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This exam will be given over two days, in two three hour sessions. Each session
will consist of 3 required questions and a choice of 3 out of 6 remaining questions.
The basic idea is to ensure that all students at least attempt a range of questions,
but one area of weakness should not be overly magnified.
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First Day – Part I: Answer each of the following three questions.

Question 1. Let (X1, d1) and (X2, d2) be metric spaces, and f : X1 → X2 a
continuous surjective map such that d1 (p, q) ≤ d2 (f(p), f(q)) for every pair of
points p, q ∈ X1.

(a) If X1 is complete, must X2 be complete? Give a proof or a counterexample.

(b) If X2 is complete, must X1 be complete? Give a proof or a counterexample.

Question 2. Let f : R → R be an integrable function, and let g : R → R be
a bounded measurable function which is continuous at each x outside a set A

of Lebesgue measure zero. Show that F (t) =
∫ ∞
−∞

f(x)g(xt)dx is a continuous

function for t 6= 0.

Question 3. Let G be a group and H and K subgroups such that H has finite
index in G. Prove that H ∩K has finite index in K.



First Day – Part II: Answer three out of the following six questions.

Question 4. Suppose that f(x) is a continuous real-valued function with domain
R which is differentiable for all x 6= 0.

(a) If lim
x→0

f ′(x) exists, show that f ′(0) exists.

(b) If lim
x→0

f ′(x) need not exist, must f ′(0) exist? Prove or give a counterexample.

Question 5. Prove or disprove: there is a real n× n matrix A such that

A2 + 2A+ 5I = 0

if and only if n is even. (Here I denotes the n× n identity matrix).

Question 6. Let f be an analytic function that maps the open unit disk D into
itself and vanishes at the origin.

(a) Prove that |f(z) + f(−z)| ≤ 2 |z2| in D.

(b) Prove that the inequality in 6(a) is strict, except at the origin, unless f has the
form f(z) = λz2 for some λ a constant of absolute value one.

Question 7. Let f(x) = x5 + 2x3 + 2x2 + x− 3, g(x) = x4 + 3x2 + 2x+ 3. Prove
that there is an integer d such that the polynomials f(x) and g(x) have a common
root in the field Q[

√
d]. What is d?

Question 8. Let {fn}∞n=1 be a sequence of real-valued C1 functions on [0, 1] such
that, for all n,

|f ′n(x)| ≤ x−1/2 for (0 < x ≤ 1), and∫ 1

0

fn(x)dx = 0.

Prove that the sequence has a subsequence that converges uniformly on [0, 1].

Question 9. Let V be a finite-dimensional linear subspace of C∞(R) (the space of
complex-valued, infinitely differentiable functions). Assume that V is closed under
D, the operator of differentiation (i.e., f ∈ V ⇒ Df = f ′ ∈ V ). Prove that there
is a constant coefficient differential operator

L =
n∑
k=0

akD
k

such that V consists of all solutions of the differential equation Lf = 0.



Second Day – Part I: Answer each of the following three questions.

Question 1. Evaluate ∫
C

ez

z(2z + 1)2
dz

where C is the unit circle oriented counterclockwise.

Question 2. Let An be a sequence of Lebesgue measurable subsets of [0, 1], and
A∞ =

∞
∩
N=1

∞
∪

n=N
An (the set of points that belong to infinitely many of the sets An).

(a) Prove that
∞∑
n=1

m(An) <∞ is a sufficient condition for m(A∞) = 0.

(b) Prove that lim
n→∞

m(An) = 0 is a necessary condition for m(A∞) = 0.

Which of these two conditions remain valid if we allow An to be arbitrary Lebesgue
measurable subsets of R?

Question 3. Let A and B be two diagonalizable n × n complex matrices such
that AB = BA. Prove that there is a nonsingular n× n matrix P such that both
P−1AP and P−1BP are diagonal matrices.



Second Day – Part II: Answer three of the following six questions.

Question 4. A standard theorem states that a continuous real-valued function on
a compact set is bounded. Prove the converse: if K is a subset of Rn, and if every
continuous real-valued function on K is bounded, then K is compact.

Question 5. Let p, q, r be continuous real-valued functions on R with p(t) > 0 for
all t ∈ R. Prove that there exist a continuously differentiable function a(t) and a
continuous function b(t) such that the differential equation

p(t)x′′(t) + q(t)x′(t) + r(t)x(t) = 0

has exactly the same solutions as the equation

[a(t)x′(t)]′ + b(t)x(t) = 0.

Question 6. Let F be a field. Prove that every finite subgroup of the multiplicative
group of nonzero elements of F is cyclic.

Question 7. Let I denote the ideal in Z[X], the ring of polynomials with coef-
ficients in Z, generated by x3 + x + 1 and 5. Is I a prime ideal? Justify your
answer.

Question 8. Let O be open and f : O → C be holomorphic and one-to-one.
Show that for any z0 ∈ O, the level curves Γ1 = {z : Ref(z) = Ref(z0)} and
Γ2 = {z : Imf(z) = Imf(z0)} intersect at right angles.

Question 9. Let R2 represented as 2 × 1 column vectors be equipped with the
Euclidean metric: d(x, y) = ||x − y|| where || · || is the Euclidean norm. Let T
be an isometry (=distance preserving map) of R2 into itself. Prove that T can be
represented as

T (x) = a + Ux,

where a is a vector in R2 and U is an orthogonal matrix.


