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Abstract. A set of recursive relations satisfied by Selberg-type integrals involving mono-
mial symmetric polynomials are derived, generalizing previous results in [1, 11]. These
formulas provide a well-defined algorithm for computing Selberg-Schur integrals whenever
the Kostka numbers relating Schur functions and the corresponding monomial polynomials
are explicitly known. We illustrate the usefulness of our results discussing some interesting
examples.
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1. Introduction

The so-called Selberg integral and its generalizations have played a central role both in
pure and applied mathematics. Their applications run from the proof of the Mehta-Dyson
conjecture and several cases of the Macdonald conjectures [2, 21, 23] to the study of some
q-analogues of constant term identities, through Calogero-Sutherland quantum many body
models [7, 14, 15, 17, 27, 31], orthogonal polynomials theory [24, 28], hyperplane arrangements
[25] and random matrix theory [4, 9, 18, 19]. They also have a deep connection to the
Knizhnik-Zamolodchikov equations [20, 32] with the corresponding implications in conformal
field theory and even string theory [5, 6, 8, 12, 13, 22, 29, 30]. See [10] for a comprehensive
review on the relevance of the Selberg integral and its applications.

The aim of this paper is to study the Selberg integral with the integrand dressed up with a
symmetric function, namely, to study integrals of the form Jf ≡ J (N)(a, b, ρ; f):

(1) Jf =

∫

Λ
f(y1, . . . , yN )

N∏

i=1

ya−1
i (1 − yi)

b−1
∏

1≤i<j≤N

|yi − yj|
2ρdy1 ∧ · · · ∧ dyN ,

where f(y1, . . . , yN ) is a symmetric polynomial, the integral is taken over the N -dimensional
open domain1 Λ = (0, 1)N and a, b and ρ are complex numbers. For simplicity, we will denote

the function
∏N

i=1 ya−1
i (1 − yi)

b−1
∏

1≤i<j≤N |yi − yj|
2ρ by Φ(y), the N -form dy1 ∧ · · · ∧ dyN

by dy and the polynomial f(y1, . . . , yN ) by f(y).

Among the basis for the space of symmetric polynomials, Schur basis plays a special role in
this context. The importance of Selberg-Schur integrals was stated in [30] when studying the
non-triviality of the integral representation of the intertwining operators between the Fock
space representations of the Virasoro algebra and in [3], in a more general setting, when

analyzing the Fock space resolutions of the ŝl(n) irreducible highest-weight modules. As

1Selberg-type integrals are sometimes defined over the N-dimensional simplex {(y1, . . . , yN ) ∈ R
N | 0 <

y1 < · · · < yN < 1}. From the symmetry of the integrand under a permutation of the variables we get that
these integrals differ by a factor of 1/N !.

1
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expected, they also appear when computing correlation functions on the sphere in related
Wess-Zumino-Novikov-Witten models [12, 13]. Given a partition λ we will denote the Schur
polynomial associated with it by sλ(y) and the corresponding Selberg-Schur integral by Jλ.

The case λ = 0 corresponds to the classical integral considered by Selberg in [26]. The
analytic expression he found for this integral is:

J0 =

∫

Λ
Φ(y)dy =

N∏

i=1

Γ(a + (N − i)ρ)Γ(b + (N − i)ρ)Γ(iρ + 1)

Γ(a + b + (2N − i − 1)ρ)Γ(ρ + 1)
,(2)

and it is well defined whenever a, b and ρ satisfy

ℜ(a),ℜ(b) > 0 and ℜ(ρ) > −min

{
1

N
,
ℜ(a)

N − 1
,
ℜ(b)

N − 1

}
,(3)

the second inequality having meaning for N > 1. From now on we assume that these
conditions always hold.

When λ = (1m1) with 0 ≤ m1 ≤ N , Schur polynomials reduce to elementary symmetric
polynomials, i.e.,

s(1m1 )(y) ≡ em1
(y) =

1

N !

(
N

m1

) ∑

σ∈SN

m1∏

i=1

yσ(i),(4)

where SN is the set of permutations of the set {1, 2, . . . , N} and e0(y) = 1. In this case,
Aomoto [1] showed that

(5) J(1m1 ) =

∫

Λ
em1

(y)Φ(y)dy = J0

(
N

m1

) m1∏

i=1

a + (N − i)ρ

a + b + (2N − 1 − i)ρ
.

A further extension of Selberg integral, by far the most general one, has been computed by
Kadell in [16] and it involves Jack functions. It reads:

(6)

∫

Λ
P

(1/ρ)
λ (y)Φ(y)dy = J0P

(1/ρ)
λ (1N )

[a + (N − 1)ρ]
(ρ)
λ

[a + b + 2(N − 1)ρ]
(ρ)
λ

,

where λ is an arbitrary partition, P
(1/ρ)
λ (y) is a Jack polynomial and [a]

(ρ)
λ is a generalized

Pochhammer symbol, which is defined as

[a]
(ρ)
λ =

∏

i≥1

(a + (1 − i)ρ)λi
,(7)

(a)n being the standard Pochhammer symbol, namely, (a)n = a(a + 1) · · · (a + n − 1) with

(a)0 = 1. When ρ = 1 we have P
(1/ρ)
λ (y) = sλ(y) so that (6) gives

(8) Jλ = J0sλ(1N )
[a + (N − 1)]

(1)
λ

[a + b + 2N − 2]
(1)
λ

.
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More recently, it was proved in [11] that for the case λ = (2m21m1), 0 ≤ m1 + m2 ≤ N , one
has

J(2m21m1 ) = J0mλ(1N )
[a + (N − 1)ρ]

(ρ)
λ

[a + b + 2(N − 1)ρ]
(ρ)
λ

[a + b + (N − 2)ρ]
(ρ)
(1m2 )

[a + b + (2N − m1 − m2 − 2)ρ]
(ρ)
(1m2 )

(9)

×4F3

[
−m2,−N + m1 + m2, α + β + γ + 2N − m2 − 1, α + N − m2 + 1

α + β + N − m2 − 1, α + γ + N − m2,m1 + 2

]
,

where α = a/ρ, β = b/ρ, γ = 1/ρ, the hypergeometric series 4F3 is evaluated at 1 and mλ(y)
denotes the monomial symmetric polynomial associated to the partition λ.

In this paper, using similar techniques as those employed in [1, 11], we find a set of re-
cursive formulas satisfied by generic Selberg-type integrals involving monomial polynomials.
These recursions and the fact that Schur polynomials can be uniquely decomposed as linear
combinations of monomial symmetric functions reduce the problem of computing (1) to the
problem of computing Kostka numbers while providing a well-defined algorithm for obtaining
Selberg-Schur integrals in the general case.

The paper is organized as follows. After introducing some notation we prove in Section 2
some lemmas and preliminary propositions that will be useful for obtaining in Section 3 the
recursive relations we have already announced. In Section 4 we illustrate the usefulness of
our results with several relevant examples.

2. Notation and preliminary lemmas

In this section we fix our conventions, we introduce some notation and we derive several
formulas that will be needed in order to prove our main results.

Despite of the fact that partitions are usually defined without trivial components, it will be
useful for our purposes to identify partitions with length ℓλ ≤ N with decreasingly ordered
N -tuples with non-negative entries by defining λi = 0 for i = ℓλ + 1, . . . , N .

Given v ∈ R
N , v = (v1, . . . , vN ), we define its (decreasingly) ordered partner [v] as the vector

(vσ(1), . . . , vσ(N)), where σ ∈ SN is any permutation satisfying vσ(1) ≥ vσ(2) ≥ · · · ≥ vσ(N).
If v1, . . . , vN are all non-negative integer numbers, then [v] actually defines a partition with
length ℓ[v] ≤ N . We denote the standard basis of R

N by {e1, . . . , eN}, ej being the j-th unit
vector.

For a partition λ let us denote by λ′ its conjugate so that λ′
k gives the number of entries ≥ k

in λ. Notice that ℓλ = λ′
1. If y = (y1, . . . , yN ) we define

yλ =

N∏

j=1

y
λj

j =

n∏

i=0

mn−i∏

r=1

yn−i
λ′

n−i+1
+r

,(10)

where n is the greatest part of λ, mk = λ′
k − λ′

k+1, k = 1, . . . , n, is the multiplicity of the
part k in λ and m0 = N . Further, let us define the following integrals:

(11) Bλ =

∫

Λ
yλΦ(y)dy,
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and, for any integer number c ≥ 0,

(12) Aλ(k, c) =

∫

Λ

yc
1

∏N
j=2 y

λj

j

y1 − yk
Φ(y)dy,

and

(13) Kλ(c) =

∫

Λ

yc
1

∏N
j=2 y

λj

j

1 − y1
Φ(y)dy.

We will denote Aλ(k, λ1) simply by Aλ(k).

We will generalize [11, Lemma 1] and [11, Lemma 3] by proving the following.

Lemma 1. Let λ be a partition such that ℓλ ≤ N and let c be a non-negative integer number.
Let 2 ≤ k ≤ N . Then,

Aλ(k, c) =






−1
2

λk−1−c∑
i=0

B[λ+(c+i−λ1)e1−(1+i)ek ] if c < λk,

0 if c = λk,

1
2

c−λk−1∑
i=0

B[λ+(c−1−i−λ1)e1+iek] if c > λk.

(14)

Proof. Exchanging yk and y1 in (12) and then using the symmetry of Selberg’s kernel Φ(y)
under the permutation of any pair of variables, we obtain

Aλ(k, c) = −

∫

Λ

yλk

1 yc
k

∏N
j 6=1,k y

λj

j

y1 − yk
Φ(y)dy.(15)

Thus, if 0 ≤ c < λk, we get

Aλ(k, c) = −
1

2

∫

Λ

yc
1y

c
k(y

λk−c
1 − yλk−c

k )
∏N

j 6=1,k y
λj

j

y1 − yk
Φ(y)dy,(16)

which is equivalent to

Aλ(k, c) = −
1

2

λk−c−1∑

i=0

B[λ+(c+i−λ1)e1−(1+i)ek ],(17)

where we have used

yλk−c
1 − yλk−c

k = (y1 − yk)

λk−c−1∑

i=0

yλk−c−1−i
1 yi

k.(18)

When c = λk it is straightforward to see that integral (12) vanishes.

If, instead, c > λk, then

Aλ(k, c) =
1

2

∫

Λ

yλk

1 yλk

k (yc−λk

1 − yc−λk

k )
∏N

j 6=1,k y
λj

j

y1 − yk
Φ(y)dy,(19)

namely,

Aλ(k, c) =
1

2

c−λk−1∑

i=0

B[λ+(c−1−i−λ1)e1+iek],(20)
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as we wanted to prove. �

Corollary 2. Let λ be a partition with ℓλ ≤ N and let 2 ≤ k ≤ N . Then,

Aλ(k) =
1

2

λ1−λk−1∑

i=0

B[λ−(1+i)e1+iek].(21)

Example 3. If λ = (2m21m1), m1 + m2 ≤ N , then

(22) A(2m21m1 )(k) =






0 if 2 ≤ k ≤ λ′
2,

1
2B(2m2−11m1+1) if λ′

2 + 1 ≤ k ≤ λ′
1,

B(2m2−11m1+1) if λ′
1 + 1 ≤ k ≤ N,

while Lemma 1 gives, for c = 1,

(23) A(2m21m1 )(k, 1) =






−1
2B(2m2−21m1+2) if 2 ≤ k ≤ λ′

2,

0 if λ′
2 + 1 ≤ k ≤ λ′

1,
1
2B(2m2−11m1−1) if λ′

1 + 1 ≤ k ≤ N.

as it was already shown in [11, Lemma 1] and [11, Lemma 3], respectively. Furthermore, we
find

(24) A(2m21m1 )(k, 0) =






−B(2m2−21m1+1) if 2 ≤ k ≤ λ′
2,

−1
2B(2m2−11m1−1) if λ′

2 + 1 ≤ k ≤ λ′
1,

0 if λ′
1 + 1 ≤ k ≤ N.

Example 4. If λ = (3m32m21m1), ℓλ ≤ N , then

(25) A(3m32m21m1 )(k) =






0 if 2 ≤ k ≤ λ′
3,

1
2B(3m3−12m2+11m1 ) if λ′

3 + 1 ≤ k ≤ λ′
2,

B(3m3−12m2+11m1 ) if λ′
2 + 1 ≤ k ≤ λ′

1,

B(3m3−12m2+11m1 )

+1
2B(3m3−12m21m1+2) if λ′

1 + 1 ≤ k ≤ N,

and Lemma 1 gives

(26) A(3m32m21m1 )(k, 2) =






−1
2B(3m3−22m2+21m1 ) if 2 ≤ k ≤ λ′

3,

0 if λ′
3 + 1 ≤ k ≤ λ′

2,
1
2B(3m3−12m21m1+1) if λ′

2 + 1 ≤ k ≤ λ′
1,

B(3m3−12m21m1+1) if λ′
1 + 1 ≤ k ≤ N,

(27) A(3m32m21m1 )(k, 1) =






−B(3m3−22m2+11m1+1) if 2 ≤ k ≤ λ′
3,

−1
2B(3m3−12m2−11m1+2) if λ′

3 + 1 ≤ k ≤ λ′
2,

0 if λ′
2 + 1 ≤ k ≤ λ′

1,
1
2B(3m3−12m21m1 ) if λ′

1 + 1 ≤ k ≤ N,

and

(28) A(3m32m21m1 )(k, 0) =






−B(3m3−22m2+11m1 )

−1
2B(3m3−22m21m1+2) if 2 ≤ k ≤ λ′

3,

−B(3m3−12m2−11m1+1) if λ′
3 + 1 ≤ k ≤ λ′

2,

−1
2B(3m3−12m21m1−1) if λ′

2 + 1 ≤ k ≤ λ′
1,

0 if λ′
1 + 1 ≤ k ≤ N.



6 SERGIO IGURI AND TOUFIK MANSOUR

Concerning integrals (13) we can prove the following two lemmas.

Lemma 5. Let λ be any partition with ℓλ ≤ N . Thus, for 0 ≤ c ≤ λ1,

(29) Kλ(c) = Kλ(0) −
c−1∑

i=0

B[λ+(i−λ1)e1].

Proof. The proof of the lemma follows straightforwardly after using the substitution

yc
1

1 − y1
=

1

1 − y1
−

c−1∑

i=0

yi
1(30)

in Eq. (13). �

Lemma 6. Let λ be any partition with ℓλ ≤ N . For 0 ≤ c ≤ λ1 we have

Kλ(c) =
2ρ

b − 1

N∑

k=2

Aλ(k, c) +
a − 1 + c

b − 1
B[λ+(c−1−λ1)e1].(31)

Proof. Since Φ(y) vanishes at the boundary values y1 = 0 and y1 = 1, we obtain after applying
Stokes’ theorem,

0 =

∫

Λ
d1



yc
1

ℓ∏

j=2

y
λj

j Φ(y)dy′



(32)

= 2ρ

N∑

k=2

Aλ(k, c) + (a − 1 + c)B[λ+(c−1−λ1)e1] − (b − 1)Kλ(c),

which follows from the fact that

d1Φ(y) =
a

y1
−

b − 1

1 − y1
+ 2ρ

N∑

k=2

1

y1 − yk
.(33)

Eq. (31) follows from (33). �

The following example essentially reproduces the derivation of the recurrence found in [11]
for Selberg integrals involving symmetric monomial polynomials associated to partitions with
entries ≤ 2, namely, [11, Lemma 4].

Example 7. Let λ = (2m21m1) and c = 2. Lemma 1 gives

(b − 1)K(2m21m1 )(2) = 2ρ

N∑

k=2

Aλ(k, 2) + (a + 1)B(2m2−11m1+1).(34)

By virtue of Example 3 we get

(35) (b − 1)K(2m21m1 )(2) = (a + 1 + ρ(2N − m1 − 2m2))B(2m2−11m1+1).

Using Lemma 5 we find

(b − 1)
(
K(2m21m1 )(0) − B(2m2−11m1 ) − B(2m2−11m1+1)

)
(36)

= (a + 1 + ρ(2N − 2m2 − m1))B(2m2−11m1+1),
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which is equivalent to

(b − 1)K(2m21m1 (0) = (a + b + ρ(2N − m1 − 2m2))B(2m2−11m1+1)(37)

+(b − 1)B(2m2−11m1 ),

as proved in [11, lemma 2].

In a similar way, for c = 1, Lemma 1 and Lemma 5 give

(b − 1)
(
K(2m21m1 )(0) − B(2m2−11m1 )

)
= 2ρ

N∑

k=2

Aλ(k, 1) + aB(2m2−11m1 ),(38)

which is equivalent to

(b − 1)K(2m21m1 )(0) = −ρ(m2 − 1)B(2m2−21m1+2)(39)

+(a + b − 1 + ρ(N − m1 − m2))B(2m2−11m1 ).

After combining (37) and (39) we obtain

(a + b + ρ(2N − 2m2 − m1))B(2m2−11m1+1) = (a + ρ(N − m1 − m2))B(2m2−11m1 )(40)

−ρ(m2 − 1)B(2m2−21m1+2),

as it is proved in [11, Lemma 4, Equation (13)].

3. Recurrence relations for Selberg-type integrals

Formula (40) defines a recursive relation that was used in [11] for computing Selberg-Schur
integrals associated to partitions of the form λ = (2m21m1), 0 ≤ m1 + m2 ≤ N . In this
section we find a set of recurrence relations satisfied by Selberg integrals involving monomial
polynomials generalizing [11, Lemma 4, Equation (13)].

Theorem 8. Let λ be any partition of length ℓλ < N . Then, for any c such that 0 ≤ c < λ1

we have

(b − 1)

λ1−1∑

i=c

B[λ+(i−λ1)e1] + (a − 1 + λ1)B[λ−e1] − (a − 1 + c)B[λ+(c−1−λ1)e1](41)

= ρ

N∑

k=2

(−1)δλk<c

max{λk ,c}−min{λk,c}∑

i=1

B[λ+(max{λk ,c}−i−λ1)e1+(min{λk ,c}+i−1−λk)ek]

−ρ

N∑

k=2

λ1−λk∑

i=1

B[λ−ie1+(i−1)ek ],

where δa<b equals 0 if a < b and it equals 1 otherwise.

Remark 9. Before proving the Theorem let us emphasize that (41) is actually a well de-
fined recurrence for c < λ1 for the dominance ordering on partitions, namely, all partitions
appearing in (41) are � λ.
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Proof. The proof of the theorem follows the same steps as Example 7. Using Lemma 5 for
c = λ1 we obtain

(b − 1)

(
Kλ(0) −

λ1−1∑

i=0

B[λ+(i−λ1)e1]

)
= 2ρ

N∑

k=2

Aλ(k) + (a − 1 + λ1)B[λ−e1],(42)

which is equivalent to

(b − 1)Kλ(0) = (b − 1)

λ1−1∑

i=0

B[λ+(i−λ1)e1] + (a − 1 + λ1)B[λ−e1](43)

+ρ
N∑

k=2

λ1−λk∑

i=1

B[λ−ie1+(i−1)ek ].

On the other hand, Lemma 5 for an arbitrary 0 ≤ c < λ1 gives

(b − 1)

(
Kλ(0) −

c−1∑

i=0

B[λ+(i−λ1)e1]

)
= 2ρ

N∑

k=2

Aλ(k, c) + (a − 1 + c)B[λ+(c−1−λ1)e1],(44)

and by Lemma 1 it follows that

N∑

k=2

Aλ(k, c) = −
1

2

N∑

k=2,c≤λk

λk−1−c∑

i=0

B[λ+(c+i−λ1)e1−(1+i)ek ](45)

+
1

2

N∑

k=2,c>λk

c−λk−1∑

i=0

B[λ+(c−1−i−λ1)e1+iek],

so that

(b − 1)Kλ(0) = (b − 1)

c−1∑

i=0

B[λ+(i−λ1)e1] + (a − 1 + c)B[λ+(c−1−λ1)e1](46)

−ρ

N∑

k=2,c≤λk

λk−1−c∑

i=0

B[λ+(c+i−λ1)e1−(1+i)ek ] + ρ

N∑

k=2,c>λk

c−λk−1∑

i=0

B[λ+(c−1−i−λ1)e1+iek].

After combining Equations (43) and (46) we get the desired result. �

Corollary 10. Let λ be a partition of length ℓλ < N with λ1 > λk for k = 2, . . . , N . Then,

(a + b + λ1 − 2)B[λ−e1] − (a + λ1 − 2)B[λ−2e1] = −ρ

N∑

k=2

λ1−λk∑

i=1

B[λ−ie1+(i−1)ek ](47)

+ρ

N∑

k=2

λ1−λk−1∑

i=1

B[λ−(i+1)e1+(i−1)ek ].

Proof. The proof of the corollary follows straightforwardly after replacing c = λ1 − 1 in
Eq. (41). �

In the next section we give some examples showing the usefulness of these results.
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4. Applications

Let us recall that any Schur polynomial can be expressed in term of monomial symmetric
polynomials as

(48) sλ(y) =
∑

µ�λ

Kλµmµ(y),

where Kλµ is the Kostka number associated with λ and µ and mµ(y) is the monomial sym-
metric polynomial indexed by µ.

From the symmetry of the Selberg-Schur kernel under the permutation of any pair of variables
it follows that

Jλ =
∑

µ�λ

mµ(1N )KλµBµ,(49)

where we have exploit that mµ(y) is a symmetric polynomial, thus proving that Theorem 8
provides us with a well-defined algorithm for computing Selberg-Schur integral as it was
announced in the introduction.

Let us illustrate this fact with some interesting examples.

4.1. Partitions of the form (31n): For a given positive integer n let us consider the parti-
tion (31n). The partitions µ satisfying that µ � (31n) are: (1n+3), (21n+1) and (31n). Recall
from [1] that

(50) B(1n) = J0

[a + (N − 1)ρ]
(ρ)
(1n)

[a + b + 2(N − 1)ρ]
(ρ)
(1n)

,

and from [11] that

(51)
B(2n1m) = J0

[a + (N − 1)ρ]
(ρ)
(2n1m)

[a + b + 2(N − 1)ρ]
(ρ)
(2n1m)

[a + b + (N − 2)ρ]
(ρ)
(1n)

[a + b + (2N − m − n − 2)ρ]ρ(1n)

×3F2

[
−n,−N + m + n, α + β + γ + 2N − n − 1

α + β + N − n − 1, α + γ + N − n

]
,

for any positive integer m, where, as before, α = a/ρ, β = b/ρ, γ = 1/ρ and the hypergeo-
metric series 3F2 is evaluated at 1.

Noticing that

(52) K(31n),(1n+3) =
1

2

(n + 2)!

n!
,

(53) K(31n),(21n+1) = n + 1,

it follows from Eq. (49) that in order to find an expression for J(31n) we only need to find an
explicit formula for B(31n).

Applying Eq. (41) for λ = (41n) and c = 2 we obtain

ρ
[
2(N − n − 1)

(
B(1n+1) − B(31n) − B(21n+1)

)
− n

(
2B(31n) + B(221n−1)

)
(54)

+ nB(1n+1)

]
= (b − 1)B(21n) + (b − 1)B(31n) + (a + 3)B(31n) − (a + 1)B(1n+1),
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namely,

B(31n) = [a + b + 2 + 2ρ(N − 1)]−1 ×
[
(a + 1 + ρ(2N − n − 2))B(1n+1)(55)

− (b − 1)B(21n) − 2ρ(N − n − 1)B(21n+1) − ρnB(221n−1)

]
.

Substitution of (50) and (51) into this last expression will eventually lead us to the desired
formula for B(31n).

4.2. Partitions of the form (32m): Let m be, again, a non-negative integer number and
let us consider the case of the partition (32m). Despite of the lack of explicit expressions for
the corresponding Kostka numbers, it is straightforward to find a recurrence for B(32m).

In fact, applying Theorem 8 for λ = (42m) with c = 3 we have that

B(32m) = [a + b + 2 + 2ρ(N − 1)]−1 [(a + 2 + ρ(2N − m − 2))B(2m+1)(56)

+ ρ(N − m − 1)B(2m12) − 2ρ(N − m − 1)B(2m+11)

]
,

from where a formula for B(32m) can be read.

4.3. Partitions of the form (32m1n): Finally let us discuss the case of partitions of the
form (32m1n) with m,n > 0. Applying again Theorem 8 but now for λ = (42m1n) and c = 3
we get:

B(32m1n) = [a + b + 2 + 2ρ(N − 1)]−1 [(a + 2 + ρ(2N − m − n − 2))B(2m+11n)(57)

+ ρ(N − m − n − 1)B(2m1n+2) − nρB(2m+21n−1) − 2ρ(N − m − n − 1)B(2m+11n+1)

]
.

As before, using (50) and (51) an explicit formula for B(32m1n) can be derived.
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