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General problem

Given a function

f : [a, b] → R

say something interesting about

I (f ; a, b) :=

∫ b

a

f (x) dx
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Output: The value of

∫ b

a
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An interesting fact about the answer.
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General point of view

If you have an integral

I am interested in it



Before Table look-up there were tables

A small selection of tables of integrals

• D. Bierens de Haan, 1862, 1867

• M. Abramowitz and I. Stegun: now beautifully redone DLMF

• The Bateman manuscript project

• A. Apelblat, 1983

• I. S. Gradshteyn and I. M. Ryzhik (seventh edition, 2007)

• A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev (five volumes)

• A. Devoto and D. Duke: Integrals useful in Feynman diagrams

• R. Mathar: Yet another Table of Integrals, 2010



And now we have

• Mathematica, Maple, MatLab, MuPad

• TILU

• Sage



So many integrals
so little time



Sixth edition



3.248.5

∫

∞

0

dx

(1 + x2)3/2

√

[

ϕ(x) +
√

ϕ(x)
]

=
π

2
√

6

with

ϕ(x) = 1 +
4x2

3(1 + x2)2

Beautiful but incorrect

Problem: evaluate it
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Why did we pick this formula?

Expand
√

a +
√

1 + c as a Taylor series in c :

√

a +
√

1 + c =
√

a + 1

(

1 +

∞
∑

k=1

(−1)k−1Pk−1(a)

k2k+1(a + 1)k
ck

)

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1
=

π

2
[2(a + 1)]−(m+1/2) Pm(a)

Pm(a) :=

m
∑

j=0

dj ,maj

dj ,m = 2−2m
m
∑

k=j

2k

(

2m − 2k

m − k

)(

m + k

m

)(

k

j

)
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An extension

Problem:
Find a proof of the double square root expansion that extends to

√

a +

√

b +
√

1 + c

The conjectured formula involves homogenizations of the Pm.

Perhaps some geometry should be involved.
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The original formula

dr ,m =

r
∑

j=0

m−r
∑

s=0

m
∑

k=s+r

(−1)k−r−s

23k

(

2k

k

)(

2m + 1

2s + 2j

)

(

m − s − j

m − k

)(

s + j

j

)(

k − s − j

r − j

)

Make a table of values to see that dr ,m > 0.



A pretty identity

Evaluate both expressions for Pm(1) to get

m
∑

k=0

2−2k

(

2k

k

)(

2m − k

m

)

=

m
∑

k=0

2−2k

(

2k

k

)(

2m + 1

2k

)

• Elementary proof

• Complex analytic proof

• Hypergeometric style proof

• Of course: WZ proof

• Combinatorial proof: NO.
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How can you not buy this?



My first Doron-contact



The dj ,m take you to many places

Theorem
The sequence dj ,m : 0 ≤ j ≤ m is unimodal.
(G. Boros, V. M.)

This should be my Doron number 1 paper

Theorem
The sequence dj ,m : 0 ≤ j ≤ m is logconcave.
(P. Paule-M. Kauers)

There is no (need according to Doron) purely human proof

Problem: The sequence is ∞-logconcave.
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The dj ,m take you to many places. Continuation

Theorem
G. Boros - J. Shallit - V.M. (2000) The 2-adic valuation of d1,m is
given by

ν2(d1,m) = 1 − 2m + ν2

((

m + 1

2

))

+ s2(m)

s2(m) = number of 1 in the binary expansion of m.

The function s2(m) is ubiquotous:

Theorem
T. Lengyel (1994), S. De Wannemacher (2005)

ν2(S(2n, k)) = s2(k) − 1

S(n, k) is the Stirling number of second kind
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Nice Stirling numbers

500 1000 1500 2000

2

4

6

8



Hidden structure Stirling numbers

200 400 600 800 1000

2

4

6

8

10

12

14



Ugly Stirling numbers

100 200 300 400 500

2

4

6

8

10

12



Some loggamma integrals

L1 =

∫ 1

0
ln Γ(q) dq = ln

√
2π Euler



Some loggamma integrals. Continuation

Lerch’s formula

∂

∂z
ζ(z , q)

∣

∣

∣

z=0
= ln Γ(q) − ln

√
2π

combine with the Fourier expansion of Hurwitz zeta:

L2 :=

∫ 1

0
ln2 Γ(q) dq

=
γ2

12
+

π2

48
+

γL1

3
+

4

3
γL1 − (γ + 2L1)

γ′(2)

π2
+

ζ ′′(2)

2π2

O. Espinosa and V.M. (2002)



Some loggamma integrals. Continuation

L3 :=

∫ 1

0
ln3 Γ(q) dq

????????????????????



LLL for L3

Evaluations with LLL:
given a set of (symbolic) real numbers and a decimal expansion ρ

it computes the best expression for ρ as a linear combination of the
basis elements

Compute L2 numerically to high precision

Take as basis all products pq

p polynomial in π, ln 2, lnπ, γ deg p ≤ 2

q is either 1, ζ ′(2) or ζ ′′(2)

30 elements

LLL gives the analytic expression for L2

This did not work for L3.

Basis includes ζ ′′′(2) and ζ(3).
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Some logsine integrals

Γ(x)Γ(1 − x) =
π

sinπx

leads one to work on

Sn := (−1)n
∫ 1

0
lnn(sinπx) dx

S2 =
π2

12
+ ln2 2

Theorem
Sn is a homogeneous polynomial in z0 := ln 2, z1 = π and
zj = ζ(j)1/j
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Logsine integrals: continuation

Un :=

n
∑

k=0

(

n

k

)

zn−k
0 Sk

Problem: Un is obtained from Sn by replacing z0 = ln 2 by ln(2π)

S2 =
π2

12
+ ln2 2

7→ π2

12
+ (ln 2 + lnπ)2

=
π2

12
+ ln2 2 + 2 ln 2 lnπ + ln2 π.

= U2
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Logsine integrals: continuation

∫ 1

0
ln3 Γ(x) dx + 3

∫ 1

0
ln2 Γ(x) ln Γ(x) dx =

1

8

(

π2 ln(2π) + 4 ln3(2π) + 6ζ(3)
)

Problem: How to separate these two integrals?
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Logsine integrals: continuation

Sn := (−1)n
∫ 1

0
lnn(sinπx) dx

Sn =
n
∑

j=0

αn,j lnj 2

S3 = ln3 2 +
1

4
π2 ln 2 +

3

2
ζ(3)

Kn := Q(ζ(2), ζ(3), · · · , ζ(n))

Problem:

αn,j ∈ Kn
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Logsine integrals: continuation

Md := set of all monomials in ζ(j) of weight d

degree ζ(j) = j

αn,n−j = (n − j + 1)j
∑

m∈Md

Cmm

for some Cm ∈ Q and π has even powers.

Problem: C (m) is multiplicative:

C
(

πi1 ζ(3)i2 ζ(5)i3 · · ·
)

= C
(

πi1
)

C
(

ζ(3)i2
)

C
(

ζ(5)i3
)

· · ·
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A birthday present

Stefan Boettner, Tulane thesis, April 2010
Automatic extensions of the Risch-Norman algorithm for
integration
Based on the notion of differential field

∫

E (x) dx

x(1 − x2)K (k)
= log x + log K (x)

∫

[

2x4Ai(x2) + Ai′(x2)
]

dx = xAi’(x2)
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The moral of Stefan’s thesis

I still believe that humans are useful in Mathematics

but some of my children do not

That is progress
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Happy Birthday Doron


