m � max(N1; N2) � N2 so

jSn � Lj = jS2m � Lj < ":

However if n is odd, we write n = 2m � 1 and note that 2m � 1 � 2max(N1; N2) and thus 2m �
2max(N1; N2) + 1 and thus m � N1 and

jSn � Lj = jS2m�1 � Lj < ":

So in either case we get jSn � Lj < ":

Applying "brute force".

We �x an arbitrary negative x and set p = jxj: Recall that x = �p:
Let�s start with two practice computations. First look at n = 5:

S5 (x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!

= 1� p+ p
2

2!
� p

3

3!
+
p4

4!
� p

5

5!
and

S5(p) = 1 + p+
p2

2!
+
p3

3!
+
p4

4!
+
p5

5!

Adding we get

S5(x) + S5(p) = 2 + 2
p2

2!
+ 2

p4

4!
= 2

�
1 +

p2

2!
+
p4

4!

�
Next look at n = 6:

S6 (x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!

= 1� p+ p
2

2!
� p

3

3!
+
p4

4!
� p

5

5!
+
p6

6!
and

S6(p) = 1 + p+
p2

2!
+
p3

3!
+
p4

4!
+
p5

5!
+
p6

6!
:

Adding we get

S6(x) + S6(p) = 2 + 2
p2

2!
+ 2

p4

4!
+
p6

6!
= 2

�
1 +

p2

2!
+
p4

4!
+
p6

6!

�
:

We can verify that, for all positive integers n;

Sn(x) + Sn(p) = 2 An
notation
=

(
2
Pn=2

k=0
p2k

(2k)! if n is even

2
P(n�1)=2

k=0
p2k

(2k)! if n is odd
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Another way to understand the terms An is this

for n even, An =
X

` is even and `�n

p`

`!

for n odd, An =
X

` is even and `�n�1

p`

`!

So if n is odd, then n+ 1 is even and
An+1 = An

However if n is even, then n+ 1 is odd and

An+1 = An +
p2n+2

(2n+ 2)!
:

The value of this is that the sequence (An)
1
1 is increasing. By adding the "missing" odd powers of p, we

see that

An <

nX
k=0

pk

k!
< E (p) for all positive integers n:

This tells us that the sequence (An)
1
1 does converge. Since

Sn(x) = An � Sn (p)

and both sequences on the right are convergent we see that

E(x) = lim (Sn (x)) exists.

This �nishes the existence proof.

Applying the Cauchy Criterion for convergent sequences.
Here we use our earlier theorem that a sequence in R converges to a limit in R if and only if the sequence

is Cauchy.
We �x our negative x and again write p = jxj : Since p > 0 we know that the partial sums Sn(p) for the

series E(p) are Cauchy.
Now we prove that the sequence of partial sums Sn (x) for the series E(x) is Cauchy.
Consider an arbitrary positive ": Since the sequence (Sn(p))n2N is Cauchy we get a positive integer H

such that
whenever m � H and n � H then jSn(p)� Sm (p)j < ":

Use this H: Suppose that m � H and n � H: I want to verify that jSn(x)� Sm (x)j < ":
Case m = n Then

jSn(x)� Sm (x)j = 0 < "

Case m < n Here we have

jSn (x)� Sm(x)j =
�����

nX
k=m+1

xk

k!

����� �
nX

k=m+1

jxjk

k!
= Sn (p)� Sm (p)

and thus
jSn (x)� Sm(x)j � Sn (p)� Sm (p) = jSn (p)� Sm (p)j < ":

Case m > n Here we have

jSn (x)� Sm(x)j =
�����

mX
k=n+1

xk

k!

����� �
mX

k=n+1

jxjk

k!
= Sm (p)� Sn (p)
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and thus
jSn (x)� Sm(x)j � Sm (p)� Sn (p) = jSm (p)� Sn (p)j < ":

This completes the proof that the series E(x) converges for each real x:�
We now use the notation E(x) for both the formal series and the real number which is its sum.

Remark 1
For any x and n

jSn(x)j =
�����
nX
k=0

xk

k!

����� �
nX
k=0

jxjk
k!

�
1X
k=0

jxjk
k!

= E (jxj) :

Remark 2
For any x

jE (x)j = jlim (Sn(x))j = lim jSn (x)j � E (jxj)

Remark 3
If 0 < a < b; then

1 < E(a) < E(b)

Proof of the third remark. To see the �rst inequality we note that

E(a) = lim(Sn(a)) = lub (fSn (a) : n 2 N) � S1 (a) = 1 + a > 1

To get the second inequality we must be a bit more careful. For each big n

E(b) � Sn(b) = 1 + b+
nX
k=2

bk

k!

Homework Verify that for all n bigger than 1

nX
k=2

bk

k!
>

nX
k=2

ak

k!

Homework Verify the following for sequential limits.

lim
nX
k=0

bk

k!
= 1 + b+ lim

nX
k=2

bk

k!

lim

nX
k=0

ak

k!
= 1 + a+ lim

nX
k=2

ak

k!

lim
nX
k=0

bk

k!
> lim

nX
k=0

ak

k!

being careful not to misstate the order properties for convergent sequences.
These "homework" problems were inadvertently proved in class.
This �nishes the proof of the third remark.
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1.4 Continuity

Theorem The function E is continuous at each point p in R

Proof
First we attend to the case p = 0: Consider an arbitrary positive ": As usual we seek a positive � such

that for all x in the domain, R, of our function E,

jx� 0j < � =) jE (x)� E(0)j < ":

Recall that we know E(0) = 1: Consider an arbitrary real x:

E(x)� E(0) = [limSn(x)]� 1 = lim [Sn (x)� 1]

For all n

Sn(x)� 1 =

 
1 +

nX
k=1

xk

k!

!
� 1 =

nX
k=1

xk

k!

= x

nX
k=1

xk�1

k!

Now let�s keep jx� 0j < 1: We�ll use this constraint in the summation but not with the x we factored out.

jSn(x)� 1j = jxj
nX
k=1

jxjk�1

k!
� jx� 0j �

nX
k=1

1

k!
� jx� 0j � E(1):

Note that
jx� 0j � E(1) < " () jx� 0j < "

E(1)
:

Set � = min (f1; "=E(1)g) : Clearly � > 0: Suppose that x 2 R = Dom(E) and jx � 0j < �. Then since
jx� 0j < � � 1

jSn(x)� 1j � jx� 0j � E(1)

and since jx� 0j < � � "=E(1)
jx� 0j � E(1) < ":

So we see that for x 2 Dom(E)

jx� 0j < � =) jE(x)� E(0)j < ":

Consider next an arbitrary real p In this case p is not necessarily positive.
As usual we consider an arbitrary positive " and look for a positive � with the desired property.
Treat �rst an arbitrary real x

E(x)� E(p) = limSn(x)� limSn(p) = lim (Sn(x)� Sn(p)) :

For each n

Sn(x)� Sn(p) =
nX
k=0

xk

k!
�

nX
k=0

pk

k!
=

 
1 +

nX
k=1

xk

k!

!
�
 
1 +

nX
k=1

pk

k!

!

=
nX
k=1

xk

k!
�

nX
k=1

pk

k!
=

nX
k=1

xk � pk
k!
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and thus

(�) jSn(x)� Sn(p)j �
nX
k=1

��xk � pk��
k!

= jx� pj+
nX
k=2

��xk � pk��
k!

:

We now keep x in the closed bounded interval [p� 1; p+ 1] : Note that

�jpj � 1 � p� 1 � x � p+ 1 � jpj+ 1:

Consider k with k � 2: We apply the Mean value theorem to the function taking x to xk: This function
has derivative kxk�1: If x is not equal to p we get a c strictly between x and p such that

xk � pk
x� p = kck�1 and xk � pk = k ck�1 (x� p) :

Since c is between x and p we know that c is in [� jpj � 1; jpj+ 1] and thus jcj � jpj+ 1: It follows that��xk � pk�� = k jcjk�1 jx� pj � k (jpj+ 1)k�1 jx� pj
This last estimate is also valid when x = p since then all it says is 0 � 0:
Thus whenever jx� pj � 1, we can use this observation in the estimate (*) to get

jSn(x)� Sn(p)j � jx� pj+
nX
k=2

��xk � pk��
k!

� jx� pj+
nX
k=2

k (jpj+ 1)k�1 jx� pj
k!

� jx� pj
 
1 +

nX
k=2

k (jpj+ 1)k�1

k!

!
Set ` = k � 1 and note that 

1 +

nX
k=2

k (jpj+ 1)k�1

k!

!
=

 
1 +

nX
k=2

(jpj+ 1)k�1

(k � 1)!

!

=

 
1 +

n�1X
`=1

(jpj+ 1)`

`!

!
= Sn�1(jpj+ 1) � E (jpj+ 1) :

Thus whenever jx� pj � 1
jSn(x)� Sn(p)j � jx� pj E (jpj+ 1) :

Thus we can see that we can choose � = min (f1; "=E(jpj+ 1)g) : For all x inDom(E) if we assume jx� pj < �
then we get

jSn(x)� Sn(p)j � jx� pj E (jpj+ 1) < � � E (jpj+ 1) � ":

1.5 Di¤erentiability

Theorem At each point p in R, the function E is di¤erentiable and E0(p) = E(p):

Proof Consider �rst an arbitrary positive integer n with n � 3: The function Sn(x) is a polynomial in x.
So we can compute its derivative

d

dx
[Sn(x)] =

d

dx

"
nX
k=0

1

k!
xk

#
=
d

dx

"
1 + x+

nX
k=2

1

k!
xk

#

= 0 + 1 +
nX
k=2

k

k!
xk�1 =

nX
k=1

1

(k � 1)!x
k�1

=
n�1X
k=0

1

k!
xk = Sn�1 (x)

12



We also see that

d

dx
[S2(x)] =

d

dx

�
1 + x+

x2

2

�
= 0 + 1 + x = S1 (x)

d

dx
[S1(x)] =

d

dx
[1 + x] = 0 + 1

If we introduce the notation S0(x) = 1 for all x, then we get the nice result that

for all n in N, the derivative of Sn(x) is Sn�1(x):

Consider a �xed n with n � 2: Keep x di¤erent from p: The mean value theorem tells us that

Sn (x)� Sn (p)
x� p � Sn�1 (p) = Sn�1 (cn)� Sn�1 (p)

for some cn that lies between x and p: Applying the mean value theorem again

Sn (x)� Sn (p)
x� p � Sn�1 (p) = Sn�1 (cn)� Sn�1 (p) = Sn�2(n) � (cn � n)

where the point n lies between cnand p and thus also lies between x and p:

Now let�s keep 0 < jx� pj < 1: This gives us

�jpj � 1 � p� 1 < x < p+ 1 � jpj+ 1

Since

cn lies between x and p

and

n lies between cn and p

we must have

�1� jpj < p < n < cn < x < p+ 1 � jpj+ 1 or

�1� jpj < p� 1 � x < cn < n < p < jpj+ 1

So in either case jnj � jpj+ 1: We also get

jcn � nj < jx� pj :

We now get the string of estimates����Sn (x)� Sn (p)x� p � Sn�1 (p)
���� = jSn�2(n) � (cn � n)j � jSn�2(n)j � jx� pj

� E(jnj) � jx� pj � E(jpj+ 1) � jx� pj

Now take the sequential limit as n runs to 1:

lim

�����Sn (x)� Sn (p)x� p � Sn�1 (p)
����� =

����lim�Sn (x)� Sn (p)x� p � Sn�1 (p)
�����

=

����E (x)� E (p)x� p � E (p)
����

and using the order properties we get����E (x)� E (p)x� p � E (p)
���� � E(jpj+ 1) � jx� pj
13



The right hand side goes to zero as x! p. The squeeze theorem for functional limits now tells us that

lim
x!p

����E (x)� E (p)x� p � E (p)
���� = 0

and this is equivalent to the statement that

lim
x!p

E (x)� E (p)
x� p exists and equals E (p) :

1.6 Consequences of Di¤erentiability

Theorem For all x, E(x) � E(�x) = 1:
Proof Use the product rule and the chain rule to compute

d

dx
[E(x)E(�x)] = E0(x)E(�x) + E(x)(E0(�x) � �1)

= E(x)E(�x)� E(x)E0(�x) = 0

Since the function taking x to E(x)E(�x) has constant derivative zero, it must be a constant function. So
for all x

E(x)E(�x) = E(0)E(�0) = E(0)E(0) = 1 � 1 = 1:

Theorem For all x
E(x) > 0

Proof We already know that E(0) = 1 and for all positive x, E(x) > 1:
Consider a negative x: So x = � jxj and �x = jxj > 0: Now

E(x) =
1

E(�x) =
1

E (jxj) > 0:

Theorem Suppose that a and b are arbitrary reals. Then

E(a+ b) = E(a)E(b)

Proof De�ne the function g by

g(x) =
E(a+ x)

E(a)E(x)
=

1

E(a)
� E(a+ x)
E(x)

Since outputs of E are all positive g is de�ned and di¤erentiable at all real x: We get

g0(x) =
1

E(a)
� E

0(a+ x)E(x)� E(a+ x)E0(x)
[E(x)]

2

=
1

E(a)
� E(a+ x)E(x)� E(a+ x)E(x)

[E(x)]
2 = 0

for all x. So g(x) must be constant.

g(x) = g(0) =
E(a)

E(a)E(0)
= 1 for all x
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and thus

E(a+ x)

E(a)E(x)
= 1 for all x

E(a+ x) = E(a)E(x) for all x

E(a+ b) = E(a)E(b):

Theorem For all n in N and any real x
E(nx) = [E (x)]

n

Proof Use induction on n:

Theorem For all n in Z and any real x
E(nx) = [E (x)]

n

Proof Use induction on n:

Theorem For all q in Q and any real x
E(qx) = [E (x)]

q

Proof Consider an arbitrary real x:
Write q = k=` where we keep k 2 Z and ` 2 N:
Case k = 1: By the de�nition of the notation

[E(x)]
1=` is the non-negative `th root of [E (x)] :

But �
E(
1

`
x)

�`
= E(` � 1

`
x) = E(x):

Thus E( 1`x) must be our unique `
th root of E(x) �or in other words

E

�
1

`
x

�
= [E (x)]

1=`

General case

E(
k

`
x) = E

�
k � x
`

�
=
h
E
�x
`

�ik
=

�
E

�
1

`
x

��k
=

h
(E (x))

1=`
ik
= [E (x)]

1
` �k = [E (x)]

k
` : :

1.7 De�ning e and Understanding the Expression ex

De�nition We use the letter e to denote the output E(1): In other words

e = E(1) =
1X
k=0

1

k!

Homework By induction on n; verify that for all integers n

en = E (n)
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Homework Verify that for all rational numbers q

eq = E (q)

De�nition For all irrational x

ex = E(x)

Homework
In many books the following kind of recipe is given for understanding e� :
"Take a sequence (qn)

1
n=1 of rational numbers approximating �:

The sequence (eqn)11 will then approximate the number we mean by the notation e�:"
(a) Translate this recipe into more rigorous mathematics.
(b) Explain why this recipe gives a well-de�ned value for e� �in other words, why the recipe does not give
di¤erent values for di¤erent sequences approaching �:
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1.8 The natural logarithm

Theorem The function E is one-to-one and maps R onto R+
Proof We have seen that the derivative of E is strictly positive on R. This tells us that E is strictly
increasing and thus one-to-one. It remains to show that every positive real is in the range of E:
It is easy to verify that,

for all positive integers n; n < 2n < en and e�n < 2�n <
1

n

Consider an arbitrary positive real p: We can �nd positive integers j and k so that

1

j
< p < k:

and thus
e�j < p < ek

Since E continuous on the interval [�j; k] and E(�j) < p < E(k); the intermediate value theorem now gives
us a real x such that E(x) = p:
Note that because E is one-to-one, this x that solves E(x) = p is uniquely determined.

De�nition
E is called the exponential function.
The inverse function for the exponential function is called the natural logarithm function.

For positive p, the "natural logarithm of p" is denoted ln(p):

ln(p) = x if and only if ex = p:

We have seen that the exponential function maps R one-to-one onto R+. Thus the natural logarithm
maps R+ one-to-one onto R.
From the inverse function theorem, we learn that the natural logarithm is di¤erentiable everywhere on

it domain and that
d

dx
[ln(x)] =

1

E0(ln(x))
=

1

E(ln(x))
=
1

x
:

Proposition

lim

�
1 +

1

n

�n
= e

Proof
The existence of this limit is asserted without proof in many precalculus and calculus books. The

existence proof is beyond the scope of those courses.
Now we can not only make the existence proof more easily by using the tools we have developed, but we

can evaluate the limit.
For each positive integer n

ln

��
1 +

1

n

�n�
= n ln

�
1 +

1

n

�
=
ln
�
1 + 1

n

�
1
n

=
ln
�
1 + 1

n

�
� ln (0)

1
n � 0

We know that the natural logarithm has a derivative at zero and that this derivative is 1. Take the sequential
limit above.

lim

�
ln

��
1 +

1

n

�n��
= lim

 
ln
�
1 + 1

n

�
� ln (0)

1
n � 0

!
= 1
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Now recall that the exponential function is continuous everywhere, and in particular is continuous at 1:
Using the sequential criterion for limits of continuous functions

lim

�
E

�
ln

��
1 +

1

n

�n���
= E (1) = e

But E is the inverse of the natural logarithm so

E

�
ln

��
1 +

1

n

�n��
=

�
1 +

1

n

�n
and thus

lim

�
1 +

1

n

�n
= limE

�
ln

��
1 +

1

n

�n��
= e:

De�nition For each positive p and each real x we de�ne the expression px by

px = ex ln p

Note that this makes sense because
p = E(ln(p)) = eln(p)

and �
eln(p)

�x
= eln(p)�x = ex�ln(p):

Further note that this function is di¤erentiable by the chain rule and that

d

dx

h
ex�ln(p)

i
=

d

dx
[E (x � ln (p))] = E0 (x � ln p) � ln p = E (x � ln p) ln p

= ln p � ex ln p = ln p � px

Proposition There is a unique positive p with the property that the curve y = px crosses the y-axis with
slope 1. This value of p is e:

Proof The slope of the tangent to y = px at the point
�
0; p0

�
is ln p � p0, which is just ln p: Note that

ln p = 1 if and only if E(1) = p if and only if e = p:
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