Problems coming from Integrals

Dedicated to my most famous nephew

Victor H. Moll
Tulane University

May 30, 2010

Doron number 2

Tewodros Amdeberhan
Christoph Koutschan
Luis Medina
Eric Rowland Xinyu Sun

General problem

Given a function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

say something interesting about

$$
I(f ; a, b):=\int_{a}^{b} f(x) d x
$$

General problem

Given a function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

say something interesting about

General problem

Given a function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

say something interesting about

$$
I(f ; a, b):=\int_{a}^{b} f(x) d x
$$

Ideal solution

Input: The function f and the parameters $\{a, b\}$
nutnout: The value of $f^{b} f(x) d x$
and
An interesting fact about the answer.

We are far away from this

Ideal solution

Input: The function f and the parameters $\{a, b\}$
Output: The value of $\int_{a}^{b} f(x) d x$
and
An interesting fact about the answer.

Ideal solution

Input: The function f and the parameters $\{a, b\}$
Output: The value of $\int_{a}^{b} f(x) d x$
and
An interesting fact about the answer.

We are far away from this

General point of view

If you have an integral
I am interested in it

Before Table look-up there were tables

A small selection of tables of integrals

- D. Bierens de Haan, 1862, 1867
- M. Abramowitz and I. Stegun: now beautifully redone DLMF
- The Bateman manuscript project
- A. Apelblat, 1983
- I. S. Gradshteyn and I. M. Ryzhik (seventh edition, 2007)
- A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev (five volumes)
- A. Devoto and D. Duke: Integrals useful in Feynman diagrams
- R. Mathar: Yet another Table of Integrals, 2010

And now we have

- Mathematica, Maple, MatLab, MuPad
- TILU
- Sage

So many integrals so little time

Sixth edition

3.247

1. $\int_{0}^{1} \frac{x^{\alpha-1}(1-x)^{n-1}}{1-\xi x^{b}} d x=(n-1)!\sum_{k=0}^{\infty} \frac{\xi^{k}}{(\alpha+(k b),(c)+k b+1) \ldots(\alpha+k b+k)-1)}$

$$
[b>0, \quad|\xi|<1]
$$

AD (6704)
2. $\quad \int_{0}^{\infty} \frac{\left(1-x^{p}\right) x^{\nu-1}}{1-x^{n p}} d x=\frac{\pi}{n p} \sin \left(\frac{\pi}{n}\right) \operatorname{cosec} \frac{(p+\nu) \pi}{n p} \operatorname{cosec} \frac{\pi \nu}{n p}$

$$
[0<\operatorname{Re} \nu<(n-1) p]
$$

ET I 311(33)
3.248
\checkmark 1. [5] $\int_{0}^{\infty} \frac{x^{\mu-1} d x}{\sqrt{1+x^{\nu}}}=\frac{1}{\nu} \mathrm{~B}\left(\frac{\mu}{\nu}, \frac{1}{2}-\frac{\mu}{\nu}\right) \quad[\operatorname{Re} \nu>\operatorname{Re} 2 \mu>0] \quad$ BI (21)(9)
\checkmark 2. [5. $\int_{0}^{1} \frac{x^{2 n+1} d x}{\sqrt{1-x^{2}}}=\frac{(2 n)!}{(2 n+1)!!}$
$\checkmark 3 .[5] \int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}=\frac{(2 n-1)!!}{(2 n)!!} \frac{\pi}{2}$
BI (8)(13)
$\sqrt{ } .^{3}(\sigma] \int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right) \sqrt{4+3 x^{2}}}=\frac{\pi}{3}$

$\mathrm{BI}(8)(14)$
5. $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}\left[1+\frac{4 x^{2}}{3\left(1+x^{2}\right)^{2}}+\left(1+\frac{4 x^{2}}{3\left(1+x^{2}\right)^{2}}\right)^{1 / 2}\right]^{1 / 2}}=\frac{\pi}{2 \sqrt{6}}$

3.248 .5

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{3 / 2} \sqrt{[\varphi(x)+\sqrt{\varphi(x)}]}}=\frac{\pi}{2 \sqrt{6}}
$$

with

$$
\varphi(x)=1+\frac{4 x^{2}}{3\left(1+x^{2}\right)^{2}}
$$

3.248 .5

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{3 / 2} \sqrt{[\varphi(x)+\sqrt{\varphi(x)}]}}=\frac{\pi}{2 \sqrt{6}}
$$

with

$$
\varphi(x)=1+\frac{4 x^{2}}{3\left(1+x^{2}\right)^{2}}
$$

Beautiful but incorrect
Problem:

3.248 .5

$$
\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{3 / 2} \sqrt{[\varphi(x)+\sqrt{\varphi(x)}]}}=\frac{\pi}{2 \sqrt{6}}
$$

with

$$
\varphi(x)=1+\frac{4 x^{2}}{3\left(1+x^{2}\right)^{2}}
$$

Beautiful but incorrect
Problem: evaluate it

Seventh edition

(1) \rightarrow 3. $\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}=\frac{(2 n-1)!!}{(2 n)!!} \frac{\pi}{2}$
$\xrightarrow{\text { L }}{ }^{*} \cdot \int_{-\infty}^{\infty} \frac{d x}{\left.\left(1+x^{2}\right)^{2}\right) \sqrt{b+a x^{2}}}= \begin{cases}\frac{2}{\sqrt{b-a}} \arctan \left(\sqrt{\frac{b}{a}-1}\right) & \text { if } a<b \\ \frac{2}{\sqrt{a}} & \text { if } a=b \\ \frac{1}{\sqrt{a-b}} \ln \left(\frac{\sqrt{a}+\sqrt{a-b}}{\sqrt{a}-\sqrt{a-b}}\right) & \text { if } a>b\end{cases}$
3.249
$\rightarrow \int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}=\frac{(2 n-3)!!}{2 \cdot(2 n-2)!!} \frac{\pi}{a^{2 n-1}}$
(6) (7)
(6)
\rightarrow (图 ${ }^{9} \int_{0}^{a}\left(a^{2}-x^{2}\right)^{n-\frac{1}{2}} d x=a^{2 n} \frac{(2 n-1)!!}{2(2 n)!!} \pi$.
Fill 743

FI II 156

Why did we pick this formula?

Expand $\sqrt{a+\sqrt{1+c}}$ as a Taylor series in $c:$

Why did we pick this formula?

Expand $\sqrt{a+\sqrt{1+c}}$ as a Taylor series in c :

$$
\begin{gathered}
\sqrt{a+\sqrt{1+c}}=\sqrt{a+1}\left(1+\sum_{k=1}^{\infty} \frac{(-1)^{k-1} P_{k-1}(a)}{k 2^{k+1}(a+1)^{k}} c^{k}\right) \\
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2}[2(a+1)]^{-(m+1 / 2)} P_{m}(a) \\
P_{m}(a):=\sum_{j=0}^{m} d_{j, m} a^{j} \\
d_{j, m}=2^{-2 m} \sum_{k=j}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{j}
\end{gathered}
$$

An extension

Problem:

Find a proof of the double square root expansion that extends to

$$
\sqrt{a+\sqrt{b+\sqrt{1+c}}}
$$

An extension

Problem:

Find a proof of the double square root expansion that extends to

$$
\sqrt{a+\sqrt{b+\sqrt{1+c}}}
$$

The conjectured formula involves homogenizations of the P_{m}.
Perhaps some geometry should be involved.

The original formula

$$
\begin{array}{r}
d_{r, m}=\sum_{j=0}^{r} \sum_{s=0}^{m-r} \sum_{k=s+r}^{m} \frac{(-1)^{k-r-s}}{2^{3 k}}\binom{2 k}{k}\binom{2 m+1}{2 s+2 j} \\
\binom{m-s-j}{m-k}\binom{s+j}{j}\binom{k-s-j}{r-j}
\end{array}
$$

Make a table of values to see that $d_{r, m}>0$.

A pretty identity

Evaluate both expressions for $P_{m}(1)$ to get

$$
\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m-k}{m}=\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m+1}{2 k}
$$

A pretty identity

Evaluate both expressions for $P_{m}(1)$ to get

$$
\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m-k}{m}=\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m+1}{2 k}
$$

- Elementary proof
- Complex analytic proof
- Hypergeometric style proof
- Of course: WZ proof
- Combinatorial proof: NO.

How can you not buy this?

A=B

Marko Petkovšek University of Luubliana Ljubliana, Slovenia

Herbert S. Wilf University of Pennsylvania Philadelphia, PA, USA

Doron Zeilberger
Temple University
Philadelphia, PA, USA

My first Doron-contact

Der Prob. Moll, does not seem, t have closed form in both m and p.
For a fined $m-P=L$, it does, but os Lets bigger, the 'closed form.

The $d_{j, m}$ take you to many places

The sequence $d_{j, m}: 0 \leq j \leq m$ is unimodal.
(G. Boros, V. M.)

This should be my Doron number 1 paper
Theorem
The sequence di.m: $^{2}: 0 \leq j \leq m$ is logconcave
(P. Paule-M. Kauers)

There is no (need according to Doron) purely human proof
Prohlem The seamence is w-lograncave

The $d_{j, m}$ take you to many places

Theorem
The sequence $d_{j, m}: 0 \leq j \leq m$ is unimodal.
(G. Boros, V. M.)

This should be my Doron number 1 paper

The sequence $d_{j . m}: 0 \leq j \leq m$ is logconcave.
(P. Paule-M. Kauers)

There is no (need according to Doron) purely human proof
Problem: The sequence is ∞-logconcave

The $d_{j, m}$ take you to many places

Theorem
The sequence $d_{j, m}: 0 \leq j \leq m$ is unimodal.
(G. Boros, V. M.)

This should be my Doron number 1 paper
Theorem
The sequence $d_{j, m}: 0 \leq j \leq m$ is logconcave.
(P. Paule-M. Kauers)

There is no (need according to Doron) purely human proof

The $d_{j, m}$ take you to many places

Theorem
The sequence $d_{j, m}: 0 \leq j \leq m$ is unimodal.
(G. Boros, V. M.)

This should be my Doron number 1 paper
Theorem
The sequence $d_{j, m}: 0 \leq j \leq m$ is logconcave.
(P. Paule-M. Kauers)

There is no (need according to Doron) purely human proof
Problem: The sequence is ∞-logconcave.

The $d_{j, m}$ take you to many places. Continuation

Theorem
G. Boros - J. Shallit - V.M. (2000) The 2-adic valuation of $d_{1, m}$ is given by

$$
\nu_{2}\left(d_{1, m}\right)=1-2 m+\nu_{2}\left(\binom{m+1}{2}\right)+s_{2}(m)
$$

$s_{2}(m)=$ number of 1 in the binary expansion of m.

The $d_{j, m}$ take you to many places. Continuation

Theorem
G. Boros - J. Shallit - V.M. (2000) The 2-adic valuation of $d_{1, m}$ is given by

$$
\nu_{2}\left(d_{1, m}\right)=1-2 m+\nu_{2}\left(\binom{m+1}{2}\right)+s_{2}(m)
$$

$s_{2}(m)=$ number of 1 in the binary expansion of m.
The function $s_{2}(m)$ is ubiquotous:
Theorem
T. Lengyel (1994), S. De Wannemacher (2005)

$$
\nu_{2}\left(S\left(2^{n}, k\right)\right)=s_{2}(k)-1
$$

$S(n, k)$ is the Stirling number of second kind

Nice Stirling numbers

Hidden structure Stirling numbers

Ugly Stirling numbers

Some loggamma integrals

$$
L_{1}=\int_{0}^{1} \ln \Gamma(q) d q=\ln \sqrt{2 \pi} \quad \text { Euler }
$$

Some loggamma integrals. Continuation

Lerch's formula

$$
\left.\frac{\partial}{\partial z} \zeta(z, q)\right|_{z=0}=\ln \Gamma(q)-\ln \sqrt{2 \pi}
$$

combine with the Fourier expansion of Hurwitz zeta:

$$
\begin{aligned}
L_{2}:= & \int_{0}^{1} \ln ^{2} \Gamma(q) d q \\
& =\frac{\gamma^{2}}{12}+\frac{\pi^{2}}{48}+\frac{\gamma L_{1}}{3}+\frac{4}{3} \gamma L_{1}-\left(\gamma+2 L_{1}\right) \frac{\gamma^{\prime}(2)}{\pi^{2}}+\frac{\zeta^{\prime \prime}(2)}{2 \pi^{2}} \\
& \quad \text { O. Espinosa and V.M. (2002) }
\end{aligned}
$$

Some loggamma integrals. Continuation

$$
L_{3}:=\int_{0}^{1} \ln ^{3} \Gamma(q) d q
$$

LLL for L_{3}

Evaluations with LLL:
given a set of (symbolic) real numbers and a decimal expansion ρ
it computes the best expression for ϕ as a linear combination of the basis elements

Compute L2 numerically to high precision
Take as basis all products $p q$
a polynomial in $\pi \cdot \ln D \cdot \ln \pi \cdot \alpha \operatorname{deg} p<2$
q is either 1. C' (2) or $\zeta^{\prime \prime}(2)$
30 elements
111 rives the analytic expression for L_{2}
This did not work for L_{3}.
Basis includes (${ }^{\prime \prime \prime}(2)$ and (1) 3)

LLL for L_{3}

Evaluations with LLL:
given a set of (symbolic) real numbers and a decimal expansion ρ
it computes the best expression for ρ as a linear combination of the basis elements

Compute L_{2} numerically to high precision
Take as basis all products $p q$

9 is either 1. ($\mathrm{C}^{\prime}(2)$ or (') (2)
30 elements
III gives the a nalytic expression for L:
\qquad

LLL for L_{3}

Evaluations with LLL:
given a set of (symbolic) real numbers and a decimal expansion ρ
it computes the best expression for ρ as a linear combination of the basis elements

Compute L_{2} numerically to high precision
Take as basis all products $p q$
p polynomial in $\pi, \ln 2, \ln \pi, \gamma \quad \operatorname{deg} p \leq 2$
q is either $1, \zeta^{\prime}(2)$ or $\zeta^{\prime \prime}(2)$
30 elements
LLL gives the analytic expression for L_{2}

LLL for L_{3}

Evaluations with LLL:
given a set of (symbolic) real numbers and a decimal expansion ρ
it computes the best expression for ρ as a linear combination of the basis elements

Compute L_{2} numerically to high precision
Take as basis all products $p q$
p polynomial in $\pi, \ln 2, \ln \pi, \gamma \quad \operatorname{deg} p \leq 2$
q is either $1, \zeta^{\prime}(2)$ or $\zeta^{\prime \prime}(2)$
30 elements
LLL gives the analytic expression for L_{2}
This did not work for L_{3}.
Basis includes $\zeta^{\prime \prime \prime}(2)$ and $\zeta(3)$.

Some logsine integrals

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}
$$

leads one to work on

$$
S_{n}:=(-1)^{n} \int_{0}^{1} \ln ^{n}(\sin \pi x) d x
$$

Theorem
Sn is a homogeneous polynomial in $z_{0}:=\ln 2, z_{1}=\pi$ and
$z_{j}=\zeta(J)^{1}$

Some logsine integrals

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}
$$

leads one to work on

$$
\begin{gathered}
S_{n}:=(-1)^{n} \int_{0}^{1} \ln ^{n}(\sin \pi x) d x \\
S_{2}=\frac{\pi^{2}}{12}+\ln ^{2} 2
\end{gathered}
$$

Theorem
S_{n} is a homogeneous polynomial in $z_{0}:=\ln 2, z_{1}=\pi$ and $z_{j}=\zeta(j)^{1 / j}$

Logsine integrals: continuation

$$
U_{n}:=\sum_{k=0}^{n}\binom{n}{k} z_{0}^{n-k} S_{k}
$$

Problem: U_{n} is obtained from S_{n} by replacing $z_{0}=\ln 2$ by $\ln (2 \pi)$

Logsine integrals: continuation

$$
U_{n}:=\sum_{k=0}^{n}\binom{n}{k} z_{0}^{n-k} S_{k}
$$

Problem: U_{n} is obtained from S_{n} by replacing $z_{0}=\ln 2$ by $\ln (2 \pi)$

Logsine integrals: continuation

$$
U_{n}:=\sum_{k=0}^{n}\binom{n}{k} z_{0}^{n-k} S_{k}
$$

Problem: U_{n} is obtained from S_{n} by replacing $z_{0}=\ln 2$ by $\ln (2 \pi)$

Logsine integrals: continuation

$$
U_{n}:=\sum_{k=0}^{n}\binom{n}{k} z_{0}^{n-k} S_{k}
$$

Problem: U_{n} is obtained from S_{n} by replacing $z_{0}=\ln 2$ by $\ln (2 \pi)$

$$
\begin{aligned}
S_{2} & =\frac{\pi^{2}}{12}+\ln ^{2} 2 \\
& \mapsto \frac{\pi^{2}}{12}+(\ln 2+\ln \pi)^{2} \\
& =\frac{\pi^{2}}{12}+\ln ^{2} 2+2 \ln 2 \ln \pi+\ln ^{2} \pi \\
& =U_{2}
\end{aligned}
$$

Logsine integrals: continuation

$$
\begin{aligned}
\int_{0}^{1} \ln ^{3} \Gamma(x) d x+3 \int_{0}^{1} \ln ^{2} \Gamma(x) & \ln \Gamma(x) d x= \\
& \frac{1}{8}\left(\pi^{2} \ln (2 \pi)+4 \ln ^{3}(2 \pi)+6 \zeta(3)\right)
\end{aligned}
$$

Problem: How to separate these two integrals?

Logsine integrals: continuation

$$
\begin{aligned}
\int_{0}^{1} \ln ^{3} \Gamma(x) d x+3 \int_{0}^{1} \ln ^{2} \Gamma(x) & \ln \Gamma(x) d x
\end{aligned}=
$$

Logsine integrals: continuation

$$
\begin{aligned}
\int_{0}^{1} \ln ^{3} \Gamma(x) d x+3 \int_{0}^{1} \ln ^{2} \Gamma(x) & \ln \Gamma(x) d x
\end{aligned}=
$$

Problem: How to separate these two integrals?

Logsine integrals: continuation

$$
\begin{gathered}
S_{n}:=(-1)^{n} \int_{0}^{1} \ln n(\sin \pi x) d x \\
S_{n}=\sum_{j=0}^{n} a_{n j} \cdot \ln ^{j} 2 \\
S_{3}=\ln ^{3} 2+\frac{1}{4} \pi^{2} \ln 2+\frac{3}{2} \zeta(3) \\
K_{n}:=\mathbb{Q}(\zeta(2), \zeta(3), \cdots, \zeta(n))
\end{gathered}
$$

Problem:

$$
\alpha_{n, j} \in K_{n}
$$

Logsine integrals: continuation

$$
\begin{gathered}
S_{n}:=(-1)^{n} \int_{0}^{1} \ln ^{n}(\sin \pi x) d x \\
S_{n}=\sum_{j=0}^{n} \alpha_{n, j} \ln ^{j} 2 \\
S_{3}=\ln ^{3} 2+\frac{1}{4} \pi^{2} \ln 2+\frac{3}{2} \zeta(3) \\
K_{n}:=\mathbb{Q}(\zeta(2), \zeta(3), \cdots, \zeta(n))
\end{gathered}
$$

Logsine integrals: continuation

$$
\begin{gathered}
S_{n}:=(-1)^{n} \int_{0}^{1} \ln ^{n}(\sin \pi x) d x \\
S_{n}=\sum_{j=0}^{n} \alpha_{n, j} \ln ^{j} 2 \\
S_{3}=\ln ^{3} 2+\frac{1}{4} \pi^{2} \ln 2+\frac{3}{2} \zeta(3) \\
K_{n}:=\mathbb{Q}(\zeta(2), \zeta(3), \cdots, \zeta(n))
\end{gathered}
$$

Problem:

$$
\alpha_{n, j} \in K_{n}
$$

Logsine integrals: continuation

$$
M_{d}:=\text { set of all monomials in } \zeta(j) \text { of weight } d
$$

for some $C_{m} \in \mathbb{Q}$ and π has even powers
Problem: $C(m)$ is multiplicative:

$$
C\left(\pi^{i 1} \zeta(3)^{i 2} \zeta(5)^{i 3} \cdots\right)=C\left(\pi^{i i}\right) C\left(\zeta(3)^{i 2}\right) C\left(\zeta(5)^{\frac{1}{3}}\right)
$$

Logsine integrals: continuation

$M_{d}:=$ set of all monomials in $\zeta(j)$ of weight d degree $\zeta(j)=j$

Logsine integrals: continuation

$M_{d}:=$ set of all monomials in $\zeta(j)$ of weight d degree $\zeta(j)=j$

$$
\alpha_{n, n-j}=(n-j+1)_{j} \sum_{m \in M_{d}} C_{m} m
$$

for some $C_{m} \in \mathbb{Q}$ and π has even powers.

Logsine integrals: continuation

$M_{d}:=$ set of all monomials in $\zeta(j)$ of weight d degree $\zeta(j)=j$

$$
\alpha_{n, n-j}=(n-j+1)_{j} \sum_{m \in M_{d}} C_{m} m
$$

for some $C_{m} \in \mathbb{Q}$ and π has even powers.
Problem: $C(m)$ is multiplicative:

$$
C\left(\pi^{i_{1}} \zeta(3)^{i_{2}} \zeta(5)^{i_{3}} \cdots\right)=C\left(\pi^{i_{1}}\right) \subset\left(\zeta(3)^{i_{2}}\right) \subset\left(\zeta(5)^{i_{3}}\right) \cdots
$$

A birthday present

Stefan Boettner, Tulane thesis, April 2010
Automatic extensions of the Risch-Norman algorithm for integration
Based on the notion of differential field

A birthday present

Stefan Boettner, Tulane thesis, April 2010
Automatic extensions of the Risch-Norman algorithm for integration
Based on the notion of differential field

$$
\begin{aligned}
& \int \frac{E(x) d x}{x\left(1-x^{2}\right) K(k)}=\log x+\log K(x) \\
& \int\left[2 x^{4} \mathrm{Ai}\left(x^{2}\right)+\mathrm{Ai}^{\prime}\left(x^{2}\right)\right] d x=x \operatorname{Ai}^{\prime}\left(x^{2}\right)
\end{aligned}
$$

The moral of Stefan's thesis

I still believe that humans are useful in Mathematics but come of my children do not

That is progress

The moral of Stefan's thesis

I still believe that humans are useful in Mathematics but some of my children do not

The moral of Stefan's thesis

I still believe that humans are useful in Mathematics but some of my children do not

That is progress

Happy Birthday Doron

